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Abstract: Glacier surface facies are valuable indicators of changes experienced by a glacial system.
The interplay of accumulation and ablation facies, followed by intermixing with dust and debris,
as well as the local climate, all induce observable and mappable changes on the supraglacial ter-
rain. In the absence or lag of continuous field monitoring, remote sensing observations become
vital for maintaining a constant supply of measurable data. However, remote satellite observations
suffer from atmospheric effects, resolution disparity, and use of a multitude of mapping methods.
Efficient image-processing routines are, hence, necessary to prepare and test the derivable data
for mapping applications. The existing literature provides an application-centric view for selec-
tion of image processing schemes. This can create confusion, as it is not clear which method of
atmospheric correction would be ideal for retrieving facies spectral reflectance, nor are the effects
of pansharpening examined on facies. Moreover, with a variety of supervised classifiers and tar-
get detection methods now available, it is prudent to test the impact of variations in processing
schemes on the resultant thematic classifications. In this context, the current study set its experi-
mental goals. Using very-high-resolution (VHR) WorldView-2 data, we aimed to test the effects of
three common atmospheric correction methods, viz. Dark Object Subtraction (DOS), Quick Atmo-
spheric Correction (QUAC), and Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH);
and two pansharpening methods, viz. Gram–Schmidt (GS) and Hyperspherical Color Sharpening
(HCS), on thematic classification of facies using 12 supervised classifiers. The conventional classi-
fiers included: Mahalanobis Distance (MHD), Maximum Likelihood (MXL), Minimum Distance to
Mean (MD), Spectral Angle Mapper (SAM), and Winner Takes All (WTA). The advanced/target
detection classifiers consisted of: Adaptive Coherence Estimator (ACE), Constrained Energy Mini-
mization (CEM), Matched Filtering (MF), Mixture-Tuned Matched Filtering (MTMF), Mixture-Tuned
Target-Constrained Interference-Minimized Filter (MTTCIMF), Orthogonal Space Projection (OSP),
and Target-Constrained Interference-Minimized Filter (TCIMF). This experiment was performed on
glaciers at two test sites, Ny-Ålesund, Svalbard, Norway; and Chandra–Bhaga basin, Himalaya, India.
The overall performance suggested that the FLAASH correction delivered realistic reflectance spectra,
while DOS delivered the least realistic. Spectra derived from HCS sharpened subsets seemed to match
the average reflectance trends, whereas GS reduced the overall reflectance. WTA classification of the
DOS subsets achieved the highest overall accuracy (0.81). MTTCIMF classification of the FLAASH
subsets yielded the lowest overall accuracy of 0.01. However, FLAASH consistently provided better
performance (less variable and generally accurate) than DOS and QUAC, making it the more reliable
and hence recommended algorithm. While HCS-pansharpened classification achieved a lower error
rate (0.71) in comparison to GS pansharpening (0.76), neither significantly improved accuracy nor
efficiency. The Ny-Ålesund glacier facies were best classified using MXL (error rate = 0.49) and WTA
classifiers (error rate = 0.53), whereas the Himalayan glacier facies were best classified using MD
(error rate = 0.61) and WTA (error rate = 0.45). The final comparative analysis of classifiers based
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on the total error rate across all atmospheric corrections and pansharpening methods yielded the
following reliability order: MXL > WTA > MHD > ACE > MD > CEM = MF > SAM > MTMF = TCIMF
> OSP > MTTCIMF. The findings of the current study suggested that for VHR visible near-infrared
(VNIR) mapping of facies, FLAASH was the best atmospheric correction, while MXL may deliver
reliable thematic classification. Moreover, an extensive account of the varying exertions of each
processing scheme is discussed, and could be transferable when compared against other VHR VNIR
mapping methods.

Keywords: glacier facies; atmospheric correction; pansharpening; WorldView-2; Ny-Ålesund; Chandra–
Bhaga basin; target detection; supervised classification

1. Introduction

Remotely sensed observations of glaciers are an efficient means of monitoring the
overall changes occurring in the cryosphere. Partly or fully inaccessible glacial regions
have greatly benefitted from temporal and resolution advancements in remote sensing
(RS) technology. Multispectral observations of glaciers have led to the development of a
range of methods for mapping glacier extents [1,2], deriving albedo [3,4], monitoring of
the equilibrium line altitude (ELA) [5,6], surface temperature [7,8], and identification of
glacier zones [9,10]. Zones of a glacier refer to the distinct variations of snow and ice found
on a glacier’s surface, occurring due to the natural accumulation, melt, refreezing, and flow
of precipitated snow. These zones are also called facies. Different facies exhibit different
reflectance characteristics, which can be monitored using multispectral sensors [11,12],
SAR sensors [13,14], and radiometric observations [15,16], and are visually discernible
in very-high-resolution (VHR) data [17]. Hence, mapping facies is usually tasked on a
variety of RS products. Reflectance-based RS products are extremely versatile and can
be incorporated into calibrating distributed mass balance models [18], spectral libraries,
development of indices, and testing of methodologies, and can be compared band by band
against existing literature [17]. Prior to identifying facies on a VHR multispectral image, a
methodical preprocessing protocol of the image is of paramount importance to minimize
signal errors and extract maximum information. Processes such as deriving reflectance
and enhancing spatial resolution are necessary when looking for details such as sporadic
distribution of snow. The current study aimed to map facies on glaciers of two distinct
cryosphere zones while determining the best methods of pre-processing and band selection
using VHR data. The following literature review presents an account of glacier facies, data
preparation, and mapping methods to ascertain the objectives of this study.

1.1. Glacier Facies

First documented by Benson [19], the concept of glacier facies was thoroughly de-
scribed by Pope and Rees [10]. Concisely stated, glaciological facies are the variations of
snow and ice in the accumulation and ablation zones that stretch within the body of the
glacier and can differ across seasons and years. However, the range of facies available on a
glacier is most efficiently observed at the end of the ablation season. Surface observations of
facies often are the intermix of supraglacial debris, particulate matter, crevasses, and melt-
water streams, which represent the individual zones. Therefore, Jawak et al. [17] used the
term “surface glacier facies”, derived from the surface classes used by Pope and Rees [10].
Glacier facies mapped through Synthetic Aperture Radar (SAR) data are often called radar
zones [20] or radar facies [21]. Barzycka et al. [13] derived the changes of glacier facies
on Hornsund glaciers in Svalbard using unsupervised classification of multisensor SAR
data and compared it with ground-penetrating radar (GPR) observations and excavated ice
cores. Like Barzycka et al. [22], they advocated the use of the Internal Reflection Energy
(IRE) derived from GPR data for validation of SAR mapping and validation of facies extents.
Mapping facies using SAR is usually conducted for identifying snowlines, firn lines, or the
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equilibrium line altitude (ELA), and/or monitoring glacier extents predominantly during
winter months or early spring. However, the full range of ablation facies do not appear on
the surface of the glacier until the end of summer, when the temporary snow cover is at its
minimum. Cloud-free optical remote sensing, on the other hand, relies on ablation/summer
season data to obtain maximum information of the available range of facies.

1.2. Multispectral Mapping of Glacier Facies

Supraglacial terrain classification usually falls into three broad categories: 1. debris
and their associated phenomena; 2. identification of generalized facies; and 3. sensor-
specific responses and methodologies for mapping facies. A large volume of literature is
devoted to mapping glacial debris and understanding its associated complexities [8,23–28].
Usually, debris mapping entails usage of shortwave infrared (SWIR), and thermal infrared
(TIR) bands in addition to the visible NIR (VNIR) range of optical data [29]. Elevation data
is also necessary to adjust for topographic influence on retrieved debris characteristics [25].
However, Jawak et al. [17] mapped ice mixed debris and debris facies using only the VNIR
range of the spectrum. Yousuf et al. [15] described the distinctions between studies in
which mapping glacier facies was the main aim and studies in which facies were mapped
due to a different primary objective such as outlining glacial extents. We focused on studies
wherein mapping facies was the primary objective. After Dozier [30] highlighted the
utility of Landsat TM for obtaining reflectance characteristics of snow, Hall et al. [31] and
Williams et al. [12] used Landsat TM band ratios to distinguish between the reflectance
of glacier facies and the terrain. Several TM band ratios were used to identify bare ice,
debris-covered ice, slush, two facies of snow, and shadows in supervised and unsupervised
classification schemes [32]. Summer facies derived by an ISODATA algorithm by Braun
et al. [18] using TM and ETM+ bands were employed to validate distributed mass balance
modelling. The potentials of band ratios of Landsat 8 (operational land imager) OLI, and a
thermal infrared sensor (TIRS) were tested for mapping clean glacier ice, dirty glacier ice,
slush zone, snow, and supraglacial debris [9]. Using pansharpened and atmospherically
corrected imagery, the authors were also able to map crevasses, and observed a reduction
in the derived at-satellite brightness temperature. However, Jawak et al. [17,33], who used
2 m resolution WorldView-2 (WV-2) data, were able to map crevasses using customized
indices in the VNIR range. Their study focused on comparing pixel- and object-based
methods of mapping facies using VHR data. Ali et al. [34] mapped spatiotemporal variation
in facies in the Indian Himalayas using a range of optical sensors by creating ancillary
layers using band ratios, elevation, and thermal data. Similar multisensor image and
ancillary layer-based methods were tested by Shukla and Ali [35] and Yousuf et al. [15,36].
Pope and Rees [10] used Airborne Thematic Mapper (ATM) imagery, in situ spectral
reflectance, and Landsat ETM+ imagery over Midtre Lovénbreen to map the facies using
linear combinations of principal components derived from the spectral signatures. They
highlighted the importance of sensor-specific indices, particularly in the VNIR range, for the
most efficient surface classification of facies. Paul et al. [11] mapped facies using Sentinel 2A
imagery and compared the results against Landsat 8. Their results suggested that a higher
resolution would yield a higher-quality product. Optical remote sensing of glacier facies is
dependent on sensor and scene characteristics, resolution of data, mapping technique, and
ancillary information. Finer resolution scenes and processing parameters will invariably
lead to better-quality facies products.

1.3. Pansharpening

Visual identification of glacier facies requires fine spatial resolution for observing
textural differences and geometric characteristics, and good spectral resolution for as-
sociating the textural and tonal changes with reflectance characteristics of target facies.
Pansharpening, the process of fusing panchromatic (PAN) and multispectral (MS) images,
retains the spectral diversity of MS data while integrating the spatial sharpness of PAN
data [37]. In addition to being a common image manipulation method prior to information



Remote Sens. 2022, 14, 1414 4 of 46

extraction, enhancing spatial resolution is of paramount importance when the features are
relatively small, or the terrain is homogenous. Xu et al. [38] compared pansharpened and
non-pansharpened soil spectral indices on images from WV-2, Landsat 8, and GeoEye-1 to
create soil mineral indices. After testing the Brovey, Gram–Schmidt (GS), and IHS methods,
they inferred that the GS method was better at identifying structural and textural details.
A recent review [39] suggested that the GS pansharpening method was the most optimal
choice among the available methods. In glacial areas, the GS method delivered higher
accuracies for Jawak and Luis [40], who tested it against other pansharpening methods by
developing land cover mapping indices using WV-2 imagery. GS-sharpened imagery has
also enabled minute-scale vegetation mapping in Antarctica [41]. Jawak et al. [17,33] identi-
fied glacier facies in the Himalayas using GS-sharpened WV-2 data by devising customized
spectral index ratios. Although the GS method has proven to be a reliable method of
pansharpening high-resolution images, Hyperspherical Color Space (HCS) sharpening was
developed by Padwick et al. [42] specifically for WV-2 imagery. Their tests revealed that the
HCS method retained high spectral and spatial performance against the GS, IHS, and PCA
methods [42]. Wyzcalek and Wyzcalek [43] tested the efficacy of PCA against weighted
HCS pansharpening in an object-oriented domain using NDVI thresholds to classify the
segmented objects. Their results suggested that that the weighted HCS performed better
than the PCA. However, other studies that compared HCS against other pansharpening
methods suggested that it yielded quantitatively inferior results to methods such as Fuse
Go and Ehlers, which retained better spatial and spectral details [44]. Snehamani et al. [45]
compared 27 pansharpening algorithms, including the HCS, using QuickBird and WV-3
images captured over urban settings. Their findings suggested that the selection of pan-
sharpening methods must be sensor- and scene-specific. This agreed with the observations
of Nikolakopoulos and Oikonomidis [46]. Rayegani et al. [47] also arrived at the same
conclusion while noting that the HCS method could induce some pepper noise effect,
but it closely retained the histogram of the original image. It is worth noting that Wu
et al. [48] proposed an enhanced HCS to correct some of the spatial distortion produced
in the sharpened imagery. However, the effects of the HCS sharpening were not tested
over glacierized landscapes, whereas the GS method was proven to be effective in the same
settings. Furthermore, the effects of these methods on identifying glacier facies have not
yet been observed.

1.4. Atmospheric Correction

Conversion of digital brightness numbers to at sensor radiance and subsequently
to surface/apparent surface reflectance is an important image preprocessing step in any
reflectance-based feature identification protocol. Atmospheric correction aims to resolve
the influence of scattering and absorption by atmospheric molecules and aerosols occur-
ring in the Field-of-View (FOV) of the acquiring sensor. Several atmospheric correction
models have been developed through empirical statistical methods and atmosphere ra-
diative transfer codes [49]. Some of the most popular atmospheric correction models
are Dark Object Subtraction (DOS), the Quick Atmospheric Correction (QUAC), and the
Fast-Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). DOS rectifies
the additive scattering effect [50], QUAC corrects the multiplicative scattering effect [51],
and FLAASH [52] is based on the moderate-resolution atmospheric transmission 4 (MOD-
TRAN4) radiative transfer code [53]. Marcello et al. [54] compared the performance of
DOS, QUAC, FLAASH, Atmospheric Correction (ATCOR), and Second Simulation of a
Satellite Signal in the Solar Spectrum (6S) models to retrieve vegetation and soil sites in
semiarid areas. Their analysis was performed on WV-2 imagery and compared to in situ
spectral signatures. They recommended the 6S model for information extraction using
vegetation indices. However, except for the blue band, all the atmospherically corrected
signatures and in-situ signatures closely matched. Shi et al. [55] observed that the FLAASH
corrected reflectance was closest to in situ reflectance when compared to DOS, and QUAC
for hyperspectral data over bloom water. This opposed the findings made by Dewi and
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Trisakti [56], who found that the FLAASH algorithm delivered inferior soil spectral patterns
in comparison to DOS and QUAC. However, when assessed by factoring location and time
consistency, they observed that FLAASH had the highest absolute value over DOS and
QUAC. A comparative study between ATCOR, FLAASH, and DOS1 [57] for geological
mapping in arid and semiarid environments using Landsat 8 data suggested that DOS1
provided a simpler alternative to the other two methods. While the FLAASH algorithm
performed slightly better than DOS1, they maintained that usage of DOS1 delivered good
performance in complex semiarid regions. Cryosphere studies have adopted all the above
methods for retrieving surface reflectance. For example, Guo et al. [58] used FLAASH
to retrieve albedo for mapping the spatiotemporal variability of the snow line altitude at
the end of the melt season across High Mountain Asia (HMA) glaciers. Albert [59] used
DOS to correct atmospheric scattering for ice area classification of an ice cap using Landsat
TM 5 imagery. Karimi et al. [8] mapped debris-covered glaciers in Iran using QUAC-
corrected satellite data. Jawak et al. [17,33] identified glacier facies in the Chandra basin
using FLAASH-rectified WV-2 imagery. Luis and Singh [60] attempted to map facies on
the Edithbreen glacier in Svalbard using FLAASH-corrected WV-3 data. All the reviewed
literature on atmospheric correction invariably pointed toward selection of a method based
solely upon the unique requirements of that study [61]. As the effects of DOS, FLAASH,
and QUAC are yet to be observed for mapping of glacier facies in one comprehensive study,
it would be premature to suggest one optimal method.

1.5. Research Motivation and Aim

SAR data operates mainly for winter assessment of glacier facies (Section 1.1). This
is beneficial for accumulation-area estimations and winter facies of glaciers when the
snowpack is mostly frozen, and SAR can penetrate well. However, seasonality of facies
relies on summer season data. Summer facies on a glacier imply that most of the abla-
tion zone would be wet. The varying degrees of wetness, thickness, and debris would
determine the kinds of surface facies visible. Gore et al. [62] stated that these variable
and altitudinal properties of melt exposed the full range of supraglacial features. Thakur
et al. [63] suggested that the low penetrating depth of SAR into wet snow was a limiting
factor [64,65]. Melt-induced reduction in reflectance [66] would, however, be identifiable
in the multispectral bands of optical satellite data. Therefore, utilizing cloud-free optical
remote sensing data during summer would greatly complement ongoing SAR efforts and
provide reflectance-based products, such as spectral profiles and thematic outputs for
further testing. While moderate-resolution mapping of supraglacial features using optical
data is conducted at a basin-level [28], high-resolution (HR) data is mainly used for facies
mapping on selected glaciers [9,11], with VHR data being used for validation purposes [67].
Efforts made by Luis and Singh [60] using VHR WV-3 data were only for a single glacier.
Jawak et al. [17] used VHR WV-2 data, but only for selected glaciers of the same area.
Hence, multiregion testing of VHR optical data for mapping glacier facies has not yet been
comprehensively performed.

Moreover, optical data necessitates image-rectification procedures such as atmospheric
correction (Section 1.4) and pansharpening (Section 1.3). The effect of different atmospheric
corrections on resultant reflectance spectra was tested for other applications such as soil
and vegetation mapping [54,56], bloom water hyperspectral retrieval [55], and geological
mapping [57]. Cryosphere studies have relied on single atmospheric corrections before pro-
ceeding to extract albedo [58], classifying ice area [59], mapping debris-covered glaciers [8],
monitoring seasonal variations [68], and characterizing glacier facies [15]. This suggested
that a comparative assessment of the effects of different atmospheric corrections on resul-
tant reflectance spectra of glacier facies and their subsequent classification has not been
conducted. Lee and Yum [61] reviewed research-based usage of different atmospheric cor-
rections and recommended selection of any correction method by evaluating requirements
of the study. However, the evaluation for selecting a correction method for glacier facies
mapping using VHR data itself has not yet been conducted.
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Pansharpening supports better visual characterization of glacial features. This effect
can be beneficial when mapping glacial extents and boundaries when coupled with relevant
DEMs [9]. Xu et al. [38] observed that the GS pansharpening method was better suited to
derive structural and textural details in an ensemble analysis of VHR and MR resolution
images when applying soil indices. The same method yielded better results among a
comparative study that mapped land cover in polar regions using WV-2 VHR data [40].
However, the HCS method [42] was shown to deliver superior results on segmented objects
ratioed using NDVI [43]. Snehamani et al. [45] and Nikolakopoulos and Oikonomidis [46]
concluded that pansharpening must be application- and image-oriented. To the best of
the authors’ knowledge, a testing of the effects of pansharpening on the identification and
mapping of glacier facies has not been carried out. While Jawak and Luis [17] and Luis and
Singh [60] both used GS to sharpen WV-2 MS data, neither evaluated the effects of HCS,
which was developed for WV-2 itself [42]. This study presents an efficient test for comparing
the GS, which is purportedly the most suited method for land cover classification (GS) [39]
against the HCS when using WV-2 imagery.

Based on the literature described, it was evident that there are research gaps in the
schemes of image-processing routines for multispectral mapping of glacier facies. The gaps
are summarized as follows: (a) optical VHR data has not been comprehensively tested on
multiregion glaciers for mapping facies; (b) the effects of atmospheric correction are yet to
be observed on the spectral and thematic results of mapped facies; and (c) the compounding
effects of pansharpening on characterizing glacier facies has not been clearly studied. In
addition to these, an exhaustive test of conventional and advanced pixel-based classification
methods would aid in identifying which algorithms are the most efficient for mapping
facies. A thorough evaluation of the effects of atmospheric correction, pansharpening, and
various pixel-based classification algorithms on thematic outputs of glacier facies would
result in robust recommendations for their operational mapping using VHR multispectral
data. This summarizes the motivation for the current study. To accomplish this, the
following research aims were set: (1) effective characterization of glacier facies using
VHR multispectral data using pixel-based methods; (2) testing the effect of atmospheric
correction procedures on glacier facies mapping; and (3) testing the effect of pansharpening
methods on glacier facies mapping.

The current study evaluated the FLAASH, QUAC, and DOS atmospheric correction
algorithms, and found the FLAASH correction to deliver the best reflectance pattern. GS
and HCS pansharpening algorithms were tested, and the HCS was found to deliver the least
decrement in spectral reflectance. A total of 12 conventional and advanced classification
algorithms were employed to test the effects induced in thematic classification by variations
in atmospheric corrections and pansharpening. Among the tested methods, the maximum
likelihood classifier delivered the most consistent results across each atmospheric correction
and pansharpening method. Based on the results of the study, conventional classifiers were
more efficient and delivered higher accuracies in comparison to advanced classification
algorithms. The results were consistent across two distinct study areas, Ny-Ålesund,
Svalbard; and Chandra–Bhaga basin, Himalayas, using VHR WorldView-2 imagery.

2. Study Area and Data Used
2.1. Spatial Extent of the Test Sites

2.1.1. Site A: Ny-Ålesund, Svalbard

The Nordic archipelago of Svalbard is a pristine mass of glacial landscapes in the
Arctic Ocean between 75◦ and 82◦N [69]. An interplay of different oceanic currents and
variation in atmospheric circulation causes this landscape to experience climates ranging
from continental to coastal, with further fluctuations between winter, spring, and summer
months [70]. Currently, this system is one of the most rapidly warming areas on the planet.
The rate of its increase in temperature is reportedly double the global average [71]. The
direct effect of this warming is visible on its glaciers in the form of glacier thinning [72],
recession of perennial snow cover to higher elevations [73], and near-surface densification
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of the accumulation zone [74]. Due to the aforementioned factors, the entire region is of
international scientific significance. The research base at Ny-Ålesund is an ode to this
significance, and is the primary hub for scientific endeavors in western Svalbard. The
glaciers near Ny-Ålesund are polythermal in nature [75,76]. The glaciers selected for this
study included Vestre Brøggerbreen (VB), Austre Lovénbreen (AL), Austre Brøggerbreen
(AB), Midtre Lovénbreen (ML), Edithbreen (EB), Botnfjellbreen (BB), Pedersbreen (PB), and
Uvérsbreen (UB) (Figure 1). ML and AB are perhaps the most well documented of the
selected glaciers. One of the earliest accounts of ML is a photographed documentation
by Hamberg [77]. The Norwegian Polar Institute set up regular monitoring of mass
balance for glaciers AB and ML in 1966 and 1967, respectively [69,78]. Furthermore, glacier
surface facies were mapped on ML prior to this attempt by Pope and Rees [10,16], thereby
presenting a working knowledge basis for direct comparison. Luis and Singh [60] also
attempted to identify facies on the nearby Edithbreen glacier.

2.1.2. Site B: Chandra–Bhaga Basin, Himalaya

Known as the “Water Tower of Asia” [79], the Himalayas are a mountain chain of extreme
cultural, sociological, economic, geopolitical, and strategic significance. Their cumulative
scientific importance is, hence, phenomenal. In response to changing climates, the Himalayan
cryosphere is receding, and has been observed to be losing frozen mass at an alarming rate [80].
The Indian Himalayas are well documented through both Survey of India (SOI) topographic
maps and remote observations [81]. The hostile mountain terrain, vast landscape, and harsh
weather conditions are often incumbent to field investigations, which result in certain pockets
of glacier basins being selected for continuous monitoring. The Chandra–Bhaga basin is one
such region. This basin is in the Lahaul and Spiti district of Himachal Pradesh, India. It lies
within the monsoon–arid transition zone, and was therefore an optimal choice for studying
glacial climatic response [82]. Himansh, the Indian Himalayan research base, is situated here
at an altitude of 4080 m above mean sea level [17]. The glaciers selected were Samudra Tapu
(ST), CB1, CB2, CB3, CB4, CB5, and CB6 (Figure 1). Samudra Tapu in the Chandra–Bhaga
basin is analogous to Midtre Lovénbreen in Ny-Ålesund, as both are well monitored and
provided established results for comparison. Alphanumeric identifiers were assigned to
glaciers for which, to the best of our knowledge, no name has ever been assigned. Some of
the studies over ST consisted of snow cover change analysis over four decades [83], snowline
altitude changes for three decades [79], glacier facies mapping using VHR data [17,84], and
debris cover variation analysis [85,86].

Table 1 documents all the selected glaciers from Ny-Ålesund and the Chandra–Bhaga
basin, their respective areal extents, and their Global Land Ice Measurements from Space
(GLIMS) reference ID [87].

2.2. Geospatial Data

The core datasets of this study were LV2A-processed images obtained from Digital
Globe, Inc., Westminster, CO, USA [88]. The Himalayan image was acquired on 16 October
2014 (imagery © 2014 Maxar). In the Chandra–Bhaga basin, that period is just after the
ablation season and the early onset of winter. It had a multispectral (MSL) resolution of
2 m and a panchromatic (PAN) resolution of 0.5 m. The Svalbard image was acquired on 10
August 2016 (imagery © 2016 Maxar). In Ny-Ålesund, this is right at the end of the ablation
season. This arctic product had an at-nadir spatial resolution of 1.24 m, whereas the SWIR
bands and PAN band had resolutions of 3.7 m and 0.31 m, respectively. The datasets had a
radiometric resolution of 16 bits per pixel. The spectral resolution of WV-2 consisted of the
bands PAN (0.45–0.80 µm), coastal (0.40–0.45 µm), blue (0.45–0.51 µm), green (0.51–0.58 µm),
yellow (0.585–0.625 µm), red (0.63–0.69 µm), red edge (0.705–0.745 µm), near-infrared 1
(NIR1) (0.770–0.895 µm), and near-infrared 2 (NIR2) (0.86–1.04 µm). The projection and
datum of the Svalbard image were done with WGS 1984 UTM Zone 33N, whereas the
Himalayan image was projected with WGS 1984 UTM Zone 43N.
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Table 1. The selected glaciers of the study, their areal extents, and GLIMS reference IDs. The areal
extents were calculated from the delineated shapefiles using the geometry calculator in ArcGIS.

Region Glacier Areal Extent in km2 GLIMS Reference ID

Ny-Ålesund
Svalbard

Vestre Brøggerbreen 2.89 G011694E78906N
Austre Lovénbreen 4.64 G012161E78870N

Austre Brøggerbreen 8.08 G011895E78886N
Midtre Lovénbreen 4.75 G012039E78878N

Edithbreen 3.27 G012119E78852N
Botnfjellbreen 4.82 G012405E78843N
Pedersbreen 5.87 G012286E78855N
Uvérsbreen 13.85 G012520E78787N

Chandra–Bhaga basin
Himalayas

Samudra Tapu 76.00 G077426E32511N
CB 1 27.70 G077376E32671N
CB 2 12.44 G077368E32619N
CB 3 37.43 G077369E32564N
CB 4 12.05 G077421E32604N
CB 5 24.93 G077485E32394N
CB 6 16.65 G077438E32563N

Pansharpened scenes were draped on 30 m Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) and Global Digital Elevation Model (GDEM) v2 [89] for
the Chandra–Bhaga basin, and 5 m Arctic DEM [90,91] for Ny-Ålesund. The resultant 3D
view of the study areas presented reliable surfaces for digitization of glacial boundaries [9,17].

3. Data Processing Methodology
3.1. Experimental Setup

The review of literature suggested utilizing the VNIR range of VHR optical data to
exploit sensor-specific methods of mapping facies, specifically band ratioing. Comparison
of outputs between ratios is beneficial to outlining the role of each band in mapping
procedures. Based on the findings by Paul et al. [11] and Pope and Rees [16], it was
observed that higher spatial and spectral differences in VHR data could improve the
mapping outputs of glacier facies and deliver potentially superior results. Conventional
and advanced supervised pixel-based classifiers (PBC) methods have also been shown to
deliver good results in glaciological applications [17,59]. Finally, assessment of the effects of
atmospheric corrections and pansharpening on the spatial and spectral differences induced
by VNIR VHR data would thoroughly define an ideal processing protocol, as well as
mapping mechanism. Figure 2 outlines the broad experimental setup of the current study.

This study aimed to map facies for selected glaciers in Ny-Ålesund, Svalbard; and the
Chandra–Bhaga basin, Indian Himalayas, using VNIR VHR WV-2 data. Three different
atmospheric corrections; viz., DOS, FLAASH, and QUAC, were used to derive reflectance,
followed by pansharpening using GS and HCS. Glacial extents were defined by delineating
3D raised images over ASTER GDEM v2 and Arctic DEM, respectively. The subsets
were then classified using conventional and advanced PBC methods, and the results were
assessed using error matrices and qualitative assessment against published literature. Thus,
the study used three atmospheric corrections, two pansharpening methods, and a host of
classification algorithms to test the effects of pansharpening, atmospheric corrections, and
classification algorithms on mapping glacier surface facies. Henceforth in the manuscript,
processing “levels” of datasets will be referred to as processing schemes to describe the stage
of processing. Table 2 displays each processing scheme and its associated nomenclature in
the study. This nomenclature will be used to refer to the datasets, the classification, and
respective workflows.
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Figure 2. Experimental set up of the study. TOA: Top of Atmosphere; PAN: Panchromatic; MSS:
Multispectral; DOS: Dark Object Subtraction; FLAASH: Fast-Line-of-Sight Atmospheric Analysis of
Spectral Hypercubes; QUAC: Quick Atmospheric Correction; GS: Gram–Schmidt; HCS: Hyperspheri-
cal Color Space; MHD: Mahalanobis Distance; MXL: Maximum Likelihood; MD: Minimum Distance;
SAM: Spectral Angle Mapper; WTA: Winner Takes All; ACE: Adaptive Coherence Estimator; CEM:
Constrained Energy Minimization; MF: Matched Filtering; MTMF: Mixture-Tuned Matched Filtering;
MTTCIMF: Mixture-Tuned Target-Constrained Interference-Minimized Filter; OSP: Orthogonal Space
Projection; TCIMF: Target-Constrained Interference-Minimized Filter.
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Table 2. Nomenclature of processing schemes used in the current study. AC: Advanced Classifiers;
CC: Conventional Classifiers.

Nomenclature/Abbreviation Description/Definition

DOS DOS-corrected

FLAASH FLAASH-corrected

QUAC QUAC-corrected

GS_DOS DOS followed by GS sharpening

GS_FLAASH FLAASH followed by GS sharpening

GS_QUAC QUAC followed by GS sharpening

HCS_DOS DOS followed by HCS sharpening

HCS_FLAASH FLAASH followed by HCS sharpening

HCS_QUAC QUAC followed by HCS sharpening

DOS_AC/CC DOS followed by AC or CC classification

FLAASH_AC/CC FLAASH followed by AC or CC classification

QUAC_AC/CC QUAC followed by AC or CC classification

GS_DOS_AC/CC DOS followed by GS followed by AC or
CC classification

GS_FLAASH_AC/CC FLAASH followed by GS followed by AC or
CC classification

GS_QUAC_AC/CC QUAC followed by GS followed by AC or
CC classification

HCS_DOS_AC/CC DOS followed by HCS followed by AC or
CC classification

HCS_FLAASH_AC/CC FLAASH followed by HCS followed by AC or
CC classification

HCS_QUAC_AC/CC QUAC followed by HCS followed by AC or
CC classification

AC:
ACE/CEM/MF/MTMF/MTTCIMF/OSP/TCIMF

Individual processing schemes are followed by
the abbreviations for each advanced classifier

CC: MHD/MXL/MD/SAM/WTA
Individual processing schemes are followed by

the abbreviations for each
conventional classifier

3.2. Image Processing
3.2.1. Radiometric Calibration and Atmospheric Correction

Conversion of DN to reflectance is a dual-step procedure, which involves: (a) con-
verting digital number/brightness values to at-sensor spectral radiance; and (b) retrieving
apparent surface spectral reflectance from at-sensor spectral radiance through atmospheric
correction. The first step was carried out using the radiometric calibration module in Envi-
ronment for Visualizing Images (ENVI) 5.3. This study tested three atmospheric correction
models; each procedure is described as follows.

The FLAASH correction is a two-step process that requires: (1) retrieval of atmospheric
parameters such as aerosol description and the water column amount; and (2) using the
model atmosphere and aerosol description to convert radiance to reflectance using the
radiative transfer code [92]. The atmosphere model [93] and aerosol model [94] were
defined using the guidelines prescribed by Abreu and Anderson [95]. Other parameters
such as initial visibility and GMT were user-defined using the image metadata. Factors
including pixel size, aerosol height, CO2 mixing ratio, water column multiplier, zenith angle,
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sensor altitude, and scene center location were computed automatically upon definition of
the sensor type. Table 3 highlights the parameters used for the images of each study area.

Table 3. Input parameters for FLAASH atmospheric correction.

Parameter Chandra–Bhaga Basin Ny-Ålesund Computation

Flight date 16 October 2014 10 August 2018 Imagery metadata

Scene center location Lat: 32.5324
Long: 77.4175

Lat: 78.8816
Long: 12.0734

Automatic
computation

GMT 5.6825 12.7456 User-defined

Sensor altitude (km) 770 770 Automatic
computation

View zenith angle
(degrees) 180.00 180.00 Automatic

computation
Initial visibility (km) 40.00 40.00 User-defined
Atmospheric model 1 (Tropical) 4 (Subarctic Summer) User-defined [93]

Aerosol model 6 (Tropospheric) 4 (Maritime) User-defined [93]
Water column

multiplier 1.00 1.00 Automatic
computation

Pixel size (m) 2.00 0.90 Automatic
computation

Aerosol scale height 1.50 1.50 Automatic
computation

CO2 mixing ratio
(ppm) 390.00 390.00 Automatic

computation

Unlike the FLAASH model, the QUAC correction is relatively straightforward. De-
scribed in [51] as an in-scene approach, it relies primarily on central wavelengths and the
first step of sensor calibration. Due to this, the procedure directly involves input of the
image into the QUAC module, which delivers the output scaled to a reflectance factor of
10,000 [92]. A simple band math correction brings the reflectance values into the range of
0–1. Like QUAC, the DOS correction is also an image-based corrective procedure. DOS is
based on the principle that contributions of atmospheric scattering cause upwelling of the
path radiance in dark pixels of an image in the concerned spectral [96]. Zhang et al. [97]
outlined the DOS equation while stating that a single dark value was used to determine
path radiance. For analyzing spectral signatures and subsequent classification, the imagery
must be converted to reflectance. Therefore, following Rumora et al. [98], TOA reflectance
was used an input to the DOS correction. Moreover, DOS correction in ENVI can incorpo-
rate user-defined dark pixel values. The procedure simply involves an operator-assisted
identification of a few dark pixels and calculation of the average reflectance of each of
the dark pixels. These average values can then be manually added into the DOS module
window in ENVI 5.3 for each spectral band. Table 4 displays the average user-defined dark
pixel reflectance values.

Table 4. Spectral-band-wise at-sensor reflectance values of selected dark pixels for input into DOS
correction module in ENVI 5.3.

Spectral Bands
Mean at-Sensor Reflectance of Selected Dark Pixels

Ny-Ålesund Chandra–Bhaga Basin

Coastal 0.09 0.17
Blue 0.06 0.14

Green 0.04 0.11
Yellow 0.03 0.09

Red 0.03 0.08
Red Edge 0.02 0.08

NIR1 0.01 0.06
NIR2 0.01 0.06
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3.2.2. Pansharpening and Digitization

Pansharpening was performed in this study to test the differences between the GS,
which is the most purported algorithm for retaining spectral information [40], and the
HCS, which was designed for WV-2 imagery [42] against non-pansharpened imagery.
GS estimates the panchromatic data based on the spectral response function of a given
sensor [99]. The procedure requires direct input of the images into the GS module in
ENVI. HCS sharpens MS imagery by replacing the intensity component of MS data in
the hyperspherical color space with the intensity-matched form of the PAN band [44].
The procedure requires input of the PAN and MS images into the HCS fusion module in
ERDAS IMAGINE.

Pandey and Venkatraman [79] experienced difficulties while manually digitizing
ice divides and the glacier terminus. Bhardwaj et al. [9] resolved this issue by gen-
erating a 3D perspective of the area to observe and delineate the glacial boundaries.
Jawak et al. [17] followed a similar approach, and highlighted the efficiency by which
ice divides can be observed using the same method. Therefore, the current study
followed suit by draping the GS-pansharpened imagery over the Arctic DEM for
Ny-Ålesund and over the ASTER GDEM v2 for the Chandra–Bhaga basin. The glacial
boundaries and ice divides were then digitized and extracted from the complete image
using ArcGIS.

3.3. Glacier Facies Mapping Using Advanced Image Processing
Pixel-Based Classification

A wide variety of pixel-based algorithms can be employed for information ex-
traction. Pope and Rees [10] used an unsupervised ISODATA algorithm to map facies.
However, their base image was acquired using an Airborne Thematic Mapper (ATM).
While this provided a good comparison against the Linear Combinations (LCs) of
their study, it cannot be directly applied to satellite data. Supervised algorithms,
on the other hand, have been used to map facies using satellite data [17,32,35,60,82]
with good accuracies. Moreover, this study intended to improve upon comparisons
between supervised classifiers [100] and test the effects of image-processing routines
on the classification outputs. Such a test acts on the mathematical and computational
differences between each classifier, a discussion that is beyond the scope of this paper.
Nevertheless, as end users of classification algorithms, it was necessary to identify
and evaluate their thematic performance. A comprehensive test of this scale would
necessitate assessment of conventional and advanced pixel-based classifiers. ENVI
offers both under its Terrain Categorization (TERCAT) and Target Detection (TD)
workflows. Selected algorithms comprised Mahalanobis Distance (MHD), Maximum
Likelihood (MXL), Minimum Distance (MD), Spectral Angle Mapper (SAM), Winner
Takes All (WTA), Adaptive Coherence Estimator (ACE), Constrained Energy Mini-
mization (CEM), Matched Filtering (MF), Mixture-Tuned Matched Filtering (MTMF),
Mixture-Tuned Target-Constrained Interference-Minimized Filter (MTTCIMF), Or-
thogonal Space Projection (OSP), and Target-Constrained Interference-Minimized
Filter (TCIMF). Table 5 describes each algorithm, the workflow under which they
were available in ENVI, and reference studies in which the algorithms were used for
information-extraction applications.
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Table 5. Pixel-based classifiers used in this study, their descriptions, and their reference applications.
Assessment: wherein different pixel-based methods are assessed for their comparative performance.
Descriptions of the classifiers were modified from [101].

Approach/Workflow Algorithm Description Reference Applications

Conventional Classifiers

Mahalanobis Distance (MHD)

Assumes equal class covariances
and assigns pixels to closest
training samples based on
direction sensitive highest

probability.

Landcover Mahmon et al.
[102]; Aerosol classification:

Hamill et al. [103];
Assessment: Doma et al. [104];

Gao and Mas [105]; Glacier
facies: Jawak et al. [17]

Maximum Likelihood (MXL)

Assigns pixels according to highest
probability based on an

assumption of normal distribution
of the statistics for each training

sample in each band.

Landcover: Mahmon et al.
[102]; Assessment: Doma et al.
[104]; Vegetation area: Gevana

et al. [106]; Glacier facies:
Shukla and Ali [35]; Jawak

et al. [17]

Minimum Distance (MD)

Calculates the average of training
samples and computes the

Euclidean distance from each
unknown pixel to the average

sample for each class.

Face Recognition:
ChandraBhensle and Raja

[107]; Landcover: Mahmon
et al. [102]; Assessment:

Doma et al. [104]; Crop area:
Ahmed et al. [108]; Glacier

facies: Jawak et al. [17]

Spectral Angle Mapper (SAM)

Uses an n (spectral band
numbers)-D angle of spectral

similarity to assign pixel spectra
to training samples with the
smallest angle (hence, closest

probable class).

Crop area: Ahmed et al. [108];
Canopy species identification:

Cho et al. [109]; Burnt area
mapping: Petropoulos et al.
[110]; Glacier facies: Jawak

et al. [17]

Winner Takes All (WTA)

A voting method that classifies
pixels based on the majority

compiled from all other methods
in the TERCAT workflow.

Pattern recognition: Chen
et al. [111]; Polar land cover

mapping: Jawak and Luis [40];
Multisource object extraction:

Mancini et al. [112]

Advanced Classifiers

Adaptive Coherence
Estimator (ACE)

Derived from the generalized
likelihood ratio (GLR). It does not

require knowledge of all target
classes in an image.

Mineral mapping: Ni et al.
[113]; Shoreline mapping:

Sukcharoenpong et al. [114];
Tree crown classification: Zou

et al. [115]; Sonar systems:
Soules and Broadwater [116]

Constrained Energy
Minimization (CEM)

Classifies pixels through a
covariance matrix using a

constrained finite impulse filter
based on the provided training

samples.

Assessment: Ren et al. [117];
Du et al. [118]; Mineral

mapping: Pour et al. [119];
Glacier facies: Jawak et al. [17]

Matched Filtering (MF)

Minimizes the unknown
background spectra according to

the training sample through
partial unmixing, assigning
classes based on mean pixel

spectra abundances.

Surface water pollution:
Gursoy and Atun [120];

Lithology: Harris et al. [121];
Gas plumes: Funk et al. [122];
Glacier facies: Jawak et al. [17]

Mixture-Tuned Matched
Filtering (MTMF)

Adds an infeasibility image to the
results to reduce the number of
false positives that may occur in

MF results.

Lithology: Mehr et al. [123];
Hyperspectral leafy spurge
cover: Williams and Hunt Jr.

[124]; Mineral mapping:
Zadeh et al. [125]
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Table 5. Cont.

Approach/Workflow Algorithm Description Reference Applications

Orthogonal Space Projection
(OSP)

Matches pixels to training
samples by using an orthogonal

subspace projector to remove
nontargets and then applying MF.

Assessment: Du et al. [118];
Face recognition: Singha et al.

[126]; Glacier facies: Jawak
et al. [17]

Target-Constrained
Interference-Minimized Filter

(TCIMF)

Constrained to eliminate the
response of nontargets rather than

minimize their energy. It can
minimize interferences in

classification.

Hyperspectral subpixel target
detection: Ren and Chang
[127]; Assessment: Du and

Ren [128]; Flood area
mapping: Millan et al. [129]

Mixture-Tuned
Target-Constrained

Interference-Minimized Filter
(MTTCIMF)

Adds infeasibilty to TCIMF in
order to reduce misclassification

after using a minimum noise
fraction transformation to

perform TCIMF

Assessment: Seyedein et al.
[130]; Subpixel mineral

mapping: Kumar et al. [131];
Oil spill spectral unmixing:

Sidike et al. [132]

MHD, MXL, MD, and SAM are some of the most widely used and popular classi-
fiers [133]. WTA is an ensemble of the majority classification from MHD, MXL, MD, and
SAM. The CEM, MF, and OSP classifiers have been used for mapping glacier facies (Table 5).
However, the other AC algorithms have been tested in applications requiring minute spec-
tral differentiation (Table 5), and theoretically should be capable of discriminating between
closely matching spectra of surface facies. Therefore, a comparative assessment of the-
matic classification among the popular and advanced algorithms using different processing
schemes would lead to a greater understanding of their capabilities at identifying facies.

PBC is usually a two-step procedure requiring: (1) selection of training samples
(regions of interest); and (2) application of supervised algorithms. Training samples were
assigned based on visual and spectral analysis of the available facies. Polygonal regions
of interest (ROIs) were outlined for each facies to accommodate their spectral variations
(Supplementary Figure S1). Distribution of ROIs in percentage for the Chandra–Bhaga
basin were as follows: snow was assigned 42.12%, glacier ice was assigned 20.82%, ice
mixed debris was assigned 8.74%, and crevasses were assigned 9.10%; whereas shadowed
area and debris were assigned ROIs containing 12.04% and 7.18%, respectively. For ROIs
of the Ny-Ålesund glaciers, snow was distributed at 3.42%, streams and crevasses at
4.19%, shadowed snow at 22.36%, saturated snow at 11.57%, melting snow at 7.42%,
melting glacier ice at 18.71%, and glacier ice at 20.23%; while dry snow and dirty ice were
distributed at 3.34% and 8.76%, respectively. The MF, MTTCIMF, and MTMF algorithms
required the imagery to undergo a minimum noise fraction (MNF) transformation prior to
classification. Algorithms that did not require this transformation were processed directly
after input of the image and ROIs into the respective workflows. Default parameters
were retained in the workflows, and postclassification processing was avoided to negate
unintentional analyst bias. Therefore, as performed by Jawak et al. [17], the stretch (square
root) and rule thresholds (0.4) were common for each facies, for all classifiers, and for all
the processing schemes.

3.4. Identification of Surface Facies

In this study, glacier surface facies were identified in Ny-Ålesund and the Chandra–
Bhaga basin using visual and spectral characteristics. Jawak et al. [17] described the visual
identification of surface facies in the Chandra–Bhaga basin using the smoothness and higher
elevation of snow, rougher and flow-induced striated texture of ice, disheveled structure of
crevasses, and brightness variations between debris and ice mixed debris (IMD).

The same characterization was incorporated here to identify facies and derive spectral
signatures for the Himalayan glaciers. A similar logic of surficial appearance, texture, and
tonal variations, along with location on the glacier, was incorporated to identify surface
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facies on Ny-Ålesund glaciers. Figure 3 highlights the visual characteristics of observable
surface facies on the ML glacier. The Chandra–Bhaga basin image was obtained at the start
of early winter; hence, it showcased a large distribution of snow and glacier ice. However,
the Ny-Ålesund image was obtained at the end of the ablation season, thereby showcasing
the full range of surface facies. Facies identified on Ny-Ålesund glaciers consisted of dry
snow, wet snow, melting snow, saturated snow, glacier ice, melting glacier ice, dirty ice, and
streams and crevasses. Dry snow was characterized by its bright appearance at the highest
elevation of the glacier. Wet snow appeared next, having a reduced brightness due to an
increased moisture content than dry snow, but still maintaining an overall smoothness.
Melting snow had more visible tonal roughness than wet snow, whereas saturated snow
was much darker. This could be due to the high moisture and low integrity of the surface
cover. Glacier ice was distinguishable through flow-induced striations and was distinct
from melting glacier ice by its brighter appearance. Greater moisture and surface dust
were the next possible reasons for its visual characteristic. Streams and crevasses were
grouped together, as their individual characterization was difficult when much of the
glacier’s surface appeared crevassed due to flowing supraglacial stream channels. Dirty ice
was the darkest ablation facies characterizable, and functionally comprised more dust and
debris toward the end of the glacial tongue.
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Multispectral mapping of any earth feature entails utilization of spectral characteristics
of the target feature. This requires good operator/analyst knowledge when field data is not
available for reference. In this study, the spatial characteristics of facies were instrumental in
identifying target sites. However, it was the spectral signatures that ultimately determined
the separability of surface facies. As accuracies of spectral signatures rely upon the image-
processing schemes employed, the current study presents the derived reflectance of facies
identified on Ny-Ålesund glaciers in Figure 4 and the reflectance of facies identified on
the Chandra–Bhaga basin glaciers in Figure 5. A detailed discussion of the variations in
spectral signatures using each processing scheme is provided in Section 4.1.
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5/Red; 6: Band 6/Red Edge; 7: Band 7/NIR 1; 8: Band 8/NIR 2.

3.5. Thematic Accuracy Assessment

The acquired satellite data could not be corroborated with field data due to harsh field
conditions in the season of acquisition in the Himalayas and logistical difficulties in transit
to Svalbard. In order to overcome this, the study followed an equalized random-sampling
approach to assign reference points for analysis [134]. This approach provided every
thematic class with an equal number of reference points [135]. To accommodate spatially
limited facies, every class was allotted 10 reference points. Thus, for Ny-Ålesund glaciers,
it resulted in 90 points per glacier, resulting in 720 pixels in total. For the Chandra–Bhaga
basin glaciers, it resulted in 420 pixels in total. Bias was avoided in determining reference
pixels by developing them independent of each other and by using polygons for ROIs
and points for reference data. Confusion matrices were generated to calculate measures
such as precision, recall, F1 score, overall accuracy (OA), error rate (ER), and specificity.
Maxwell and Warner [136] described each measure, and Supplementary Table S1 displays
the equations used to calculate precision, recall, F1 score, specificity and OA. ER was
defined simply as “1-OA”. The measures were computed for every facies over each glacier
individually, and were sequentially averaged to obtain mean values for each measure.

4. Results and Discussion
4.1. Spectral Signatures

The spectral characteristics of glacier surface facies are an account of snow ageing,
metamorphosis, dust and debris entrainment, atmospheric depositions and a historical
archive of glacial health, if monitored over long temporal scales. A change in reflectance
characteristics is not only significant for ascertaining the state of changing snow and
ice, but also for the understanding of possible causes for the visible change. This places
a large importance on the selection of atmospheric-correction algorithms for deriving
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reflectance, and subsequently, spectral signatures. Figure 4 highlights the changes in
spectral reflectance for each facies from Ny-Ålesund for each processing scheme. Figure 5
displays the variations induced by the respective processing schemes in derived spectral
reflectance for facies observed in the Chandra–Bhaga basin. Both figures display the average
reflectance for each facies. The reader is referred to Jawak et al. [17] for a detailed analysis
of the spectral signature of facies derived in the Chandra–Bhaga basin. As the FLAASH
atmospheric correction previously delivered the reflectance spectra most comparable with
previous works, the characterizing of facies in the present analysis of Ny-Ålesund glaciers
was initially performed using reflectance delivered by the same. Cassachia et al. [137]
defined dry snow as not being subjected to melting or infiltration of water, and in principle it
should be limited to the highest elevations on the glacier. No presence of water implied that
facies with the highest reflectance would correspond to dry snow. Warren [138] described
snow reflectance as being influenced by grain size, thickness of snow pack, mixing of dust
and impurities, and moisture/liquid water content. Facies having a lower reflectance in the
NIR region, but higher than other facies, would directly correspond to snow having greater
moisture, and little to no surface impurities. Wet snow in this study was characterized by
similar features. Wet snow and melting snow had a higher reflectance than fully saturated
snow. The FLAASH-derived spectral signature of saturated snow closely matched that
observed by Hinkler et al. [139]. The reflectance curves of dirty ice and glacier ice observed
here were similar in trend to the curves depicted by Gao and Liu [140], who adapted
their method from Zeng et al. [141]. Melting glacier ice identified here corresponded to
that observed by Pope and Rees [10]. Table 6 displays bandwise-calculated variances
for atmospheric corrections, GS pansharpening, and HCS pansharpening, according to
maximum and minimum variance for each facies, averaged across all glaciers from the two
test sites. Among the Chandra–Bhaga basin glaciers, snow class showed the maximum
variation (0.31) among the atmospheric correction methods, whereas debris class showed
the minimum variation (0.01). Snow and debris classes showed the same trend among the
GS-sharpening (max: 0.29, min: 0.01) and HCS-sharpening processing schemes (max: 0.31,
min: 0.01). For the Ny-Ålesund glaciers, dry snow exhibited a maximum variation of 0.20,
while dirty ice showed a minimum variation of 0.00, for the atmospheric correction methods.
For the GS sharpening schemes, dirty ice showed the maximum variation at 0.6; whereas
the lowest variation was shown by shadowed snow at 0.01. The HCS sharpening schemes
showed a maximum variation of 0.20 for dry snow, and a common minimum of 0.00 for
shadowed snow and dirty ice. Section 4.3 discusses these variations in further detail.

Table 6. Maximum and minimum variations in spectral reflectance of facies derived from the average
spectral spectra from each processing scheme. Atmospheric corrections: calculated between DOS,
FLAASH, and QUAC; GS sharpening: calculated between GS_DOS, GS_FLAASH, and GS_QUAC;
HCS sharpening: calculated between HCS_DOS, HCS_FLAASH, and HCS_QUAC.

Test Site Facies

Variations in Spectral Reflectance

Atmospheric Corrections GS Sharpening HCS Sharpening

Max. Min. Max. Min. Max. Min.

Ny-Ålesund

Dry snow B1 (0.20) B7 (0.06) B2 (0.17) B7 (0.07) B1 (0.20) B7 (0.07)

Wet snow B1 (0.10) B7 (0.03) B4, B6 (0.11) B2, B7, B9
(0.09) B1 (0.10) B7 (0.03)

Melting snow B1 (0.11) B7 (0.03) B6 (0.12) B7 (0.08) B1 (0.11) B7 (0.04)

Saturated
snow B1 (0.06) B7 (0.01) B6 (0.11) B1 (0.06) B1 (0.05) B7 (0.01)

Shadowed
snow B1 (0.06) B7 (0.01) B1, B2 (0.08) B4 (0.01) B1 (0.05) B8 (0.00)

Glacier ice B1 (0.11) B7 (0.02) B6 (0.11) B7, B8 (0.08) B1 (0.11) B7 (0.03)

Melting
glacier ice B1 (0.08) B7 (0.02) B6 (0.11) B1 (0.07) B1 (0.08) B7 (0.02)
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Table 6. Cont.

Test Site Facies

Variations in Spectral Reflectance

Atmospheric Corrections GS Sharpening HCS Sharpening

Max. Min. Max. Min. Max. Min.

Dirty ice B1 (0.05) B7 (0.00) B1, B2, B4 (0.6) B7, B8 (0.04) B1 (0.05) B7 (0.00)

Streams and
crevasses B1 (0.07) B7, B8 (0.01) B6 (0.11) B1 (0.06) B1 (0.07) B7 (0.01)

Chandra–Bhaga
basin

Crevasses B2, B3, B5, B6,
B8 (0.08) B1 (0.05) B1, B2 (0.06) B6, B7, B8

(0.02) B2–B6, B8 (0.7) B1 (0.05)

Glacier ice B2 (0.27) B7, B8 (0.21) B2 (0.22) B7 (0.15) B1 (0.27) B8 (0.20)

Ice mixed
debris B8 (0.07) B1 (0.02) B6 (0.06) B1, B2 (0.03) B8 (0.04) B1 (0.02)

Shadowed
snow B8 (0.05) B1 (0.01) B1 (0.04) B2–B8 (0.02) B8 (0.05) B1 (0.02)

Debris B8 (0.05) B1 (0.01) B2–B8 (0.02) B1 (0.01) B8 (0.16) B1–B7 (0.01)

Snow B2 (0.31) B8 (0.16) B2 (0.29) B7 (0.18) B2 (0.31) B8 (0.16)

4.2. Quantitative Analysis of Mapped Facies

This section analyzes classification results generated from the AC and CC workflows
as an average of all the processing schemes for areal distribution and accuracy. Results are
displayed for the glacier subsets ML and ST, and are presented according to the outputs for
each facies.

4.2.1. Area per Facies Produced by Each Classifier

Areas of facies for Ny-Ålesund (reference glacier ML) and for the Chandra–Bhaga
basin (reference glacier ST) are provided in Tables 7 and 8.

Table 7. Classified area of each facies as an average of the results for all AC classification algorithms
for each processing scheme.

Facies ACE CEM MF MTMF MTTCIMF OSP TCIMF

Ny-Ålesund

Unclassified 0.04 0.10 0.03 0.18 0.05 0.03 0.20

Dry Snow 0.64 0.28 0.31 0.45 0.14 0.29 0.43

Wet Snow 0.46 0.45 0.47 0.68 0.47 0.53 0.63

Melting Snow 0.31 0.36 0.44 0.37 0.63 0.42 0.33

Saturated Snow 0.63 0.62 0.59 0.46 0.72 0.64 0.50

Shadowed Snow 0.70 0.78 0.65 0.81 0.69 0.50 0.76

Glacier Ice 0.38 0.37 0.44 0.32 0.42 0.60 0.29

Melting Glacier Ice 0.74 0.58 0.70 0.59 0.63 0.62 0.67

Dirty Ice 0.57 0.93 0.89 0.64 0.58 0.88 0.61

Streams and Crevasses 0.29 0.28 0.23 0.24 0.42 0.24 0.33

Chandra–Bhaga basin

Unclassified 0.59 0.54 0.81 0.55 0.81 0.35 0.78

Crevasses 4.75 5.58 4.79 4.05 6.22 5.17 4.46

Glacier Ice 20.62 15.61 21.45 22.68 17.22 22.13 22.55

Ice Mixed Debris 4.04 6.89 8.42 4.82 8.69 10.44 4.55

Shadowed Snow 8.44 6.98 1.93 8.20 3.09 3.97 8.27

Debris 8.25 6.23 8.76 7.81 10.77 8.35 7.59

Snow 29.30 34.17 29.84 27.88 29.21 25.59 27.81
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Table 8. Classified area of each facies as an average of the results for all CC classification algorithms
for each processing scheme.

Facies MHD MXL MD SAM WTA

Ny-Ålesund

Unclassified 0.00 0.00 0.00 0.76 0.02

Dry Snow 0.16 0.15 0.16 0.26 0.16

Wet Snow 0.43 0.32 0.50 0.49 0.38

Melting Snow 0.62 0.47 0.76 0.64 0.65

Saturated Snow 0.56 0.79 0.54 0.40 0.66

Shadowed Snow 0.69 0.74 0.88 0.65 0.79

Glacier Ice 0.50 0.62 0.35 0.45 0.54

Melting Glacier Ice 0.59 0.81 0.73 0.52 0.76

Dirty Ice 0.78 0.43 0.44 0.32 0.48

Streams and Crevasses 0.43 0.41 0.39 0.27 0.32

Chandra–Bhaga
basin

Unclassified 0.00 0.00 0.00 6.02 0.37

Crevasses 3.93 8.46 4.58 1.89 4.81

Glacier Ice 19.20 24.95 24.42 35.85 27.71

Ice Mixed Debris 2.84 2.39 1.72 0.57 1.84

Shadowed Snow 3.56 1.47 0.94 1.90 1.65

Debris 2.40 2.33 2.90 0.64 2.37

Snow 44.07 36.41 41.45 29.13 37.26

Among the AC classifiers, the largest unclassified area for ML was given by TCIMF
(0.20 km2), whereas OSP and MF produced the lowest unclassified area of 0.03 km2. Dry snow
was given the largest distribution by ACE (0.64 km2) and the lowest by MTTCIMF (0.14 km2).
Wet snow was classified with maximum areal distribution by MTMF (0.68 km2). The lowest
distribution was reported by CEM at 0.45 km2. Melting snow achieved maximum distribution
through MTTCIMF and the lowest through ACE at 0.63 km2 and 0.31 km2, respectively.
MTTCIMF classified saturated snow at 0.72 km2, whereas the lowest distribution of saturated
snow was produced by MTMF at 0.46 km2. The largest distribution of shadowed snow was
provided by MTMF at 0.81 km2, and the lowest was delivered by OSP at 0.50 km2. Glacier
ice was assigned the largest area by OSP at 0.60 km2, and the lowest at 0.29 km2 by TCIMF.
Melting glacier ice was given the largest area at 0.74 km2 by ACE, and the lowest at 0.58 km2

by CEM. Dirty ice was distributed by CEM to a maximum of 0.93 km2, while ACE provided it
with the lowest at 0.57 km2. Streams and crevasses were assigned the most area by MTTCIMF
(0.42 km2), and the lowest by MF at 0.23 km2. Among the CC classifiers for ML, WTA assigned
0.02 km2 to unclassified, 0.16 km2 to dry snow, 0.38 km2 to wet snow, and 0.65 km2 to melting
snow. Saturated snow, shadowed snow, and glacier ice were assigned 0.66 km2, 0.79 km2, and
0.54 km2, respectively. Melting glacier ice, dirty ice, and streams and crevasses were assigned
0.76 km2, 0.48 km2, and 0.32 km2, respectively.

For the reference glacier ST, among the AC methods, unclassified areas were provided
with the largest area (0.81 km2) by MTTCIMF and MF, and with the least area by OSP
(0.35 km2). Crevasses were mapped with the largest areal distribution at 6.22 km2 by
MTTCIMF and the lowest at 4.05 km2 by MTMF. Glacier ice was mapped at 22.68 km2

by MTMF and 15.61 km2 by CEM. IMD was given the largest area at 10.44 by OSP km2,
and the lowest at 4.04 km2 by ACE. Shadowed snow was mapped at 8.44 km2 by ACE
and 1.93 km2 by MF. Debris cover was given a maximum areal extent of 10.77 km2 by
MTTCIMF, and a lowest at 6.23 km2 by CEM. Snow was given the largest area at 34.17 km2

by CEM, and the lowest area for snow was given by OSP at 25.59 km2. Among the CC
classifiers for ST, WTA classified 37.26 km2 as snow, 2.37 km2 as debris, and 1.65 km2 as
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shadowed snow. IMD, glacier ice, and crevasses were distributed as 1.84 km2, 27.71 km2

and 4.81 km2, respectively. Unclassified area totaled 0.37 km2. WTA was the ensemble
of all CC methods, therefore its areal distribution was cumulatively affected by the area
provided for each facies by the preceding CC algorithms.

4.2.2. Accuracy Achieved by Each Classifier

All measures of accuracy for all the classifiers are provided in Supplementary Sheet
S1. This section aims to analyze the classification results of the AC and CC classifiers, and
presents the F1 score as the harmonic mean of precision and recall [136] for each classifier
as an average of all the processing schemes. This was to utilize the F1 score as a measure of
reliability of the classification, independent of processing schemes.

(a) F1 score for classification in Ny-Ålesund

Among the AC classifiers, dry snow was classified with a F1 score of 0.80 by ACE
and 0.19 by TCIMF, whereas CEM, MF, MTMF, MTTCIMF, and OSP yielded an F1 score of
0.00. Similarly, wet snow was classified with an F1 score of 0.11 by ACE, 0.07 by TCIMF,
and 0.00 by the other AC classifiers. Melting snow was classified with an F1 score of 0.36
by ACE, 0.18 by MTMF, 0.05 by OSP, and 0.04 by TCIMF. Saturated snow was mapped
by ACE with an F1 score of 0.40, 0.22 by CEM and MF, 0.19 by OSP, 0.17 by MTMF, 0.04
by TCIMF, and 0.00 by TCIMF. Shadowed snow was classified with an F1 score of 0.00
by MTTCIMF, 0.10 by TCIMF, 0.20 by OSP, 0.21 by MTMF, 0.80 by ACE, and 0.33 by both
CEM and MF. OSP and MTTCIMF classified glacier ice with an F1 score of 0.00, while
TCIMF resulted in 0.04, MTMF in 0.15, and ACE in 0.51. CEM and MF each resulted in
an F1 score of 0.21. Melting glacier ice was classified with an F1 score of 0.37 by CEM
and MF, 0.11 by MTMF and OSP, 0.29 by ACE, and 0.04 by TCIMF. Dirty ice was mapped
with a F1 score of 0.00 by MTTCIMF. CEM and MF yielded scores of 0.46 each, while ACE
scored the highest with 0.54. OSP, TCIMF, and MTMF yielded scores of 0.13, 0.18, and 0.05,
respectively. Streams and crevasses each were mapped by CEM and MF with an F1 score
of 0.32, whereas ACE delivered an F1 score of 0.51, and MTMF delivered 0.07; MTTCIMF,
OSP, and TCIMF delivered 0.00. Among the CC classifiers, MXL delivered a full F1 score of
1.00 for dry snow and shadowed snow, followed by 0.81 for streams and crevasses. Glacier
ice and dirty ice were mapped by MXL with F1 scores of 0.74 and 0.73, respectively. Wet
snow and melting snow were mapped with F1 scores of 0.69 and 0.68, respectively, by MXL.
Melting glacier ice and saturated snow were classified by MXL with output F1 scores of 0.57
and 0.53, respectively. MHD classified both dry snow and shadowed snow with an F1 score
of 0.93, while glacier ice achieved 0.72, dirty ice yielded 0.67, streams and crevasses resulted
in 0.58, and saturated snow and melting snow achieved 0.47 and 0.45, respectively. Melting
glacier ice and wet snow were classified with F1 scores of 0.39 and 0.33, respectively. MD
classified dry snow with an F1 score of 0.96, while shadowed snow was classified with a
score of 0.64. Melting snow and glacier ice scored 0.48 each. Dirty ice was mapped with
a result of 0.47; glacier ice, saturated snow, and wet snow were classified with scores of
0.35, 0.30, and 0.24, respectively. Streams and crevasses were given a classified F1 score of
0.13. SAM classified shadowed snow with an F1 score of 0.83 and dry snow with an F1
score of 0.75, whereas melting glacier ice achieved 0.54, followed by wet snow at 0.48 and
melting snow at 0.44. Glacier ice and saturated snow were classified with scores of 0.33
and 0.29, respectively; followed by dirty ice and streams and crevasses at 0.22 and 0.17,
respectively. The WTA classifier achieved an F1 score of 0.95 for dry snow and shadowed
snow, followed by streams and crevasses and glacier ice at 0.78 and 0.75, respectively. Dirty
ice and saturated snow were classified with scores of 0.69 and 0.53, respectively. Melting
snow and melting glacier ice achieved scores of 0.50 and 0.47 each. Lastly, wet snow was
classified with a score of 0.38. Reliability orders for each facies are presented according to
the classifiers. The reliability order for dry snow was: MXL > MD > WTA > MHD > ACE >
SAM > TCIMF > CEM = MF = MTMF = MTTCIMF = OSP. The reliability for wet snow was:
MXL > SAM > WTA > MHD > MD > ACE > TCIMF > CEM = MF = MTMF = MTTCIMF
= OSP. The reliability of melting snow was: MXL > WTA > MD > MHD > SAM > ACE >
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MTMF > OSP > TCIMF > CEM = MF = MTTCIMF. Saturated snow presented the following
reliability order: MXL = WTA > MHD > ACE > MD > SAM > CEM = MF > OSP > MTMF
> TCIMF > MTMF. The reliability for shadowed snow was: MXL > WTA > MHD > SAM
> ACE > MD > CEM = MF > OSP > MTMF > TCIMF > MTTCIMF. Glacier ice presented
the following reliability order: WTA > MXL > MHD > ACE > MD > SAM > CEM = MF >
MTMF > TCIMF > MTTCIMF = OSP. The reliability order for melting glacier ice was: MXL
> SAM > MD > WTA > MHD > CEM = MF > ACE > MTMF = OSP > TCIMF > MTTCIMF.
Dirty ice presented the following reliability order: MXL > WTA > MHD > ACE > MD >
CEM = MF > SAM > TCIMF > OSP > MTMF > MTTCIMF. The reliability order for streams
and crevasses was: MXL > WTA > MHD > ACE > CEM = MF > SAM > MD > MTMF >
MTTCIMF = OSP = TCIMF.

(b) F1 score for classification in the Chandra–Bhaga basin

Among the AC classifiers, crevasses were mapped with an F1 score of 0.69 by ACE,
0.53 for both CEM and MF, 0.17 for both MTMF and OSP, 0.21 for TCIMF, and 0.07 for
MTTCIMF. Glacier ice was classified by CEM and MF with a common F1 score of 0.83, ACE
delivered a score of 0.77, and MTMF scored 0.32. OSP and TCIMF delivered F1 scores of
0.21 each, whereas the lowest score was delivered by MTTCIMF (0.00). IMD was classified
by ACE with an F1 score of 0.40. CEM and MF resulted in scores of 0.30 each. TCIMF
resulted in a score of 0.21, whereas OSP produced a score of 0.19. MTMF delivered a score
of 0.10, and MTTCIMF produced a score of 0.02. Shadowed snow was mapped by ACE
with a score of 0.79, and TCIMF produced a score of 0.39. CEM, OSP, and MF delivered F1
scores of 0.34 each. MTMF and MTTCIMF delivered F1 scores of 0.33 and 0.00, respectively.
Debris was mapped with a common F1 score of 0.23 for CEM, MF, and TCIMF. OSP and
ACE provided scores of 0.22 and 0.16 each. MTMF and MTTCIMF resulted in scores of 0.07
and 0.00, respectively. ACE, CEM, and MF produced a common F1 score of 0.67 for snow,
followed by MTMF with a score of 0.26. OSP and TCIMF mapped snow with a score of
0.23, whereas MTTCIMF delivered 0.00. Among the CC classifiers, MXL mapped crevasses
with an F1 score of 0.80, MHD delivered a score of 0.79, whereas MD and SAM delivered
scores of 0.67 and 0.28, respectively. Glacier ice was mapped with the highest F1 score of
0.96 by MD, followed by MXL with a score of 0.92. SAM and MHD were mapped with
scores of 0.87 and 0.84, respectively. IMD was given the highest F1 score of 0.55, whereas
SAM resulted in the lowest score of 0.00. MXL and MHD mapped IMD with scores of 0.47
and 0.41 each. Shadowed snow was classified with high scores of 0.93 and 0.90 by MHD
and MXL, respectively; whereas MD and SAM were mapped with scores of 0.20 and 0.17,
respectively. Debris was classified by MD with a score of 0.62. SAM and MHD delivered
scores of 0.27 and 0.25, respectively; while MXL resulted in a score of 0.47. MD mapped
snow with a high F1 score of 0.98, followed by MXL with a score of 0.97, and MHD at 0.95.
SAM delivered a score of 0.77. WTA classified snow with an F1 score of 0.96, followed by
shadowed snow with an F1 score of 0.95. Crevasses were subsequently mapped with a
score of 0.89, followed by glacier ice at 0.88. IMD and debris were mapped with scores
of 0.44 and 0.61 each. The order for reliable classification of crevasses was: WTA > MXL
> MHD > ACE > MD > CEM = MF > SAM > TCIMF > MTMF = OSP > MTTCIMF. The
reliability order for glacier ice was: MD > MXL > WTA > SAM > MHD > CEM = MF >
ACE > MTMF > OSP = TCIMF > MTTCIMF. Ice mixed debris presented the following
reliability order: MD > MXL > WTA > MHD > ACE > CEM = MF > TCIMF > OSP > MTMF
> MTTCIMF > SAM. The reliability order for shadowed snow was: WTA > MXL > MHD >
ACE > TCIMF > CEM = MF = OSP > MTMF > MD > SAM > MTTCIMF. Debris presented
the following reliability order: MD > WTA > MXL > SAM > MHD > CEM = MF = TCIMF >
OSP > ACE > MTMF > MTTCIMF. The reliability order for snow was: MD > MXL > WTA >
MHD > SAM > ACE = CEM = MF > MTMF > OSP = TCIMF > MTTCIMF.

Table 9 gives an overall representation of classifier performance averaged over all the
processing schemes. Apart from the ACE classifier, all other classifiers showed a greater
error rate while classifying facies in Ny-Ålesund in comparison to the Chandra–Bhaga
basin. The difference between them, however, was 0.01. The best-performing classifier was
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the MXL, while the worst was the MTTCIMF. The order of overall classifier performance
was thus: MXL > WTA > MHD > ACE > MD > CEM = MF > SAM > MTMF = TCIMF >
OSP > MTTCIMF.

Table 9. Cumulative error rate independent of atmospheric corrections and pansharpening methods,
calculated by averaging all the error rates over all processing schemes for individual test sites. The
classifiers with the lowest error rate are emboldened and italicized.

Algorithm/Classifier
Error Rate

Himalayas Ny-Ålesund

ACE 0.60 0.59

CEM 0.65 0.75

MF 0.64 0.75

MTMF 0.78 0.82

MTTCIMF 0.82 0.91

OSP 0.77 0.88

TCIMF 0.73 0.87

MHD 0.47 0.56

MXL 0.44 0.49

MD 0.61 0.68

SAM 0.78 0.69

WTA 0.45 0.53

4.2.3. Comparison between Atmospheric Correction Methods

Figure 6 displays the overall accuracy (OA) achieved by each of the classification
algorithms across the atmospheric corrections. An analysis of the trends of the OA revealed
a similar trend for all three atmospheric corrections. Averages and variances were calculated
for both study areas for DOS, FLAASH, and QUAC. Visual analysis of Figure 6 depicts
FLAASH as having the least total variance, with DOS and QUAC showing consistent
variances. MXL and WTA achieved the highest OA.

The DOS_MXL classification showed no variance across both study areas, FLAASH_MXL
classification achieved 0.01 variance, and the QUAC_MXL classification achieved a variance
of 0.03. WTA classification varied by 0.05, 0.03, and 0.06 for DOS_WTA, FLAASH_WTA,
and QUAC_WTA, respectively. DOS_MHD classification resulted in a variance of 0.07,
FLAASH_MHD resulted in 0.03, and QUAC_MHD resulted in 0.04. DOS_MD resulted in a
variation of 0.14, FLAASH_MD delivered a variance of 0.15, and QUAC_MD resulted in 0.04.
DOS_ACE produced a variance of 0.06, FLAASH_ACE resulted in 0.04, and FLAASH_QUAC
resulted in 0.10. DOS_SAM produced a classification variance of 0.03, FLAASH_SAM pro-
duced a variance of 0.03, and QUAC_SAM delivered 0.08. DOS_MTTCIMF delivered a
variance of 0.02, FLAASH_MTTCIMF produced 0.01, and QUAC_MTTCIMF resulted in
0.16. DOS_MTMF classified with a resultant variance of 0.04, FLAASH_MTMF classified
with a variance of 0.02, and QUAC_MTMF produced a variance of 0.07. DOS_CEM resulted
in a variance of 0.24, FLAASH_CEM produced a variance of 0.38, and QUAC_CEM deliv-
ered 0.07. DOS_MF classified facies with a variance of 0.24, followed by FLAASH_MF at
0.01and QUAC_MF at 0.01. DOS_OSP classified facies with a variance of 0.03, FLAASH_OSP
delivered 0.05, and QUAC_OSP produced 0.13. DOS_TCIMF produced a variance of 0.12,
FLAASH_TCIMF delivered a variance of 0.00, and QUAC_TCIMF produced a variance of 0.09.
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In summary, the classifier showing the most consistent performance across different
atmospheric corrections and test sites was the MXL, followed by WTA. The atmospheric
correction showing the least variation across the test sites was FLAASH. The highest OA was
achieved by DOS_WTA (0.81), whereas the lowest was achieved by FLAASH_MTTCIMF
(0.01). The order of reliability among the atmospheric corrections was: FLAASH > QUAC >
DOS. This reliability was based upon the total variance in the OA across all the classifiers and
both test sites. The reliability order of classifier performance averaged across both test sites for
each atmospheric correction (based on OA) was: DOS_WTA > QUAC_MXL > DOS_MXL >
FLAASH_MXL = FLAASH_WTA = QUAC_WTA > DOS_MHD > QUAC_MHD > DOS_MD
= FLAASH_MD > DOS_ACE > FLAASH_MHD > QUAC_ACE > DOS_CEM = DOS_MF >
QUAC_MD > FLAASH_ACE > DOS_SAM > FLAASH_CEM = FLAASH_MF = QUAC_SAM
> QUAC_CEM > FLAASH_SAM > QUAC_MF > DOS_OSP = QUAC_TCIMF > DOS_MTMF
= DOS_TCIMF > QUAC_OSP > FLAASH_MTMF > QUAC_MTTCIMF > FLAASH_OSP >
FLAASH_TCIMF > QUAC_MTMF > DOS_MTTCIMF > FLAASH_MTTCIMF.

4.2.4. Effect of Pansharpening

Table 10 showcases the average error rate (both study areas) achieved by each classifier
for each processing scheme when not pansharpened, GS sharpened, and HCS sharp-
ened. The error rate was a suitable measure to highlight the changes in performance
for each scheme. An initial analysis of Table 10 presented a general trend of decrease
in classifier performance after pansharpening. GS_DOS_ACE showed an increase in er-
ror by 0.18 from DOS_ACE, whereas HCS_DOS_ACE increased by 0.28. The errors in
GS_DOS_CEM and GS_DOS_MF increased by 0.32, whereas HCS_DOS_CEM increased by
0.33 and HCS_DOS_MF by 0.34. GS_DOS_MTMF showed a 0.00 increase in error, whereas
HCS_DOS_MTMF increased by 0.06. MTTCIMF presents a case of decreasing error by 0.09
and 0.08 for the GS_DOS and HCS_DOS processing schemes, respectively. OSP classifi-
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cation had an increase in error of 0.17 for GS_DOS and 0.14 for HCS_DOS, respectively.
TCIMF performance decreased by 0.12 for GS_DOS and 0.08 for HCS_DOS subsets.

Table 10. Average performance of each classifier w.r.t. pansharpening using error rate as the
comparative measure. Values of the best-performing classifiers are emboldened and italicized.

Classifier DOS FLAASH QUAC GS HCS

DOS FLAASH QUAC DOS FLAASH QUAC

ACE 0.38 0.53 0.42 0.56 0.80 0.79 0.66 0.48 0.77

CEM 0.46 0.63 0.64 0.78 0.79 0.84 0.79 0.62 0.81

MF 0.46 0.63 0.64 0.78 0.79 0.84 0.80 0.52 0.81

MTMF 0.77 0.84 0.78 0.77 0.87 0.84 0.83 0.72 0.81

MTTCI-MF 0.99 0.99 1.00 0.90 0.89 0.88 0.91 0.64 0.59

OSP 0.71 0.88 0.81 0.88 0.85 0.84 0.85 0.72 0.88

TCIMF 0.77 0.88 0.76 0.89 0.80 0.87 0.85 0.54 0.88

MHD 0.30 0.40 0.34 0.42 0.75 0.81 0.66 0.48 0.52

MXL 0.22 0.28 0.21 0.25 0.75 0.77 0.49 0.78 0.45

MD 0.36 0.37 0.52 0.68 0.80 0.79 0.82 0.81 0.69

SAM 0.55 0.66 0.62 0.67 0.89 0.83 0.79 0.91 0.73

WTA 0.20 0.28 0.28 0.35 0.76 0.76 0.61 0.76 0.46

MHD classification resulted in an increase in error of 0.36 for HCS_DOS and 0.12
for GS_DOS. MXL classification showed an increase in error of 0.27 for HCS_DOS and
0.03 for GS_DOS. MD performance showed an increase in error of 0.46 for HCS_DOS and
0.32 for GS_DOS. SAM showed an increase in the resultant error by 0.24 for HCS_DOS
and 0.12 for GS_DOS.WTA classification increased in error by 0.41 for HCS_DOS and
0.15 for GS_DOS. For the FLAASH subsets, GS _FLAASH_ACE decreased in perfor-
mance by 0.27, whereas the HCS_FLAASH_ACE classification showed an increase in
performance by 0.05. HCS_FLAASH_CEM, HCS_FLAASH_MF, HCS_FLAASH_MTMF,
HCS_FLAASH_MTTCIMF, HCS_FLAASH_OSP, and HCS_FLAASH_TCIMF showed an
increase in classification performance by 0.01, 0.11, 0.12, 0.35, 0.16, and 0.34, respectively.
GS_FLAASH_MTTCIMF, GS_FLAASH_OSP, and GS_FLAASH_TCIMF increased in per-
formance by 0.10, 0.03, and 0.08, respectively. GS_FLAASH_CEM and GS_FLAASH_MF
each showed a common decrease in performance by 0.16. GS_FLAASH_MTMF increased
in error by 0.03. MHD classification decreased in performance by 0.35 and 0.08 for the
GS_FLAASH and HCS_FLAASH subsets.

MXL classification increased in error by 0.50 and 0.47 for the HCS_FLAASH and GS_FLAASH
subsets. GS_FLAASH_MD, GS_FLAASH_SAM, and GS_FLAASH_WTA increased in resul-
tant error by 0.43, 0.23, and 0.48, respectively. HCS_FLAASH_MD, HCS_FLAASH_SAM,
HCS_FLAASH_WTA decreased in performance by 0.44, 0.25, and 0.48, respectively. For the
QUAC subsets, only GS_QUAC_MTTCIMF and HCS_QUAC_MTTCIMF showed a decrease in
error by 0.12 and 0.41, respectively. GS_QUAC_ACE and HCS_QUAC_ACE showed an increase
in error by 0.37 and 0.35, respectively. GS_QUAC_CEM and GS_QUAC_MF each showed a
common increase in error of 0.20. Similarly, HCS_QUAC_CEM and HCS_QUAC_MF each
resulted in a common increase in error of 0.17. GS_QUAC_MTMF and HCS_QUAC_MTMF
resulted in an increase in classification error of 0.06 and 0.03, respectively. GS_QUAC_OSP and
HCS_QUAC_OSP delivered an increase in error by 0.03 and 0.07 each. TCIMF classification of
GS_QUAC and HCS_QUAC subsets resulted in an increase in classification error by 0.11 and 0.12,
respectively. GS_QUAC_MHD and HCS_QUAC_MHD resulted in a decrease in performance by
0.47 and 0.18 each. MXL classification resulted in an increase in error by 0.56 for GS_QUAC and
0.24 for HCS_QUAC. GS_QUAC_MD and HCS_QUAC_MD increased in error by 0.27 and 0.17
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each. SAM classification of the GS_QUAC and HCS_QUAC subsets delivered an increase in error
by 0.21 and 0.11, respectively. GS_QUAC_WTA and HCS_QUAC_WTA resulted in an increase in
classification error by 0.48 and 0.18, respectively. The average variance between DOS, GS_DOS,
and HCS_DOS for each classifier produced the following order of increasing variability: MTMF
< MTTCIMF < TCIMF < OSP < SAM < ACE = MXL < CEM < MF < SAM < WTA < MD. The
average variance between FLAASH, GS_FLAASH, and HCS_FLAASH for each classifier resulted
in the following variability order: MTMF < OSP < CEM < MF = SAM < ACE < MTTCIMF =
TCIMF = MHD < MD < MXL < WTA. Variability between QUAC, GS_QUAC, and HCS_QUAC
resulted in the following order: MTMF < OSP < TCIMF < CEM = MF = SAM < MD < ACE =
MTTCIMF < MHD < WTA < MXL. While the MTMF produced the least varying classification
between nonsharpened and pansharpened imagery, it possessed a high error for all the subsets of
imagery tested in this study.

The cumulative average error rate for the pansharpened subsets revealed the following
order of reliability: GS_DOS > HCS_FLAASH > HCS_QUAC > HCS_DOS > GS_FLAASH >
GS_QUAC. Upon averaging the effects of atmospheric corrections, the HCS pansharpening
was calculated to have a lower error rate (0.71) for all classification algorithms and all
atmospheric corrections, when compared to the GS method (0.76). Figures 7–9 display the
thematic results of FLAASH_MXL and HCS_FLAASH_MXL.
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4.3. Discussion

Atmospheric correction impacts the quality of observable and derivable spectral
reflectance of desired targets. Section 1.4 highlights studies that compared atmospheric
corrections and the complexity imbued in the selection process. The overarching con-
sensus states that the choice of atmospheric correction is application-centric [61]. A
careful assessment of the impact of atmospheric correction on the spectral signature of
target facies in this study was presented in Section 4.1. Previously, the FLAASH correc-
tion was used to derive target spectral reflectance and then matched against existing
literature for its validity [17]. In the current study, spectral signatures of facies derived
from the FLAASH correction were used in the same capacity. The extracted signatures
closely matched those observed in previous efforts (Section 4.1), based on the properties
of reduced reflectance [62] and mixing of moisture, dust, impurities, and debris [138].
Subsequent extraction of spectral signatures of the same facies from subsets of each
processing scheme revealed a variance between each scheme, and thereby, differences
in the resultant classifications. The highest variances between DOS, FLAASH, and
QUAC were most prominent in B1, B2, B7, and B8. This was potentially because B1
and B2 (Coastal and Blue) were used to provide atmospheric information [142,143],
and were therefore affected the most by its effects, whereas B7 and B8 (NIR1 and NIR2)
were predominantly affected by water absorption and dispersion of suspended parti-
cles [144]. Moreover, Chakouri et al. [57] suggested that the green-to-NIR spectrum
is least affected by atmospheric scattering. Analysis of Figures 4 and 5, as well as the
maximum and minimum variations of spectra depicted in Table 6, highlighted that
the reflectance spectra of facies derived from non-pansharpened imagery showed the
least variations between B3 (Green) to B6 (Red Edge), and the most variations were
observed at B1 (Coastal) for most of the facies. Reliability based on variance in OA
across both study areas for all classifiers suggested that DOS was the worst performer.
This was likely because DOS does not emulate atmospheric absorption, and produces
a decrement of surface reflectance [145,146]. Moreover, as the minimum value of dark
pixels was a combination of atmospheric effects, specular reflection, and skylight
scattering from the entire image [147], the DOS configuration was too simplistic for
separating overlapping spectral signatures from different classes. FLAASH was the
most reliable atmospheric correction method, as the results of the classification from
its subsets were the most consistent. This was believed to be due to close matching of
FLAASH-derived reflectance with surface reflectance [148]. QUAC performed poorer
than FLAASH in the current study, perhaps due to the nonexistence of a minimum of
10 distinct spectral classes [93,149]. Saini et al. [149] further went on to reiterate the
realistic reflectance derived through FLAASH.

The literature review of pansharpening (Section 1.3) arrived at a task-specific con-
clusion, similar to that for atmospheric correction. A visual analysis of Figures 4 and 5
highlighted the decrease in reflectance derived from pansharpened imagery. This implied
an overall decrement in spectral signature characteristics. GS_DOS was found to have the
most deterioration. Resultant spectra from HCS_DOS/FLAASH/QUAC were found to
match closely with the nonsharpened DOS-, FLAASH-, and QUAC-derived spectra. This
agreed with Rayegani et al. [47] and Padwick et al. [42]. Spectra of the Chandra–Bhaga
basin snow class showed the highest variance (0.29) across GS_DOS, GS_FLAASH, and
GS_QUAC. The highest variance across HCS_DOS, HCS_FLAASH, and HCS_QUAC was
found for the spectra of the Chandra–Bhaga basin snow class (0.31). Moreover, variance in
GS- and HCS-sharpened spectra for the Chandra–Bhaga basin facies was found to be higher
than that of the Ny-Ålesund facies. Shadowed snow for both CB and Ny-Ålesund showed
a much lower variance across the GS and HCS subsets than other facies. The spectral bands
showing the most variance were B1, B2, B7, and B8. This was due to the obvious reason
that atmospheric influences (for B1 and B2) were only reduced by appropriate correction
algorithms, whereas the effects of moisture and particle mixing (B7 and B8) were target-
and scene-specific. Ablation facies were characterized by increasing moisture, saturation,
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densification to ice and subsequent discharge of melt water. Therefore, the variations in B7
and B8 would most likely be persistent. Although HCS was more stable than GS across
all its subsets according to its classification performance (Section 4.2.4), both resulted in a
high error rate. One reason could be the compounding effect of the previous atmospheric
corrections and subsequent variety of classification algorithms. Previous assertions of the
utility of the GS method [38–40] did not hold true in the current study.

4.3.1. Classifiers and Surface Facies: Performance and Comparison

Jawak et al. [41] tested a variety of band ratios and classifiers, such as MTTCIMF, CEM,
ACE, OSP, MTMF, MF, MXL, SVM, NNC, and SAM, to map Antarctic vegetation using WV-
2 data. Their work showed the prowess of MTMF in mapping sparse vegetation patches.
Moreover, the MXL was inefficient in their analysis by creating a maximum number of
misclassified pixels. The current study, however, delivered the opposite results. Here, MXL
and MD performed better than MTMF in an overall identification of facies. This contrasting
result could be because the adjacent classes in their work; namely, landmass/rocks, water
bodies, snow/ice on lakes and rocks, shadowed ice, shadowed landmass, melt water, and
surface debris on snow/ice, were all highly distinctive in their spectral characteristics. In the
case of the surface facies, distinct classes were based on reduction in reflectance properties
induced by melt and mixing of particles. This was also noted by Jawak et al. [41] when
shadowed ice and melt water on the surface of rocks caused significant misclassification in
the AC methods. Kumar et al. [130] attempted to identify minerals at the subpixel level
using MTTCIMF in mountainous areas of Rajasthan, India. Their results suggested that
MTTCIMF performed poorly when there was high interclass similarity. Portions of the
reflectance spectra of facies overlapped each other (Figures 5 and 6), which could have
caused poorer performance of MTTCIMF in facies applications. Curiously, MTTCIMF
delivered higher accuracy for the GS and HCS subsets for all three atmospheric corrections.
This could imply that pansharpening VHR imagery may improve target detection using
MTTCIMF. An increase in accuracy was also observed for classification results of ACE,
CEM, MF, MTMF, OSP, and TCIMF for the HCS_FLAASH subset. The greatest increase
was for the HCS_FLAASH_MTTCIMF classification (0.35 increase, 35% improvement).
Although the increase in performance did not improve the overall ranking of the classifiers
to a large extent, it was an important factor to note, as an increase in the total number of
pixels under the same polygonal unit of the concerned ROI could improve target detection
when sharpened by HCS in this instance. Millan et al. [129] tested five AC methods
(CEM, ACE, SAM, TCIMF, and MTMF) for estimating reflectance of targets of interest
in mine-related flooded areas of Nord-Rhein Westphalia, Germany. They found variable
performance of the classifiers for their targets, but recommended SAM, ACE, and MTMF,
as targets were better classified using these. They inferred this, as the recommended
classifiers showed low sensitivity to Bidirectional Reflectance Distribution Factor (BRDF)
effects on target classes. In the current case, each glacier was carefully extracted from the
complete imagery, nullifying any valley rock/nonglacier influence. Moreover, any BRDF
influence observed over each glacier for the spectral bands would be uniform throughout
the classification process, and should not have been a hindrance in the results of the
current study [17]. Moreover, Millan et al. [129] also described the effectivity of specific
classifiers for individual targets. Here, for the Ny-Ålesund facies, dry snow, wet snow,
melting snow, shadowed snow, glacier ice, melting glacier ice, dirty ice, and streams
and crevasses were best classified by MXL, whereas saturated snow was equally well
classified by MXL and WTA. For the Chandra–Bhaga basin facies, crevasses and shadowed
snow were best classified by WTA, whereas glacier ice, IMD, debris, and snow were best
classified by MD. Jin et al. [150] tested MF, SAM, CEM, TCIMF, ACE, and OSP for target
detection at subpixel and full-pixel scales over Cooke City, Montana, USA. Their findings
suggested that classifiers based on matched filters (MF, CEM, MTMF, and TCIMF) had
poor generalization, causing misclassification of pixels belonging to the same class but
with slightly different spectral signatures. Poor performance of the MF-based classifiers in
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the current study supported the same inference. Furthermore, they found that the ACE
classifier achieved better target visibility and classification than other AC methods. Here,
ACE was the best performer of all the AC algorithms across all processing schemes, and
therefore validated the same inference. Jawak and Luis [151] assessed the performance of
SVM, MXL, NNC, SAM, and an ensemble WTA to map land cover in Larsemann Hills,
Antarctica, using HCS-sharpened WV-2 imagery. They found that WTA performed best,
while MXL performed worst. However, the accuracies of all methods were quite high.
In the current study, MXL and WTA performed well across all processing schemes. The
performance of SAM as shown by Jawak and Luis [151] depended upon the abundance
and separability of spectral classes. A significant feature of their study was the nonoverlap
of land cover classes, thereby resulting in high accuracy. The differences in facies, however,
was not essentially a sharp contrast. The variations from accumulation to ablation can cause
confusion if spectral signatures are not carefully considered. Moreover, SAM performed
poorly here, leading to unclassified pixels, consequently causing unclassified pixels in the
WTA classification. The default settings in ENVI were used to enable an unbiased analysis
of classifier performance. This may have led to low representation of the maximum angle
between the ROI and input pixel spectrum. Luis and Singh [60] attempted to map surface
facies on the Edithbreen glacier in Ny-Ålesund, Svalbard, using VHR WV-3 and Landsat 8
OLI data. Their attempt focused on comparing pixel- and object-based methods. While
the object-based methods thoroughly achieved the best results, the pixel-based results for
MHD, MXL, and MD highlighted the robustness of MXL. However, MD performed poorly
in their analysis, which countered the current findings; this could be possibly be due to the
larger number of overlapping classes defined by Luis and Singh [60]. Albert [59] compared
MXL, MD, parallelepiped (PP), SAM, ISODATA, linear unmixing, MTMF, a range of fuzzy
classification methods, and band math indices/techniques to delineate ice cover around the
tropical Quelccaya ice cap in Peru. The author used a DOS-corrected Landsat 5 TM image.
The final processing steps involved conversion of radiance to reflectance units. However,
in the current study, DN was first converted into radiance and then to TOA reflectance
before performing user-defined DOS [98]. Albert [59] found SAM to be the most accurate
of the supervised classifiers. This occurred due to testing of a variety of angular thresholds.
The author noted that that the supervised classifiers performed well because snow and
ice were one thematic class, rather than bifurcated into different snow and ice facies. This
suggested that additional categories of closely matching spectra, but with distinct thematic
features, may reduce the performance of many supervised classifiers. The results of the
current study were consistent with this.

Pope and Rees [10] mapped glacier facies on the ML glacier using in situ spectral
reflectance on field-observed surface classes of facies through ETM+ imagery classification.
The authors used an unsupervised ISODATA algorithm and principle-component-derived
linear combinations (LCs) to categorize surface classes. Several classes identified by the
authors were based upon field assessment of grain size and visible/flowing water on the
surface. The spectral reflectance signatures used for validation were collected a decade
after the image acquisition. This was the opposite of the recent recommendation by Yousuf
et al. [36], who suggested snow and ice validation data should be closely timed with the
image capture. Due to nonavailability of field spectra, the current study relied on image and
spectra interpretation and published literature for references and a comparison of spectral
signatures (refer to Sections 3.4 and 4.1, and [17]). The comparative pixel- and object-based
characterization of glacier facies on the Edithbreen glacier by Luis and Singh [60] presented
a curious case. Common classes between their work and the current study included dry
and wet snow, melting ice, and shadow. Uncommon classes included percolation snow,
dirty snow, debris, off-glacier, water stream, and crevasses. The separation of water stream
and crevasses was avoided in the current study due to increased spectral confusion and
probability of misclassification. Moreover, absence of in situ/reference spectra enhanced
the chances of incorrect training of ROIs. Manual digitization of glacial boundaries negated
the need for an off-glacier class. Furthermore, when comparing Landsat 8 (L8) and WV-
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3, their L8 classification showed a class called wet semisaturated snow. This class was
identified by Pope and Rees [10] after in situ collection, and was separated from dry
semisaturated ice by an increased amount of water on the surface. The quantity of water
that marked the spectral contrast between wet snow and wet semisaturated snow was
not easily identified with medium-resolution satellite data. Luis and Singh [60] touted
the effectivity of the object-based indices; however, the thematic results showcased dirty
“snow”, a snow surface facies class on the ablation area of the glacier, using WV-3, but then
labeled the same as dirty ice in classification of L8 data. Nevertheless, their work provided
an important reconnaissance for future effective mapping of surface facies in the region.
The current study built upon their findings and objectively characterized facies using visual
and spectral characteristics. Jawak et al. [17,33] mapped surface facies using a combination
of pixel- and object-based classification techniques on FLAASH-corrected WV-2 data. Their
goal was to effectively characterize facies for the Chandra–Bhaga basin region using VNIR
VHR satellite data. The current study aimed to test the impacts of varying processing
schemes on the overall classification of surface facies to determine the most efficient and
accurate method for future mapping attempts. Testing of additional supervised classifiers
such as TCIMF, MTTCIMF, MTMF, and ACE proved useful in highlighting the utility
of matched filtering methods and the performance of ACE. Moreover, improvement in
classification accuracy by MTTCIMF after pansharpening was an important clue to the
potential implementation of the algorithm using in situ spectra and/or aerial imagery.

4.3.2. Computer Processing Time and Limitations

Successful data-driven remote sensing applications depend upon stable computa-
tional infrastructure. In the preceding sections, this study qualitatively and quantita-
tively assessed classified thematic results of different processing schemes. Therefore, it
is now necessary to evaluate the computational requirements and loads of the individual
schemes. To this end, the study considered factors such as data acquisitional challenges,
system properties, time taken for processing, and storage space needed. The specifi-
cations of the primary system used to process data in this study (System A) consisted
of 16 GB of RAM (DDR4), an SSD with 256 GB, an HDD with 1 TB, a ninth-generation
Intel® Core™ i7-9750H (64-bit) processor, and a NVIDIA® GeForce® GTX 1650 (4GB)
graphics card. In addition to this, an additional portable hard drive with more than
4 TB of storage was needed to store all the generated data. All files, beginning from
calibration to classification, were saved in default ENVI formats to maintain uniformity.
The HCS sharpening performed in ERDAS IMAGINE 15 necessitated input files in its
default IMG imagine format. The HCS-sharpened files were then exported back into the
default ENVI format (.dat) for further classification. This standardization of file formats
was in line with the recommendations by Shcadt et al. [152] for big data management.
Table 11 highlights the complete processing time and storage space needed, from cali-
bration to classification, for each of the image-processing schemes for glaciers ML and
ST. This presents an account of the practical limitations when processing data for such
applications. In terms of the processing schemes, the GS and HCS products occupied the
maximum disk space and processing time with no superior enhancements in accuracy.
The Himalayan glacial subsets, being bigger in size, took the most space and time. AC
classification of the Samudra Tapu GS_FLAASH subset had the largest file size (312 GB),
and consequently took the most processing time (593 h) of all the subsets and processing
schemes tested in the current study.
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Table 11. Stepwise break down of the time taken and storage space occupied at each processing step,
which included radiometric calibration, pansharpening, band math conversion (0 to 1 reflectance
units), classification, conversion of raster thematic data to vector files, and export of the resultant
vector files. The time is displayed in hours, and the space occupied is provided in parenthesis after
the time.

Test Site Image
Subset

Time in Hours (and Storage Space Occupied)
Total Time

in h
Total Storage

in GBRadiometric
Calibration Pansharpening Band Math Classification Exporting

Shapefiles (h)

Midtre
Lovénbreen

(ML)

DOS: 0.50 h
(0.44 GB)

–
TD: 1.58 h (5.04 GB) 4.00 6.08 5.48

TERCAT: 1.08 h (1.94 GB) 2.00 3.58 2.38

GS: 1.00 h
(7.25 GB)

–
TD: 56.00 h (96.80 GB) 100.00 157.5 104.49

TERCAT: 48.00 h (34.50 GB) 35.00 84.50 42.19

HCS: 0.38 h
(8.15 GB)

–
TD: 51.00 h (90.80 GB) 86.00 137.88 99.39

TERCAT: 44.00 h (31.50 GB) 29.00 73.88 40.09

FLAASH: 0.83 h
(0.23 GB)

– 0.33 h
(0.45 GB)

TD: 2.17 h (5.05 GB) 9.00 12.33 5.73

TERCAT: 1.68 h (0.14 GB) 1.00 3.84 0.82

GS: 1.13 h
(6.57 GB)

0.57 h
(6.60 GB)

TD: 60.00 h (81.10 GB) 83.00 145.53 94.5

TERCAT: 50.00 h (31.30 GB) 32.00 84.53 44.7

HCS: 0.42 h
(9.31 GB)

0.50 h
(6.57 GB)

TD: 54.00 h (80.70 GB) 82.00 137.75 96.81

TERCAT: 45.00 h (31.30 GB) 30.00 76.75 47.41

QUAC: 0.70 h
(0.59 GB)

– 0.30 h
(0.64 GB)

TD: 1.77 h (5.05 GB) 9.00 11.77 6.28

TERCAT: 1.50 h (1.95 GB) 4.00 6.50 3.18

GS: 1.00 h
(6.57 GB)

0.50 h
(6.70 GB)

TD: 55.00 h (76.5 GB) 64.00 121.20 90.36

TERCAT: 46.00 h (29 GB) 25.00 73.20 42.86

HCS: 0.47 h
(9.31 GB)

0.41 h
(6.60 GB)

TD: 51.00 h (80.7 GB) 74.00 126.58 97.2

TERCAT: 43.00 h (29.9 GB) 28.00 72.58 46.4

Samudra Tapu
(ST)

DOS: 1.00 h
(2.15 GB)

–
TD: 3.28 h (19.80 GB) 24.00 28.28 21.95

TERCAT: 2.45 h (6.75 GB) 10.00 13.45 8.9

GS: 1.25 h
(35.6 GB)

–
TD: 65.00 h (219.00 GB) 374.00 441.25 256.75

TERCAT: 57.00 h (70.60 GB) 61.00 120.25 108.35

HCS: 1.56 h
(43.50 GB)

–
TD: 68.00 h (221.00 GB) 336.00 338.56 266.65

TERCAT: 58.50 h (75.6 GB) 71.00 132.06 121.25

FLAASH: 1.56 h
(0.81 GB)

– 1.58 h
(2.62 GB)

TD: 4.12 h (19.80 GB) 24.00 31.26 23.23

TERCAT: 3.34 h (0.58 GB) 3.00 9.48 4.01

GS: 2.40 h
(16.50 GB)

1.85 h
(33.00 GB)

TD: 76.00 h (312.00 GB) 512.00 593.81 362.31

TERCAT: 66.00 h (130.00 GB) 104.00 175.81 180.31

HCS: 1.00 h
(50.00 GB)

1.75 h
(102.00 GB)

TD: 70.00 h (282.00 GB) 432.00 506.31 434.81

TERCAT: 59.10 h (109.00 GB) 96.00 159.41 261.81

QUAC: 1.35 h
(1.10 GB)

– 1.50 h
(2.06 GB)

TD: 3.80 h (19.80 GB) 24.00 30.65 22.96

TERCAT: 3.10 h (0.683 GB) 3.00 8.95 3.843

GS: 2.10 h
(16.50 GB)

1.80 h
(33 GB)

TD: 72.6 h (254 GB) 418.00 495.85 304.6

TERCAT: 64.00 h (108 GB) 96.00 165.25 158.6

HCS: 0.90 h
(20.50 GB)

1.72 h
(33 GB)

TD: 68.40 h (282 GB) 432.00 504.37 336.6

TERCAT: 56.10 h (108 GB) 96.00 156.07 162.6

Total time and storage 5247.05 h 3909.80 GB

The smallest input file was the Midtre Lovénbreen DOS subset (0.44 GB). As an
example of the comprehensive approach of the study, the total time for image calibration
and classification of the glacial subsets of Samudra Tapu and Midtre Lovénbreen was
5247.05 h, with a combined disk size of 3909.80 GB. The CC methods, being lesser in
number, consequently occupied less disk space. Considering the accuracies delivered by
AC and CC algorithms (Section 4.2.2), and the respective times for processing and storage
space (Table 11), it was evident that the CC methods were much more efficient.
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4.3.3. Inherent Challenges and Limitations

In the quest for assessing image-processing impacts on mapping glacier facies, the
current study encountered and attempted to resolve several computational challenges,
as described in the sections above. However, some challenges for mapping facies and
supraglacial terrain were inherent to this application itself. Factors such as cloud cover,
seasonal snow, precipitation, and crevassed surfaces pose difficulties for efficient snow
and ice delineation [153]. Debris cover is a challenge for glacier terrain mapping due to
its spectral confusion with the surrounding valley rocks [154], as most of the debris on
the surface of a glacier is deposited either by rockfalls from the surrounding valley or is
entrained into the glacial mass during its movement from the bed rock. This can cause
erroneous mapping, as spectral signature-based classification methods may misclassify
supraglacial debris and valley rock due to the resultant spectral similarity. Shadowed
snow, dependent on sun azimuth and solar elevation [155], can create areas of spectral
mixing, causing misclassifications [17]. Cumulatively, the topography of the area [156], the
time/season of capture, illumination conditions, and local weather [155] all play key roles
in determining the features visible on a glacier’s surface and the “quality” of the image.
Bernardo et al. [142] found that a residue of atmospheric attenuation was left in the image
after atmospheric correction. This influenced band-by-band comparison against known
spectral libraries and in situ spectra. In such a case, selection of appropriate atmospheric
correction algorithms would be of prime importance when mapping methods rely upon
reflectance characteristics. For example, DOS correction ignores the effect of atmospheric
dispersion on spectral signatures and is often too simplistic, resulting in a decrement in
surface reflectance [146]. Algorithms such as FLAASH provide the most realistic reflectance
pattern, as they consider variables such as sensor altitudes and atmospheric and aerosol
models to reduce the compounding effects of atmospheric attenuation. Therefore, while
simplistic methods such as DOS are convenient and time-efficient, they may retain more
noise than sophisticated methods such as FLAASH. WV-2 applicability for glacier facies
mapping was demonstrated in the past [17,33,60] and in this study as well. However,
the WV-2 dataset is expensive to procure; this adds logistic impediments to its usage for
long-term temporal monitoring of facies.

Remotely sensed imagery can acquire noise at any moment, beginning from acquisi-
tion/image capture, rectification procedures, geometric corrections to enhancements, and
even compression from data storage and transmission procedures [157,158]. VHR satellite
data consists of noise acquired during the acquisition and transmission [159]. According
to Liang et al. [160], this is an impulse noise, also called the salt-and-pepper noise, which
presents as white and black pixels in the spectral image. Estimation of this noise is an
important part of information-extraction procedures, specifically for hyperspectral data.
The minimum noise fraction (MNF) transformation [161] in ENVI is a two-step principal
component analysis that enhances the quality of data by reducing computational require-
ments. This is performed by reducing data dimensionality and segregating the noise to
yield higher-order components comprising noise-free, coherent eigen images [17,162,163].
Noise statistics in the form of eigenvalues for each spectral band are generated in the
forward MNF transformation [163]. Table 12 highlights the estimated noise in the raw
image and for each processing scheme for subsets of Samudra Tapu, Chandra–Bhaga basin,
and Ny-Ålesund, Svalbard.
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Table 12. Eigenvalues of noise contained in the VHR WorldView-2 data of the test sites. Noise was
computed for the raw data and each processing scheme for two selected glacial subsets. Noise was
calculated following the MNF operation in ENVI.

Test
Subset

Spectral
Bands

Noise within the Processing Scheme Subsets

Raw DN DOS FLAASH QUAC
GS HCS

DOS FLAASH QUAC DOS FLAASH QUAC

Samudra Tapu

B1 443.81 152.56 290.19 180.59 834.25 647.47 493.75 350.27 179.23 624.17

B2 16.72 15.68 13.11 15.49 411.80 207.93 412.07 172.58 43.79 312.83

B3 5.52 3.75 6.65 5.29 108.70 51.59 158.97 36.17 11.86 92.01

B4 2.57 2.42 2.39 3.07 58.31 20.20 88.51 25.48 6.98 77.26

B5 1.68 1.21 2.00 1.21 14.59 16.33 25.34 10.11 6.66 23.59

B6 1.18 1.10 1.16 1.10 12.83 15.44 20.81 9.19 4.18 19.04

B7 1.08 1.03 1.05 1.03 8.26 12.34 19.54 5.46 3.73 18.21

B8 0.96 0.94 0.99 0.95 2.15 7.62 14.99 3.01 3.37 14.01

Midtre
Lovénbreen

B1 144.38 116.77 56.14 50.05 866.56 314.90 203.19 41.28 37.54 51.60

B2 27.41 26.67 10.13 17.57 57.59 52.55 50.12 13.57 10.72 21.78

B3 2.25 2.05 2.07 3.04 47.93 35.13 30.15 9.32 8.93 11.77

B4 1.18 1.17 1.29 1.72 19.88 18.72 17.20 6.41 8.23 11.28

B5 1.15 1.17 1.18 1.65 18.79 18.14 18.02 8.49 7.69 10.83

B6 1.11 1.12 1.11 1.51 17.58 15.60 13.19 5.36 7.36 9.95

B7 1.00 1.00 1.01 1.24 13.78 13.90 14.24 5.21 6.70 9.48

B8 0.99 0.98 0.99 1.00 13.13 12.83 12.21 3.01 5.06 8.97

Spectral bands with eigenvalues (Table 12) closer to 1 contained noise, and those with
values greater than 1 contained data [163]. Hence, when averaged across all processing
schemes, B1 contained the maximum data and least noise, followed by B2, B3, B4, B5, B6,
B7, and B8, which comprised the least data with maximum noise. While the performance
of each band was consistent, the processing schemes had a variable level of noise in each
subset. In the case of hyperspectral data, this noise statistic is important when considering
which spectral bands can be retained for further classification/processing (bands with
high data) and which bands can be rejected (bands with high noise). In the present study,
only eight spectral bands comprised the current set of imagery. Moreover, the aim of this
experiment was to gauge variations induced by each processing scheme in the resultant
spectral reflectance and thematic classification. An inverse MNF transform was suggested
to denoise imagery [163], and a comparative test of denoised imagery has promising future
potential for assessing the impact on glacier facies extraction. The current study served as a
baseline for such a potential test.

In the current study, surrounding valley rocks were not incumbent to classification, as
the glacial subsets were manually digitized and extracted. A greater number of atmospheric
corrections and pansharpening methods were not tested here. However, the current
methods were sufficient to observe the overall effects of different methods. B1, B2, B7, and
B8 displayed the maximum variation in spectral reflectance across each processing scheme
and for most of the identified facies (Table 6). This can be a limitation for the FLAASH
correction, as its execution has been noted to have significant dependence upon the visible
bands, especially the blue (here, B2) band [56]. QUAC was limited by less than 10 spectral
classes, as the discernible surface facies numbered 9 for the Ny-Ålesund glaciers and 6 for
the Chandra–Bhaga basin glaciers. Pansharpened data took the most time for classification
and occupied the most disk space, without resulting in any improvements in accuracy.
Some classification algorithms, such as MTMF [41] and SAM [59], have shown better results
for identifying land cover and snow classes, but were not apt at discriminating the minute
variation in facies. Ramezan et al. [164] suggested utilizing larger training data samples for
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improving overall accuracy across classification methods. This may improve AC methods
in future. Lack of field data limited the current study. However, by utilizing an equalized
sampling approach described by Keshri et al. [134], the study assigned equal points to
each facies class, and gauged them not only for their accuracies and average error rates,
but also for the variances between each processing scheme. This ensured that the end
goal—understanding the impacts of image-processing schemes on the VHR classification
of surface facies—was achieved.

Albedo plays a crucial role in the analysis of surface characteristics of glacial bodies.
As glacier surface facies vary in terms of their reflectance characteristics, the albedo of these
facies will differ. Moreover, glacier surface facies are completely discernible only at the
end of the ablation season. Any precipitation event prior to image acquisition will cover
the target facies with snow and hamper effective characterization. However, the influence
of precipitation on reflectance and the variations in albedo of surface facies are influential
characteristics that require their own independent study. Nevertheless, freely available
albedo products such as the Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD43A3 [165], the Suomi National Polar-Orbiting Partnership (Suomi NPP), NASA
Visible Infrared Imaging Radiometer Suite (VIIRS) VNP43IA3 [166] and VNP43MA3 [167],
and the Copernicus Global Land Service (CGLS) VEGETATION sensor on the Project for
On-Board Autonomy platform (PROBA-V) Surface Albedo (SA) [168] version 1.5.1., are
available for assessment against glacier facies maps. In this context, however, spatial
resolution and data gaps play a large role in determining usability of these products. For
facies mapped at resolutions of 2 m and less (akin to the current study), direct comparison
between albedo data of 500 m resolution or more can be difficult for small glaciers such as
Midtre Lovénbreen. For comparison, the current study downloaded the VIIRS VNP43IA3
(500 m resolution) product for Ny-Ålesund, and CGLS PROBA-V v1.5.1 (1 km resolution) for
the Chandra–Bhaga basin. Supplementary Figure S2 highlights the gaps in CGLS PROBA-V
SA v1.5.1 during the month and year of image acquisition near the Samudra Tapu glacier.
Such large gaps rendered the dataset unsuitable for the current study. Similar, albeit smaller,
gaps were observed for Ny-Ålesund for the month and year of image acquisition in the
VIIRS VNP43IA3 dataset. The VNP43IA3 products are available for download at [169],
and the CGLS PROBA-V SA v1.5.1. products can be downloaded at [170]. In studies
that involve mountain glaciers and assessment of glacier surface characteristics, coarse
resolution albedo is not useful [3]. Hence, Naegeli et al. [3] utilized Sentinel-2 and Landsat 8
data to derive albedo products using narrow-to-broadband conversion formulae described
by Knap et al. [171] and Liang [172] and compared them to albedos derived from the
Airborne Prism Experiment (APEX) imaging spectrometer. Zhou et al. [173] concluded
that albedo derived from moderate-resolution sensors such as Landsat 8 is almost free of
the mixed pixel effect, and thus results in greater accuracy than coarse-resolution albedo
(500 m). Moderate-resolution albedo can be useful for binary glacial surface characterization
(snow and ice albedo). However, when multiple supraglacial features are mapped, finer-
resolution products are better suited at capturing the small-scale heterogeneity of glacier
surfaces [3].

Local weather conditions and sudden precipitation events or dust storms will impact
albedo and spectral reflectance. Dust exerts direct and indirect effects on the earth’s
radiation absorption, scattering, and energy balance [174]. Mineral or light-absorbing dust
on the surface of a glacier can influence the spectral reflectance of facies, decrease surface
albedo, and thereby increase melting of snow and ice [175,176]. Global and regional air
mass circulation highlight a significant contribution from Iceland in air masses containing
submicron dust particles reaching the Arctic [177,178]. The most effective measure of
dust and debris mineralogy is performed using in situ analytical techniques such as X-
ray diffraction (XRD), as performed by Moroni et al. [175] to differentiate between local
and transported dust in Ny-Ålesund. However, satellite image analysis of supraglacial
mineralogy as performed by Casey et al. [179] for the Ngozumpa and Khumbu glaciers
in the Himalayas required application of mineral indices, inclusion of shortwave and
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thermal infrared (SWIR and TIR) spectral bands, and hyperspectral reflectance. While the
separation of dust and facies spectral reflectance can improve the identification of glacier
facies and enhance complex distributed mass balance modeling, the current study was
limited by a lack of SWIR/TIR wavelengths, hyperspectral data, and in situ analytical
verification. The present experiment focused upon the reflectance variations introduced by
changing image-processing parameters in the easily observable surface facies.

Moreover, testing the effects of precipitation would also need corroborative sea-
sonal/multitemporal imagery. At present, this was beyond the scope of this study. Never-
theless, freely available precipitation data for Ny-Ålesund [180] showed zero precipitation
on the date of image acquisition. Similar data for the Chandra–Bhaga basin was not found
at the time of writing this manuscript.

4.3.4. Significances and a Path Forward

Selection of image-processing schemes is of paramount importance for accurate identi-
fication of image targets, subsequent analysis of spectral reflectance, and thematic classifi-
cation. The literature described in Section 1 highlighted the application-centric notion of
selection of image-processing methods. Robust processing routines can prepare satellite
data for a variety of information-extraction methods. A standardized processing routine,
if defined for glacier surface facies mapping, would go a long way in enabling temporal
monitoring. In the current study, the FLAASH correction retrieved the most reliable re-
flectance in comparison to DOS and QUAC. Pansharpening did not necessarily improve
classification accuracy. GS produced the worst spectral reflectance when coupled with
the atmospheric corrections, whereas HCS showed detrimental performance with QUAC
and DOS, but an improved performance for AC methods with FLAASH. The MTTCIMF
classifier showed improved performance for GS sharpening as well, but only for FLAASH
correction. Matched-filtering-based classifiers are poor at generalization [150], and as
such can misclassify pixels of the same facies with a small variation in spectral reflectance.
Therefore, the MF, CEM, MTMF, TCIMF, and MTTCIMF classifiers are disadvantaged for
mapping facies, as often elevation and illumination differences on the glacier can cause the
same facies to show a small deviation from its average spectral signature. Moreover, Jin
et al. [150] concluded that the ACE classifier delivered better performance than the OSP. The
findings of the present study corroborated the performance of the matched-filtering-based
methods, as well as the better performance of ACE. Therefore, while ACE was not as
accurate as the CC methods, it was the best performer of the AC methods. The CC methods
delivered the best performance with a more efficient computer processing time. The biggest
disadvantage of the AC methods was the time needed for processing. This also was true
for the GS and HCS sharpening. Pansharpening of VHR imagery did not improve glacier
facies mapping; rather, it added an excessive computational load. MXL is a robust and
efficient information-extraction method and provides the most consistent results across
a range of VHR processing schemes. The MXL classifier was the best overall classifier;
however, MD also showed significant results for the Chandra–Bhaga basin glaciers. MXL
was previously shown to be a reliable algorithm in areas of spectral confusion [59], and
to deliver accurate results [181]. Moreover, the entire processing and classification was
performed on VNIR data, thus reiterating its utility in mapping facies in the absence of
SWIR or thermal data [10,17]. Improvements over previous attempts included an attempt
at mapping facies of two geographically distinct groups of glaciers (15 glaciers in total).
With three atmospheric corrections, two pansharpening algorithms, and 12 classification al-
gorithms, for a total of 15 glaciers, the current study evaluated an exhaustive 1620 thematic
surface facies accuracy measurements.

Implementing a robust image-processing routine would aid in standardized prepara-
tion of satellite data and highlight the effects and anomalies that may result and promote
another area of research. Accurate derivation of facies may also help calibrate distributed
mass balance modelling [18]. Keeping this at the center, the study provided the following
recommendations for further attempts. (1) the FLAASH algorithm would retrieve the best
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spectral reflectance, while being slightly sensitive to residual atmospheric effects in the blue
band [142]. (2) HCS may enhance target detection of facies only if coupled with FLAASH
for WV-2 data; however, Snehamani et al. [45] suggested considering the usage of pansharp-
ening based on the value of time and cost. Here, GS and HCS subsets were the bulkiest and
took the maximum processing time. As no significant improvement in overall accuracy was
observed in this case, the study refrained from recommending it for future use. (3) Between
the CC and AC methods, AC was the most computationally demanding. CC processing was
faster and more accurate. ACE and MTTCIMF are recommended from the AC for future
testing for improved mapping using larger training samples [157], and if possible, more
spectral bands. Among the CC methods, MXL and MD are recommended for further use.
(4) Different information extraction approaches such as machine learning [182], SVM [54],
object-based mapping [99], band ratios [11], and multidataset/auxiliary layers [36] can
be tasked in the future to comparatively map complex facies against the results achieved
here. Analysis of denoised satellite imagery for future mapping of glacier facies can be
compared with the baseline results of this study. Finer-resolution albedo products derived
from in situ measurements or high-spatial-resolution satellite data can be assessed against
facies’ reflectance spectra. In addition to denoising, advanced classification methods such
as object-based mapping have helped reduce the effect of salt-and-pepper noise, and thus
open another pathway for a potential comparative study [183].

This study was the first of a three-part series that will present a complete account
of image-processing routines, parameters, and their associated impacts on the thematic
classification of glacier surface facies. The current study focused on image-processing
routines and pixel-based classification techniques. The forthcoming studies will focus
on more complex information extraction methods, the combined effects of processing
parameters on the different classification techniques, and a band-by-band analysis of all
these attempts at mapping facies with upcoming methods.

5. Conclusions

This study evaluated three atmospheric correction methods and two pansharpening
methods for their impacts on glacier facies classification of five conventional and seven
advanced classifiers. This was carried out using WV-2 data for glaciers in two separate
cryosphere regions: Chandra-Bhaga basin, Himalayas; and Ny-Ålesund, Svalbard. The
atmospheric correction methods included DOS, QUAC, and FLAASH. The pansharpening
methods included GS and HCS. The conventional methods consisted of MHD, MXL, MD,
SAM, and WTA. The advanced methods consisted of ACE, CEM, MF, MTMF, MTTCIMF,
OSP, and TCIMF. The focus of the work was on testing the effects of variations in processing
schemes on the resultant classification of surface facies using VHR WV-2 imagery, and not
on the mapping of facies to the highest accuracy possible. This permitted the use of image-
derived spectra and visual interpretation to assign validation points. FLAASH-derived
spectral signatures were used as a reference for comparison against the literature, with
good agreement. The lack of field data was not a hindrance, as the accuracy assessment
focused on analyzing the deviation in performance between each processing scheme before
cumulatively assigning the classifiers a reliability order/ranking. The FLAASH subsets
delivered higher overall accuracies, followed by QUAC and DOS. The MXL classifier was
the least variant across the three atmospheric corrections, delivering OA values of 0.78, 0.73,
and 0.79 for DOS, FLAASH, and QUAC corrections, respectively. WTA classification of the
DOS subsets resulted in the highest OA of 0.81, whereas the lowest OA (0.01) was delivered
by MTTCIMF classification of the FLAASH subsets. Pansharpening did not improve
performance, but rather caused a decrement in the derived reflectance, as well as in classifier
performance. Based upon the average error rate of the classified GS and HCS subsets, the
following order of reliability was derived: GS_DOS > HCS_FLAASH > HCS_QUAC >
HCS_DOS > GS_FLAASH > GS_QUAC. Cumulatively, The HCS pansharpening delivered
better results than the GS pansharpening. For the Chandra–Bhaga basin glaciers, crevasses
and shadowed snow were best mapped by WTA (F1 scores of 0.89 and 0.95); glacier ice,
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IMD, debris, and snow were best classified by MD (F1 scores of 0.96, 0.55, 0.62, and 0.98,
respectively). For the Ny-Ålesund glaciers, dry snow, wet snow, melting snow, shadowed
snow, glacier ice, melting glacier ice, dirty ice, and streams and crevasses were best mapped
by MXL, with F1 scores of 1.00, 0.69, 0.68, 1.00, 0.74, 0.57, 0.73, and 0.81, respectively.
Saturated snow was classified equally well by WTA and MXL (F1 score of 0.53). The final
order of classifier performance, independent of atmospheric corrections and pansharpening,
was: MXL > WTA > MHD > ACE > MD > CEM = MF > SAM > MTMF = TCIMF > OSP >
MTTCIMF. The best CC method was the MXL, whereas the best AC method was the ACE.
An assessment based on computational time suggested that FLAASH correction followed
by MXL classification was the most efficient mechanism for supervised classification of
surface facies. The experiment carried out here was an exhaustive assessment to decipher
which method of image processing was the most efficient and accurate for surface facies
classification. Future recommendations have been provided to test the robustness of the
current results and potentially apply it across a larger scale. As an important indicator of
a changing planet, accurate derivation of surficial glacier properties will play a key role
in the broader analysis of environmental change. This study presented an important first
phase in the development of an efficient mapping and monitoring system.
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spectral analysis of the observable facies. Both the images are portrayed with a band combination
of Red: NIR1 (B8), Green: Red (B5), and Blue: Green (B3). Figure S2: Data gaps in CGLS PROBA-V
Surface Albedo v1.5.1. for the date of 24 October 2014. The inset is a highlight the global data
product, leading to a zoomed inset of the Indian Himalayas showing the location of the Samudra
Tapu (Chandra–Bhaga basin). Inset b displays the boundary of the Samudra Tapu glacier and isolated
pixels with albedo data. Table S1: Nomenclature of processing schemes used in the current study.
TP: samples are those that were in the positive class and were correctly classified, TN: samples that
were correctly classified as negative, FP: samples that were not truly of the positive class but were
incorrectly mapped as positive, FN: samples that were mapped as negative when they actually were
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methods, classification algorithms, and averages across all processing schemes.
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