
����������
�������

Citation: Mikhailenko, I.M.

Estimation of Parameters of Biomass

State of Sowing Spring Wheat.

Remote Sens. 2022, 14, 1388. https://

doi.org/10.3390/rs14061388

Academic Editors: Adriaan van

Niekerk and Caren Jarmain

Received: 26 December 2021

Accepted: 7 March 2022

Published: 13 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Estimation of Parameters of Biomass State of Sowing
Spring Wheat
Ilya Mikhayilovich Mikhailenko

FGBNU Agrophysical Research Institute, Grazhdansky Prospect, 14, 195220 St. Petersburg, Russia;
ilya.mihailenko@yandex.ru

Abstract: The purpose of this work is to present a new method for estimating the parameters of
the biomass of agricultural crops based on Earth remote sensing (ERS) data. The method includes
mathematical models and algorithms estimation and has been tested on the example of spring
wheat sowing. Sowing biomass parameters are the basis for making management decisions aimed
at obtaining a given crop yield. Currently, for these purposes, vegetation indices are most widely
used. It is impossible to estimate the physical parameters of the crop sowing biomass using these
indices, due to their scalar form and lack of dimension. The paper develops a classical approach to
the problem of estimating the parameters of the state of agricultural crops, in which remote sensing
data are considered as an indirect measurement of the estimated parameters. The basis for the
implementation of the estimation method is the dynamic model of biomass parameters and the
remote sensing model, which reflects the relationship between the spectral reflection parameters
and the estimated parameters of the crop biomass. The parameters of the dynamic model and the
remote sensing model are refined by selective ground measurements in separate elementary sections
of the field. The difference between this article and previous works of a similar nature lies in the fact
that agricultural crops with a more complex morphological structure are considered as the object of
evaluation. In addition, such an important feature of agricultural objects as their spatial distribution
is considered here. To take it into account, a new type of mathematical models is used, in which
spatial coordinates are introduced. Due to the significant complication of modeling and estimation
algorithms based on such models, simpler approximation schemes are proposed. The advantage
of the proposed approach is that the assessment is considered as a dynamic process that meets the
content of the task of monitoring crops.

Keywords: remote sensing of the Earth; biomass parameters; crops; parameter estimation; mathe-
matical models; algorithms; spatial correctors

1. Introduction

Today, agriculture is being transformed under the influence of bio- and nanotechnolo-
gies, varieties, and breeds are being improved by genomics, and manufacturers are moving
from a product to a service model, integrating production-sales chains and adapting their
products to the needs of a particular consumer. In each of these trends, digital technologies
play an important role. However, the penetration of these technologies into the agricultural
sector is not deep, and so far, commodity producers pay little attention to modern infor-
mation technologies (IT). Among such technologies, the use of Earth remote sensing (ERS)
data in systems for monitoring the state of crops and soil cover is extremely important. The
information of monitoring systems allows solving such typical tasks as providing current
control of the condition of crops; preliminary forecasting of crop yields; monitoring the
pace of harvesting at the same time in the territories of large regions; determination of
the capacity of pastures of various types and the productivity of hayfields. In general,
all this makes it possible to implement effective support for management decisions in
agriculture [1].
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When using remote sensing data in agriculture, it has already become customary to
solve most of the above tasks based on special image interpretation technologies. They are
obtained by systematic repeated surveys from various devices, which provide observation
of the dynamics of the development of agricultural crops and forecasting yields. In this
case, various variants of vegetation indices (VI) are most often built, among which the
NDVI index (Normalized Difference Vegetation Index) is most widely used. Using such
VI, it is possible to judge their agrotechnical state by the color tone of the image of the
fields [1–7].

The calculation of most of the vegetation indices is based on the two most stable
sections of the curve of the spectral reflectance of plants. This approach makes it possible
to obtain only generalized assessments of the state of crops. It is important to note that
when calculating any VI, the information potential of the remote sensing method decreases,
since any VI is a kind of convolution of signals into a scalar value. This always leads
to a decrease in the overall information content of individual channels. To increase the
information content of the estimation problem, it is necessary not to decrease, but, on the
contrary, to increase the number of independent measurement channels [8]. So, the number
of productive sowing indicators that need to be evaluated can reach 10. It is impossible and
incorrect to estimate these states by one or several scalar VIs, and it is incorrect according
to the scientific statement.

In a large review paper [9], a literature between 2000 and 2019 was conducted, which
was devoted to the application of remote sensing technologies in production agriculture,
from field preparation, planting, and seasonal application to harvest. The authors found
an increasing trend in the use of remote sensing technologies in agricultural production
over the past 20 years, with a marked increase in the use of unmanned aerial vehicles
(UAVs) after 2015. It is emphasized that remote sensing technologies can be used to
support specific management decisions at various stages of crop production, helping to
optimize technologies.

The paper analyzes the use of various remote sensing platforms, including portable,
aviation, and satellite ones, which can be used to collect data with different spatial, temporal,
and spectral resolutions. Various types of sensors are being investigated, including visible
(visual), multispectral, hyperspectral, thermal, and microwave.

Particular attention is paid to the possibility of estimating the yield of agricultural
crops according to remote sensing data. It is indicated that for these purposes, in addition to
remote sensing data, other auxiliary variables, such as weather (for example, solar radiation,
temperature, precipitation), vegetation conditions, and soil properties, are supposed to
be introduced into consideration using empirical or mechanistic approaches. Because
empirical approaches directly relate inputs to outputs through purely statistical means,
they are relatively simple, and more data is needed to improve model robustness. On the
other hand, mechanistic models focus on causal relationships between inputs and outputs
by accounting for the various biophysical processes involved. They often rely on various
assumptions that may not always work.

Of particular importance is, as the authors point out, that traditional approaches
forthe determination of seasonal crop stresses rely on field survey of crops or laboratory
experiments, which are laborious and expensive if extended over large areas. The use of
remote sensing provides a timely and non-destructive approach to identifying, quantifying,
and mapping crop-related stresses and is thus useful in guiding specific management
decisions on nutrient and insecticide application rather than the entire field.

The authors found that in order to improve yield forecasting, previous studies pro-
posed the idea of assimilation of remote sensing data into a mechanistic crop growth model
based on seasonal weather forecasts and field management practices. This idea has been
around for a long time, but it is still not well understood. The authors argue that the
increased availability of more remote sensing data and the development of modern data
analysis tools will move research towards the development of crop yield prediction systems.
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Despite the very large volume of analyzed sources, the authors did not touch upon
the scientific and methodological foundations of the problem of estimating the parameters
of the state of agricultural crops based on remote sensing data. At the same time, it can
be argued that this work is a prologue to solving such a problem, to which this work is
dedicated. The approach developed in it has already been considered in [8,10,11]. It is
based on the classical estimation of parameters of the state of agricultural crops according
to remote sensing data, considered as an indirect measurement of the state of the object
of assessment [12]. This approach has been tested on various forage crops, the biomass
of which is the raw material for the preparation of feed. The purpose of this work is to
develop a classical approach to assessing the parameters of the state of crops that are more
complex in their morphological structure of grain crops.

2. Materials and Methods
2.1. Mathematical Models

The task of assessing the parameters of the state of the biomass of spring wheat sowing
is to construct in real time estimates of such physical parameters as the density of the total
biomass and its marketable part (yield), as well as its composition in terms of dry and
wet weight. Estimates of these parameters can be used to solve problems of agricultural
technology management. The classical approach to the estimation problem is to refine the
a priori information about the estimated parameters by the measured parameters, which in
our case are the remote sensing data, which are a source of a posteriori information about
the state parameters [13–15].

All a priori information about the estimated parameters is contained in mathematical
models that reflect the dependence of the parameters on the main influencing factors. Due
to the fact that the sowing of spring wheat can have two different biomass structures, before
heading and after its onset, two mathematical models are used in the estimation problem [8,16].
Moreover, both models can be represented in a single vector-matrix canonical form:

- in the time interval before the earing of crops
.
Xm(y, h) = AmXm(t, y, h) + BmV(t, y, h) + CmF(t),
t ∈ (T1m, T2m), Xm(T1m, y, h) = 0.

(1)

- in the time interval from the beginning of earing to the full ripening of the grain
.
Xu(y, h) = AuXu(t, y, h) + BuV(t, y, h) + CuF(t),
t ∈ (T1u, T2u), Xu(T1u, y, h) = Xu0(y, h).

(2)

In models (1) and (2) the following designations are accepted:

Am =

[
a11 a12
a21 a22

]
m

, Au =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


u

—dynamic matrices of models (1) and (2);

Bm =

[
b11 b12 b13 b14 b15
b21 b22 b23 b24 b25

]
m

, Bu =

 b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35


u

—

transfer matrices model controls (1) and (2);

Cm =

[
c11 c12 c13
c21 c22 c23

]
m

, Cu =

 c11 c12 c13
c21 c22 c23
c31 c32 c33


u

—transmission matrices of external

disturbances of models (1) and (2);

Xm(t, y, h) =

[
x1m(t, y, h)
x2m(t, y, h)

]
, Xu(t, y, h) =

 x1u(t, y, h)
x2u(t, y, h)
x3u(t, y, h)

—vectors of estimated crop

biomass parameters in models (1) and (2)

F(t) =

 f1(t)
f2(t)
f3(t)

—vector of external climatic disturbances in models (1) and (2);
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V(t, y, h) =


vN(t, y, h)
vK(t, y, h)
vP(t, y, h)

vMg(t, y, h)
v5(t, y, h)

—control vector in models (1) and (2).

The biomass state parameters in the model (1) are: x1m—the average density of the
total biomass of crops over the area of the field, cwt·ha−1; x2m—the average density
of the wet weight of crops over the area of the field, cwt·ha−1; the parameters of the
state of the biomass in the model (12) are: x1u—the average density of the total biomass
over the field area, cwt·ha−1; x2u—the average density of the wet weight of crops over
the area of the field, cwt·ha−1; x3u—the average density of the mass of ears of crops
(harvest) over the area of the field, cwt·ha−1; external perturbations in both models are:
f 1—average daily air temperature, ◦C; f 2—average daily radiation level, W·(m2·h)−1; f 3—
average daily precipitation intensity, mm; parameters of the chemical state of the soil:
vN—nitrogen content in the soil, kg·ha−1; vK is the potassium content in the soil, kg·ha−1;
vP—phosphorus content in the soil, kg·ha−1; vMg—content of magnesium in the soil,
kg·ha−1; v4—moisture content in the soil, mm; y,h—spatial coordinates, m; t ∈ (T1m, T2m)—
time variable, days, beginning and end of the growing season preceding the heading phase;
t ∈ (T1u, T2u)—the beginning and end of the growing season from the beginning of earing
to the full ripening of the grain, cwt—center (hundredweight)—the unit of mass adopted
in Russia is 1 cwt = 0.1 tn.

The total crop biomass includes the mass of stems and ears, the wet mass is the mass
of moisture in the composition of wheat plants, the mass of ears includes the mass of grain
and chaff.

When using models (1)–(4), the assumption is made that the elementary areas of the
field with spatial coordinates (y, h), into which the field area is divided during estimation,
have the same dynamic properties and they do not affect each other. This assumption
is correct for leveled reliefs, and this allows oneto significantly simplify the shape of
the models.

A priori information about the parameters of the state of the crop biomass, formed by
models (1) and (2), must be corrected according to real measurements, for which remote
sensing models are introduced. On both time intervals, a one vector-matrix canonical form
of the models is used:

- in the time interval before the earing of crops

Zm(y, h) = PmW(Xm(y, h)) (3)

- in the time interval from the beginning of earing to the full ripening of the grain

Zu(y, h) = PuW(Xu(y, h)) (4)

In models (3) and (4) the following designations are accepted:[
z1m(y,h)
z2m(y,h)

]
—vector of reflection parameters for the spatial coordinate (y, h). in the visible

range (400–700 nm) (z1m) and in the near infrared range (750–950 nm) (z2m); z1u(y, h)
z2u(y, h)
z3u(y, h)

—vector of integrated reflection parameters in green (500–565 nm)—(z1u), in

red (625–740 nm)—(z2u), in near-IR (750–950 nm)—(z3u);

Pm =

[
p01 p11 p12 p13 p14 p15 p16
p02 p21 p22 p23 p24 p25 p26

]
m

—model parameter matrix (3);

W(Xm(y, h)) =
[

1 x1m(y, h) x2m(y, h) x2
1m(y, h) x2

2m(y, h) x3
1m(y, h) x3

2m(y, h)
]

—vector-function, where the arguments are the parameters of the state of sowing: x1m—the
density of the sowing biomass (yield) for the spatial coordinate (y, h), cwt·ha−1; x2m—the
density of the sowing wet weight for the spatial coordinate (y, h), cwt·ha−1;
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Pu =

 p01 p11 p12 p13 p14 p15 p16 p17 p18 p19
p02 p21 p22 p23 p24 p25 p26 p27 p28 p29
p03 p31 p32 p33 p34 p35 p36 p37 p38 p39


u

—model parameter ma-

trix (4);
W(Xu(y, h)) =

[
1 x1u(y, h) x2u(y, h) x3u(y, h) x2

1u(y, h) x2
2u(y, h)

x2
3u(y, h) x3

1u(y, h) x3
2u(y, h) x3

3u(y, h)
] —vector-

function, where the arguments are the parameters of the state of sowing for the spa-
tial coordinate (y,h): x1u—the density of the sowing biomass, cwt·ha−1; x2u—the density of
the sowing wet mass, cwt·ha−1; x3u—the density of the mass of ears, cwt·ha−1.

A feature of the presented vector-matrix mathematical models (1)–(4) is that here the
components of the vectors are not scalar values, but two-dimensional distributions of the
corresponding biomass parameters in dynamic state models and reflection parameters in
remote sensing models. This greatly complicates the modeling and estimation algorithms,
as it leads to the need to introduce spatial cycles. The number of variables in such cycles
depends on the method of dividing the total surface of the field into elementary sections.
So, with the area of an elementary plot of 2 m2, the number of cyclic variables will be
5000 per hectare of the field area. With a total field area under crops of 500 ha, the total
number of elementary plots and cycles of the algorithm will be 2.5 × 106 units. Therefore,
for large areas of crops (more than 1000 ha), it is advisable to use approximation schemes
for modeling and estimation. The essence of such schemes lies in the fact that, first, the
parameters of the sowing state averaged over the area of the field are modeled (estimated),
which are then corrected along the field surface by means of a corrective model in the
same way for the state of sowing before and after heading (omitting the indices of the
phenological state of sowing).

A feature of the presented vector-matrix mathematical models (1)–(4) is that here the
components of the vectors are not scalar quantities, but two-dimensional distributions of
the corresponding biomass parameters in dynamic state models and reflection parameters
in ERS models. This significantly complicates the modeling and estimation algorithms,
and leads to the need to enter spatial cycles, where the number of variables depends on
the method of dividing the total surface of the field into elementary sections. So, with an
elementary plot area of 2–3 m2, the number of cyclic variables will be 5000 per hectare of
field area. With a total area of the field under sowing of 500 hectares, the total number of
elementary plots and algorithm cycles will be 2.5 × 106 units. Therefore, for large areas
of crops (more than 1000 hectares), it is advisable to use approximation modeling and
estimation schemes. The essence of such schemes is that, first, the parameters of the seeding
state averaged over the field are modeled (estimated), which are then corrected over the
field surface by means of a corrective model in the same way for the seeding state before
and after earing (omitting the indices of phenological phases of seeding)

_
X(t, y, h) =

_
X(t) + ∆

_
X(y, h),

∆
_
X(y, h) = K∆Z(y, h),

(5)

where: K—spatial corrector matrices for models (1) and (2), the parameters of which are
estimated by forming an array of variations in the reflection parameters of remote sensing
∆Z(y,h) and estimating biomass parameters for 20–30 elementary plots.

2.2. Estimation Algorithm

To form estimates of biomass parameters averaged over the area of the field in the
selected elementary plots, the following local estimation algorithm is used, built on the
basis of models (2), (4) [2,8,11,12,16–20]
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.
_
X(t) = A

_
X(t) + BV(t) + CF(t) + R(t) ∂WT(P,

_
X)

∂
_
X

K−1
z (Z̃(t)−

_
X(t)),

.
R(t) = R(t)AT + AR(t)− R(t) ∂WT(P,

_
X)

∂
_
X

K−1
z

∂W(P,
_
X)

∂
_
X

PTR(t),
(6)

where: R(t)—matrices of estimation errors, having the dimension corresponding to the
vectors of the biomass parameters of the models (1), (4); Z̃(t)—ERS data vector averaged
over the field area.

In this case, the algorithm for constructing the spatial corrector (5) includes the follow-
ing steps:
Step1. From the remote sensing data obtained over the entire area of the field, data on test
plots are selected Z(y, h) = Z(i), i = 20...40.

Step2. Remote sensing data for test areas are averaged Z 1
20

20
∑

i=1
Z(i).

Step3. For each test plot, the estimation algorithm (6) evaluates the state of the crop biomass
_
X(i), i = 20...40. The scores obtained are averaged

_
X = 1

20

20
∑

i=1

_
X(i).

Step4. Determine local variations of remote sensing data ∆Z(i) = Z(i) − Z and local

variations of estimates ∆
_
X(i) =

_
X(i)−

_
X, i = 20...40.

Step5. From the obtained variations, an array of data is formed, {∆
_
X(i), ∆Z(i)} which

evaluates the parameter matrix K of the spatial corrector (5).
This procedure is performed for the period of time preceding the heading of the crop

and for the period from the beginning of the heading to the full ripening of the grain.

3. Results
3.1. Experimental Research Base

Approbation of the estimation problem was carried out at the experimental site of
the Menkovsky branch of the Agrophysical Institute. Figure 1 shows a fragment of aerial
photography of the experimental field of the Menkovsky branch with the selection of a
field with spring wheat, which was the object of study. The fragment was obtained from a
Geoscan 401 unmanned aerial vehicle equipped with a MikoSensRedH MX multispectral
optical camera. Reflection parameters in the range from 430 to 950 nm were recorded by
means of a multispectral camera over the entire field area under spring wheat.
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The field area was divided into 82 elementary sections, designated by numbers. Sam-
ples of crop biomass and soil were taken from 20such plots (nos. 20–40). The sampling of
plants weighing 1 kg was carried out by cutting the biomass bypacking the samples in a
sealed package. Soil samples were taken with a manual cylindrical probe from a soil layer
25 cm deep. Soil samples were placed in special sealed containers. The selection of such
samples was carried out during the entire growing season.

The selected samples were analyzed in a laboratory to identify the physical and
chemical parameters of the crop biomass and soil. The biomass structure was determined
according to B.A. Dospekhov “Methodology of field experience”, Moscow, Agropromizdat,
1985. The chemical composition was determined by the following methods and tech-
niques: humidity—by the method of air-heat drying according to GOST 13586.5-2015, total
nitrogen—by the photometric indophenol method for determining nitrogen (spectropho-
tometer PE-3000UF) according to GOST 13496.4-2019, phosphorus—by the photometric
method (spectrophotometer PE-3000UF) after dry ashing according to GOST 26657-97,
potassium was determined according to GOST 30504-97 by the flame photometric method
after dry ashing, and calcium—by the complexometric method (determination of calcium
in samples prepared by the dry ashing method) according to GOST 26570-95. (GOST—the
state standard of Russia).

Simultaneously with sampling, surface remote sensing was carried out with a Hand-
Held 2 Portable Spectroradiometer (Product Regulations Manager, ASD Inc.2555 55th St.,
Ste. 100, Boulder, CO 80301 USA). Based on this monitoring information, all mathematical
models used in the estimation algorithm were adapted.

3.2. Results of Approbation of Models and Estimation Algorithms

In the time interval preceding heading, the reflection parameters were recorded in the
visible and near-IR optical ranges. Figure 2 shows the dynamics of the sowing reflection
parameters averaged over the field area in this time interval, and Figure 3 shows the
estimates of the sowing biomass parameters obtained from remote sensing data without
measuring these parameters in the field. Estimation errors for both parameters fit into the
10% tolerance field. Figures 4 and 5 present the same information for the growing season
from the beginning of heading to grain ripening. Here, the reflection parameters in the
green, red, and near-IR ranges of the optical spectrum have already been fixed, and the
mass of ears (yield) has been estimated in the composition of the biomass. These structural
changes did not affect the estimation accuracy.

Figures 4 and 5 present the same information for the growing season between the
milky-wax and grain ripening phenophases. Here, the reflection parameters in the green,
red, and near-IR ranges of the optical spectrum have already been recorded, and the weight
of ears (yield) in the composition of the biomass was also estimated. These structural
changes did not affect the accuracy of the estimates.

The same assessment procedure was carried out at 20 elementary plots, according to
the results of which a database was formed, including two segments, before the beginning
of earing and from the beginning of earing to the phase of grain ripening in the ear. The
specified database is an information basis for setting up spatial correctors of estimates.
Figures 6 and 7 show the graphs of setting the spatial correctors at both studied intervals
of the growing season. As can be seen from the graphs, the tuning accuracy is quite
high (within a 5% interval), which provides a reliable spatial correction of the biomass
parameter estimates.
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Such estimates were constructed for the 70th day of the growing season, when the
test field was flown around and ERS data were obtained in the used optical ranges. The
distribution of these data over all 84 elementary areas is shown in Figures 8–13 show the
distribution of estimates of the parameters of the seeding biomass. Such estimates can be
obtained for any moment of the daily planting growing season.
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3.3. The Discussion of the Results

The results of approbation of the proposed estimation methodology show that the
user of the software product developed on its basis can have at his disposal estimates of
the parameters of the sowing biomass in each elementary plot of the field with an area
of 2–4 m2. First of all, such information is in demand in precision farming systems (TK),
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in which automated technological machines operate, where elementary sowing areas can
be serviced by working bodies independently of each other [17]. This makes it possible
to realize high accuracy of control over the state of crops in conditions of large spatial
heterogeneity of the agricultural field. Such inhomogeneities are due to the influence of soil
heterogeneity, uneven sowing of seeds, differences in the rate of development of individual
groups of plants, the presence of a field microrelief, and other reasons. In addition to
management tasks in TK systems, such information is in demand in monitoring systems.
It is designed to analyze and predict the state of crops, both over the entire area of the
field, and in its individual zones and elementary sections. With its help, it is possible to
accurately determine areas of low productivity, soil degradation, and stress conditions
of crops.

The proposed methodology can be applied to the sowing of other agricultural crops.
For this, it is necessary to clarify the structure of the mathematical models used, without
significant changes in the algorithms and programs used. The main direction of the devel-
opment of this methodology is to improve the quality of the used mathematical models
of the parameters of the state of agricultural crops. This can be achieved by introducing
3D models of the agricultural field landscape. The introduction of such models will allow
taking into account the effect of relief on the distribution of moisture and fertilizers and
thereby significantly increase the accuracy of spatial modeling of the parameters of the
state of the biomass of the studied crops.

4. Conclusions

A new methodology and algorithm for estimating the parameters of the crop biomass
based on Earth remote sensing (ERS) data are proposed. It is based on the classical approach
to the estimation problem based on the use of mathematical models of the estimated
parameters and their relationship with remote sensing data. A distinctive feature of the
methodology is the transition to models with spatial variables and accounting for the
phenological phases of cereal sowing. At the same time, to simplify the computational
procedures associated with the presence of spatial variables, an approximation approach
based on the use of linear spatial correctors, the number of which is equal to the number of
used mathematical models of the parameters of the state of the crop biomass, is proposed.
Moreover, the construction of spatial correctors is carried out by repeatedly solving the
estimation problem in separate elementary sections, highlighting the spatial variations of
the remote sensing data and estimates, according to which the parameters of the spatial
correctors are adjusted.
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