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Abstract: Reliable absolute positioning is indispensable in long-term positioning systems. Although
simultaneous localization and mapping based on light detection and ranging (LiDAR-SLAM) is
effective in global navigation satellite system (GNSS)-denied environments, it can provide only local
positioning results, with error divergence over distance. Ultrawideband (UWB) technology is an
effective alternative; however, non-line-of-sight (NLOS) propagation in complex indoor environments
severely affects the precision of UWB positioning, and LiDAR-SLAM typically provides more robust
results under such conditions. For robust and high-precision positioning, we propose an improved-
UWB/LiDAR-SLAM tightly coupled (TC) integrated algorithm. This method is the first to combine a
LiDAR point cloud map generated via LiDAR-SLAM with position information from UWB anchors
to distinguish between line-of-sight (LOS) and NLOS measurements through obstacle detection and
NLOS identification (NI) in real time. Additionally, to alleviate positioning error accumulation in
long-term SLAM, an improved-UWB/LiDAR-SLAM TC positioning model is constructed using UWB
LOS measurements and LiDAR-SLAM positioning information. Parameter solving using a robust
extended Kalman filter (REKF) to suppress the effect of UWB gross errors improves the robustness
and positioning performance of the integrated system. Experimental results show that the proposed
NI method using the LiDAR point cloud can efficiently and accurately identify UWB NLOS errors
to improve the performance of UWB ranging and positioning in real scenarios. The TC integrated
method combining NI and REKF achieves better positioning effectiveness and robustness than other
comparative methods and satisfactory control of sensor errors with a root-mean-square error of
0.094 m, realizing subdecimeter indoor positioning.

Keywords: GNSS-denied environments; positioning system; UWB; LiDAR-SLAM; NI; REKF; TC

1. Introduction

Obtaining accurate, robust and continuous position information is an important
guarantee for location-based services and applications (internet of things, intelligent trans-
portation, etc.), for which global navigation satellite systems (GNSSs) (especially the global
positioning system (GPS) and the BeiDou navigation satellite system (BDS)) are common
positioning technology solutions for outdoor environments. Precise point positioning (PPP)
or precise point positioning-real-time kinematic (PPP-RTK) positioning solutions can pro-
vide dm–cm level navigation and positioning services when the observation environment
is good [1–3]. However, for indoor environments where GNSS signals cannot penetrate,
such as large warehouses and underground parking lots, the attenuation of satellite signals
and multipath effects cause the GNSS positioning accuracy to be ineffective, meaning
that it cannot meet the demand for indoor high-precision positioning. Therefore, with the
growing demand for indoor positioning, determining how to develop and build a real-time,
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high-precision and robust indoor positioning system has become a hot issue in current
research on indoor positioning.

Ultrawideband (UWB) positioning technology is a wireless positioning technology
that has been widely used in recent years and has been applied to indoor positioning
technology research due to its advantages of low system complexity, high temporal res-
olution, strong resistance to multipath effects, and strong signal penetration. The UWB
positioning accuracy is determined by the pulse width and response frequency of the UWB.
The UWB pulse width is at only the nanosecond or subnanosecond level [4], with ultrahigh
bandwidth characteristics, thus ensuring the emission of an ultralow signal power spectral
density, which can theoretically reach the centimeter level. However, in a complex indoor
environment, obstacles (pedestrians, vehicles, wall columns, etc.) can cause reflection,
refraction and penetration of the UWB pulse signal during propagation, resulting in a
certain degree of signal attenuation, a time delay and a relatively large propagation dis-
tance; these factors, in turn, cause a biased distance estimate based on signal strength
measurement or time measurement between the anchor and the mobile tag to be located.
This bias is called the non-line-of-sight (NLOS) error. The interference from NLOS errors
can significantly reduce the positioning accuracy and stability of UWB systems and, in
severe cases, even lead to an inability to range and position, which is seriously inconsistent
with the expectation of applying UWB to indoor high-precision positioning. Therefore, de-
termining how to effectively identify and suppress NLOS errors in the NLOS environment
to improve the accuracy and stability of the positioning algorithm has become the key to
indoor high-precision positioning.

For indoor positioning scenarios in which NLOS errors exist, traditional NLOS identifi-
cation techniques are broadly classified into three categories [5], namely, distance estimation-
based methods [6,7], channel statistics-based methods [8–14] and position estimation-based
methods [15–19]. Distance estimation-based methods distinguish between line-of-sight
(LOS) and NLOS errors by comparing the variance in the distance estimate with a prede-
fined threshold or by using the probability density function (PDF). However, this method
inevitably increases the time delay due to the collection of distance and is also be limited
by the requirements of the prior distribution function and the difficulty of choosing a
suitable threshold [10,13]. Channel statistics-based methods usually use hypothesis testing
or classification theory to distinguish between LOS and NLOS errors using amplitude
(e.g., received signal strength (RSS), maximum amplitude of the received signal, power
difference, and power ratio) and temporal (e.g., time-of-arrival (TOA), root-mean-square
delay-spread, peak-to-lead delay, rise time, mean excess delay, and maximum excess delay)
statistics obtained from the channel impulse response (CIR) and extract channel character-
istic parameters, such as the skewness, kurtosis, and kernel function for identification [20].
However, these methods require modeling the distribution of multiple statistics and thus
require the creation and frequent updating of large training databases [21], yet the collection
of NLOS data is often tedious and intensive. Both distance estimation-based and channel
statistics-based methods identify NLOS errors before positioning, while position estimation-
based methods identify NLOS errors during positioning. In the case of redundant valid
measurements, NLOS errors can be identified by comparing the position estimation results
for different subsets of range values. However, when there are multiple measurements with
NLOS errors or insufficient redundant measurements (at least 3 measurements are required
for two-dimensional (2-D) positioning), this method cannot reliably identify the NLOS
measurements and is therefore not suitable for complex positioning scenarios with sparse
indoor anchor placement. If the user’s position information is known a priori, it can also be
combined with environmental data (attenuation factors and geometry) to identify NLOS
errors. Jo et al. [15] used a 2-D map for signal ray tracing to obtain accurate knowledge of
wireless signal propagation, identify NLOS signals and estimate errors caused by NLOS.
However, real-time ray tracing is usually not possible because of the high computational
complexity and the need to know the physical properties in advance, including the dielec-
tric constants and boundary conditions, for the objects in the environment. Suski et al.
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and Zhu et al. [16,17] improved UWB positioning accuracy by building a database of error
fingerprints for indoor static environments. Wang et al. [18,19] used manually drawn 2-D
maps matched with line segment information for NLOS identification and adjusted the
weights of UWB ranging values according to the obstruction situation, effectively eliminat-
ing the effect of NLOS errors. Although the methods in [16–19] are accurate, the preliminary
measurements required to generate environmental maps can be a daunting task for large
buildings, e.g., [16] distributed 8000 positioning error measurement points in a space of
12 × 8 m and collected a total of 4 million measurements, which was very time-consuming
and tedious. Such an expensive data collection phase increases labor costs and reduces
availability, and if the space changes in any way, including the movement of people or
objects, the corresponding positioning error maps or digital maps are no longer valid.
Therefore, these methods are not practical due to the lack of additional information that
is applicable to all environments, and the dynamic environment prevents their real-time
implementation.

Due to the rapid development of three-dimensional (3-D) sensor technology, environ-
mental maps of large buildings can be quickly and accurately captured by sensors, such as
light detection and ranging (LiDAR), red green blue-depth (RGB-D) cameras, and stereo
cameras [22]. Compared to cameras, simultaneous localization and mapping (SLAM) using
LiDAR can directly and accurately provide dense 3-D points of structural information
in the environment, is less affected by light and weather and has been widely used for
indoor mapping of 3-D buildings due to its long detection range, high accuracy and high
robustness [23,24]. Typically, LiDAR-SLAM estimates the interframe pose transformation
matrix by registering the point clouds of consecutive frames before obtaining the trajectory
and building an environment map. Therefore, the key to the quality of environmental
map construction is the accuracy of LiDAR 6-degree-of-freedom (6-DOF) pose estimation.
Conventional LiDAR-SLAM mostly uses the iterative closest point (ICP) and the normal
distributions transform (NDT)-based algorithms [25,26] or their variants for interframe
pose estimation. ICP estimates the pose transformation matrix between the point clouds
of two frames by iteratively matching the closest points of adjacent frames and minimiz-
ing the distance between corresponding feature points. However, such algorithms are
sensitive to the initial values, with incorrect initialization leading to convergence to local
minima outside the attraction basin of the true solution [27,28], and they suffer from slow
convergence. As an alternative to ICP, the NDT algorithm does not carry out matching
according to the characteristics of the corresponding points. This algorithm represents the
underlying scan as a set of Gaussian distributions, which locally model the surface scan
as a PDF, and obtains the optimal transformation parameters that maximize the sum of
probability densities using optimization methods. The operation speed and robustness
are greatly improved in comparison to the ICP algorithm. However, NDT discretizes the
original point cloud into cells, and the definition of cell size significantly affects the final
map quality [22]. LiDAR odometry and mapping (LOAM) [29], the current state-of-the-art
solution for LiDAR-SLAM, has a high score for rotation and translation errors on the KITTI
vision benchmark ranking [30]. This model extracts line and plane features to correlate the
consistency between consecutive frames with the global map and allows complex SLAM
problems to be solved by executing a high-frequency odometry thread and a low-frequency
mapping thread. These parallel threads significantly improve the real-time performance
of SLAM techniques. LOAM is capable of mapping efficiently with acceptable accuracy
in large-scale indoor and outdoor environments, but the lack of closed-loop detection [31]
makes error accumulation inevitable. Lightweight and ground-optimized LOAM (LeGO-
LOAM) [32] adopts ground segmentation and point cloud clustering to make the extracted
feature points more effective while adding an optimized back-end to LOAM and con-
ducting incremental smoothing and mapping using a Bayes tree (iSAM2) [33] closed-loop
module to suppress long-term drift, improving the computational efficiency and accuracy
of LOAM. However, the two aforementioned methods suffer from motion degradation in
scenarios with less discriminative structures and exhibit poor performance.



Remote Sens. 2022, 14, 1380 4 of 26

Considering the vulnerability of individual sensors in real scenarios and the comple-
mentarity of both UWB and LiDAR sensors (UWB performs better in open scenarios, while
LiDAR-SLAM is more suitable for complex scenarios where UWB performs poorly), with
reference to the GNSS and LiDAR fusion method [34–37], this paper combines UWB and
LiDAR-SLAM and applies the information fusion approach to fully utilize and combine the
advantages of both positioning systems to achieve a continuously working indoor position-
ing system with high accuracy, high pervasiveness, and strong robustness. On one hand,
LiDAR-SLAM can improve the reliability and availability of the UWB positioning system
in complex scenarios. On the other hand, as a type of recursive navigation scheme, the
LiDAR-SLAM navigation error diverges gradually with increasing moving distance [37,38].
The fusion of LiDAR-SLAM with UWB helps suppress the error accumulation of SLAM.
Most importantly, UWB, as an absolute positioning scheme, can transform LiDAR-SLAM
positioning results in a local coordinate system to the world coordinate system (e.g., world
geodetic system 1984 (WGS-84)) for some indoor navigation tasks.

The main contributions of this paper are as follows.

• In complex environments, such as large buildings or time-varying environments,
where UWB signals are heavily affected by NLOS errors, the rich geometric features
enable LiDAR-SLAM to provide accurate and robust pose estimation and mapping
results. With the advanced LiDAR-SLAM algorithm LeGO-LOAM, we propose and
implement UWB NLOS identification using the LiDAR point cloud algorithm. This
method combines the position information of the UWB anchor with the environment
map generated by LeGO-LOAM and distinguishes between LOS and NLOS measure-
ments in real time by efficiently and accurately performing obstacle detection and
NLOS identification toward the line-of-sight direction of the anchor to improve the
UWB data quality. It has good universality as it does not need the tedious data collec-
tion work and training phase in the early stage, and it can cope with the interference
of dynamic obstacles in the environment well. Experimental results show that this
NLOS identification algorithm is reasonably effective without adding a large amount
of computation.

• To suppress the error accumulation of LiDAR-SLAM while simultaneously obtaining
the positioning results in the world coordinate system, we propose a novel improved-
UWB/LiDAR-SLAM tightly coupled positioning system by using UWB LOS measure-
ments identified by the LiDAR point cloud and the positioning results of LeGO-LOAM
as the input to the integrated system. Considering that in addition to NLOS propaga-
tion, UWB measurements are affected by signal multipath effects, intensity attenuation
and other factors, which are likely to cause large gross errors, we use a robust extended
Kalman filter (REKF) for parameter solutions and effectively suppress the influence
of abnormal measurements on the filtering results by reducing the weights of out-
liers. A dynamic positioning experiment demonstrates the accuracy and robustness
of the proposed tightly coupled integrated method combining NLOS identification
and REKF.

The remainder of this paper is organized as follows. Section 2.1 gives an overview of
the complete system pipeline. Section 2.2 designs the temporal synchronization and spatial
calibration between sensors to ensure effective sensor fusion. The details of the UWB NLOS
identification using the LiDAR point cloud algorithm are described in Sections 2.3 and 2.4.
The improved-UWB/LiDAR-SLAM tightly coupled positioning algorithm is introduced
in Sections 2.5 and 2.6. The detailed experimental setup and discussions are reported
and analyzed in Section 3. Finally, Section 4 summarizes the work by drawing several
conclusions and provides an outlook for future research.

2. Methodology

In this paper, we use the superscript T to denote the transpose of vector or matrix,
with lowercase bold symbols (e.g., x) for vectors and uppercase bold symbols (e.g., R) for
matrices. For any vector x, ‖x‖ denotes its Euclidean norm.
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2.1. System Overview

The framework of the proposed improved-UWB/LiDAR-SLAM integrated positioning
system is illustrated in Figure 1. First, the system performs data synchronization of LiDAR
and UWB sensors through a robot operating system (ROS) and the calibrated external
reference matrix, unifying the time and spatial datum (purple blocks in Figure 1). Second,
the original LiDAR point cloud is segmented to distinguish between the ground and
nonground points, and the ground and nonground feature points are extracted from these
point clouds for feature matching to estimate the 6-DOF relative poses of the system. The
point cloud in the current frame is registered to the starting coordinate system in accordance
with the transformation matrix to obtain a globally consistent map (green blocks in Figure 1).
Then, the UWB NLOS data are identified by combining the UWB anchor information
with the constructed point cloud map. The UWB data quality is effectively controlled
by eliminating NLOS measurements and retaining LOS measurements (yellow blocks in
Figure 1). Finally, the improved-UWB/LiDAR-SLAM tightly coupled model is designed.
Multiple UWB LOS data and LiDAR data are fused using REKF to obtain the optimal
estimation of the integrated system state. The possibility of LiDAR-SLAM divergence
is effectively reduced, and the robustness of the system is improved (orange blocks in
Figure 1). The red dashed blocks in Figure 1 represent the contributions of our work.
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2.2. Spatiotemporal Synchronization of Sensors

Because UWB and LiDAR belong to two different types of positioning systems, tem-
poral synchronization and spatial calibration between sensors are necessary steps for UWB
NLOS identification and subsequent multisensor fusion.

For temporal synchronization, a ROS provides a well-established data encapsulation
format for storing sensor information and timestamps. Therefore, we use the mechanism
of ROS to assign timestamps to each sensor with the same time reference and achieve
temporal synchronization for both types of sensors by aligning the timestamps of UWB
and LiDAR data.

The spatial calibration is shown in Figure 2. The world coordinate system, referred
to as the w-frame (i.e., the UWB coordinate system), is established by setting stations on
indoor control points with a high-precision total station; the body coordinate system is
referred to as the b-frame, and the LiDAR coordinate system is referred to as the l-frame.
LeGO-LOAM defines the l-frame of the first frame as the global reference coordinate system,
referred to as the g-frame (i.e., the map coordinate system). Considering the number of
points in the point cloud map, the initial positions of the UWB anchors and the mobile
tag are transformed into the g-frame for subsequent sensor data information fusion to
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improve the conversion efficiency. Therefore, it is necessary to precisely determine the
6-DOF transformation relationship Tb

w = {R, t} between the w-frame and the g-frame,
where R represents the rotation parameter and t represents the translation parameter.
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The specific steps are as follows.

• Considering that the indoor ground is mostly horizontal, the transformation relation-
ship Tb

w between the w-frame and b-frame is obtained by observing the front and rear
points on the side of the mobile platform with a high-precision total station.

• Because the LiDAR sensor remains fixed after installation, the transformation relation-
ship between the b-frame and l-frame needs to be calibrated only once. A feature-rich
static scenario is selected, and the mobile platform is kept stationary. Multiple pairs of
corresponding feature points

{
pw, pl

}
are obtained by observing the sharp-shaped

corner feature points in the scenario from two different positions using LiDAR and a
high-precision total station. The point pw observed by the total station is transformed
into pb in accordance with Tb

w, and the corresponding feature point pairs
{

pb, pl
}

in the b-frame and l-frame are obtained. Thus, the transformation relationship Tl
b

between the b-frame and l-frame is obtained by solving for the four parameters.
• The transformation relationship Tl

w between the w-frame and l-frame is Tl
w = Tl

bTb
w.

Since the g-frame and l0−frame are coincident at the initial time, Tg
w = Tl0

w = Tl0
b Tb

w.
Accordingly, the UWB anchor coordinates in the g-frame and the lever-arm vector ll

with the LiDAR center pointing to the UWB mobile tag in the l-frame can be obtained.
In this paper, because the LiDAR center and the UWB mobile tag are on the same
plumb line, therefore ll = (0, 0, d)T, where d is the distance between the LiDAR center
and the UWB mobile tag.

2.3. Generation of LiDAR Point Cloud Map

Because the indoor ground is mostly flat, consistent with the assumption that the
LeGO-LOAM robot is always on the ground, and to ensure the accuracy and computational
efficiency of the UWB NLOS identification algorithm, this paper adopts the advanced
LiDAR-SLAM algorithm LeGO-LOAM to build a high-precision 3-D environment map.
LeGO-LOAM consists of four main modules: segmentation, feature extraction, odometry
and mapping.

• Segmentation: The point cloud obtained at time t is set to Pt = {p1, p2, · · · , pn}, where
pi is a point in the point cloud Pt. The point cloud is projected into a range image
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with a resolution of 1800 × 16. The ground point cloud (Pp) and nonground point
cloud (Pe) are extracted from the LiDAR raw data by judging the vertical dimensional
characteristic.

• Feature extraction: To extract features uniformly from all directions from ground points
and segmentation points, the range image is equally divided into several subimages
in the horizonal direction. The smoothness of each point is calculated and compared
with the smoothness threshold to extract the edge features and planar features for
registration.

• Odometry: The scan-to-scan constraint based on extracted features is built next. Since
the ground remains essentially constant between consecutive frames, the variations in
the vertical dimension

[
tz, troll , tpitch

]
can be estimated based on the planar features.

The estimate of the vertical dimension is input as the initial value into the second opti-
mization step to reduce the number of iterations, and the variations in the horizontal
dimension

[
tx, ty, tyaw

]
are calculated to improve the computational efficiency.

• Mapping: The scan-to-map constraint is constructed by the Levenberg–Marquardt
(L-M) method, and the final global map is obtained using a loop detection approach.
More details of the LeGO-LOAM algorithm can be found in [32].

Considering the computational efficiency and the time-varying nature of dynamic
scenarios and to minimize the interference caused by the nonrepetition of dynamic objects
between adjacent frames (e.g., a vehicle or pedestrian scanned in the previous frame may
not appear in the next frame), the method used in this paper registers only the LiDAR point
cloud in the current frame to the environment map in accordance with the transformation
matrix and updates iteratively in real time.

2.4. UWB NLOS Identification Using a LiDAR Point Cloud Map

For positioning in some indoor scenarios, as shown in Figure 3a, occlusion due to
obstacles (e.g., pedestrians, vehicles, wall pillars, etc.) may cause a node to enter the NLOS
status, meaning that the UWB pulse signal has no direct path and needs to be reflected,
refracted, and/or permitted to penetrate through obstacles before it can be received by the
target node. Such regions are called NLOS regions. Compared with the LOS region, the
time delay of the signal in the NLOS region leads to a positively biased distance estimate,
which seriously affects the positioning accuracy. However, in the LiDAR point cloud map,
as shown in Figure 3b, the position, size, and reflective surface of each obstacle (static or
dynamic) are all known, that is, the LOS region and NLOS region are known.
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In the NLOS region, there are obstacles acting as blockages between nodes, which
is reflected in the point cloud map as point cloud clusters between nodes. Based on this
assumption, after completing the temporal synchronization and spatial calibration of two
sensors, we design a UWB NLOS identification using the LiDAR point cloud algorithm.
The two types of sensors, UWB and LiDAR, are correlated, and the LiDAR point cloud map
is used to identify NLOS by judging whether there is obstacle occlusion between the UWB
mobile tag and anchor, i.e., whether the line-of-sight direction is in the NLOS status.

The inputs to NLOS identification algorithm are the transformation relationship Tg
w

between the w-frame and g-frame, the UWB anchor set uaall = {ua1, ua2, · · · , uan}, the
UWB mobile tag coordinate rw

tag at the initial time, the UWB anchor coordinates rw
anchor, the

LiDAR coordinate rg
lidar, the LiDAR point cloud map Mg and a point number threshold

nthr. The output is the UWB LOS anchor set ualos = {ua1, ua2, · · · , uas}. The main flow of
NLOS identification algorithm is as follows.

1. At the initial time, the g-frame coincides with the l0−frame. In accordance with
the transformation relationship Tg

w between the w-frame and g-frame calculated in
Section 2.2, the UWB mobile tag coordinate rw

tag and anchor coordinates rw
anchor in

the w-frame are transformed into the g-frame (i.e., l0−frame). The lever-arm vector
ll between the UWB mobile tag and the LiDAR sensor in the l-frame and the UWB
anchor coordinates rg

anchor =
(

xg
anchor, yg

anchor, zg
anchor

)
in the g-frame are obtained.

2. At time t, the LiDAR coordinate rg
lidar is used to deduce the UWB mobile tag coordinate

rg
lidar,tag =

(
xg

lidar,tag, yg
lidar,tag, zg

lidar,tag

)
in the g-frame in accordance with the lever-

arm vector ll .
rg

lidar,tag = rg
lidar + ll (1)

3. K-dimensional trees (KD-trees) and voxel grids are commonly used for map repre-
sentation and corresponding searches in SLAM systems [36,39]. Considering that
KD-tree representation can find the association points through a nearest neighbor
search or radius search, we convert the point cloud map Mg generated in Section 2.3
into a KD-tree structure Mg

tree for subsequent obstacle detection.

4. Based on the UWB mobile tag coordinate rg
lidar,tag =

(
xg

lidar,tag, yg
lidar,tag, zg

lidar,tag

)
and

anchor j coordinate rg
anchor =

(
xg

anchor, yg
anchor, zg

anchor

)
, the line-of-sight direction, i.e.,

the search direction for NLOS identification (e.g., the direction of the red dashed line
in Figure 4), is determined. At the same time, the distance d, vertical azimuth ω, and
horizontal azimuth α between the mobile tag and anchor j are calculated.
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5. The first NLOS identification is performed along the line of sight, centered on the
UWB mobile tag position.

6. Considering the general size of indoor objects and the LiDAR vertical angular resolu-
tion, the constructed KD-tree Mg

tree is used to search the point cloud in the neighbor-
hood with a radius of 1 m. If the number of points in the neighborhood exceeds the
given threshold nthr (in this paper, nthr = 10), it is considered that the line-of-sight
direction may be blocked by obstacles.

7. To prevent misjudgment (orange dashed block in Figure 4) and improve the accuracy
of NLOS identification, based on the principle of collision detection, we traverse
all points of the LiDAR point cloud in the neighborhood, take any three points to
construct a triangle, and use Plücker coordinates to determine whether the line of
sight intersects with the triangle in 3-D space. The Plücker coordinates represent
a method of specifying directed lines in 3-D space using six-dimensional vectors.
Taking any different points a = (a0, a1, a2) and b = (b0, b1, b2) to construct the Plücker
coordinates l of line ab, we obtain:

l = plucker(a, b) = (l0, l1, l2, l3, l4, l5) (2)

where: 
l0 = a0 · b1 − b0 · a1

l2 = a0 − b0

l4 = a2 − b2

l1 = a0 · b2 − b0 · a2

l3 = a1 · b2 − b1 · a2

l5 = b1 − a1

(3)

The side operator is defined as the permuted inner product of Plücker coordinates l1
and l2:

side(l1, l2) = l1,0 · l2,4 + l1,1 · l2,5 + l1,2 · l2,3 + l1,3 · l2,2 + l1,4 · l2,0 + l1,5 · l2,1 (4)

where l1 = (l1,0, l1,1, l1,2, l1,3, l1,4, l1,5) and l2 = (l2,0, l2,1, l2,2, l2,3, l2,4, l2,5).
In our method, the line of sight is defined by the UWB mobile tag coordinate rg

lidar,tag

and anchor coordinate rg
anchor, and the triangle is defined by any three points p0, p1 and p2

in the LiDAR point cloud. Let: 
s1 = side(luwb, pl1)

s2 = side(luwb, pl2)

s3 = side(luwb, pl3)

(5)

where: 

luwb = plucker
(

rg
lidar,tag, rg

anchor

)
pl1 = plucker(p1, p0)

pl2 = plucker(p2, p1)

pl3 = plucker(p0, p2)

(6)

If s1, s2, s3 > 0 or s1, s2, s3 < 0, then the line and the triangle are not coplanar, and the
line passes through the triangle, as shown in Figure 5.
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8. If a triangle intersects with the line of sight, it is considered that the line-of-sight
direction is blocked by obstacles, i.e., the status between the UWB mobile tag and
anchor j is NLOS. This stops the detection and marks anchor j as an NLOS anchor.
Otherwise, we consider that there is no obstacle occlusion at the current position and
continue with the detection.

9. The search center point is moved to the next point rg
search,m =

(
xg

search,m, yg
search,m, zg

search,m

)
in accordance with Equation (7), taking 2 m as the step size along the line of sight.
Steps 6–8 are repeated to continue searching the point cloud for NLOS identification
for anchor j.

xg
search,m = xg

lidar,tag + 2(m− 1) cos(ω) cos(α)
yg

search,m = yg
lidar,tag + 2(m− 1) cos(ω) sin(α)

zg
search,m = zg

lidar,tag + 2(m− 1) sin(ω)

(7)

10. When m > (d + 3)/2, the NLOS identification process for anchor j ends, and anchor j
is marked as an LOS anchor.

11. Steps 4–10 are repeated to complete NLOS identification for all UWB anchors and
distinguish between the LOS anchor set ualos = {ua1, ua2, · · · , uas} and the NLOS
anchor set uanlos = {ua1, ua2, · · · , uar}. The LOS anchor measurements will be used
as input to the UWB module in the integrated positioning system.

2.5. Improved-UWB/LiDAR-SLAM Tightly Coupled Integrated Model

In our method, to suppress the error accumulation of LiDAR-SLAM while obtaining
positioning results in the world coordinate system, we introduce the measurements of
UWB LOS anchors identified by NLOS identification algorithm in Section 2.4 for correction
to eliminate the drift error of LiDAR-SLAM and provide more robust positioning results.

Considering that the number of UWB LOS measurements may not be sufficient to
maintain UWB positioning, we adopt a UWB/LiDAR-SLAM tightly coupled model that
takes UWB LOS measurements and LiDAR-SLAM positioning information without loop
closure as the measurement inputs for the Kalman filter. This model is not restricted by
the number of UWB measurements and integrates UWB and LiDAR at the measurement
level. This paper names it the improved-UWB/LiDAR-SLAM tightly coupled integrated
algorithm (NLOS identification + UWB/LiDAR-SLAM tightly coupled, NI-TC).

In this study, we use a constant velocity model [40] to constrain the two consecutive
states. The system model in a discrete-time form can be expressed as follows:

xk = Φk,k−1xk−1 + ωk−1 (8)
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where symbols with subscript k indicate the parameter at time k; xk denotes the state vector;
Φk,k−1 denotes the state transition matrix; and ωk−1 denotes the white noise sequence of
the system, which is modeled as a Gauss–Markov random process with the ideal zero mean
assumption.

In the construction of the tightly coupled measurement equation, the superscript “~”
represents the disturbance term. The distance between the UWB mobile tag, calculated
using LiDAR-SLAM position, and the anchor is d̃lidar,tag. The distance measured using the
two-way time-of-flight (TW-TOF) method of UWB is d̃tag. Assuming that the true distance
between the UWB mobile tag and anchor is dtrue,tag, we can obtain:

d̃lidar,tag =
∥∥∥~

r
g
lidar,tag − rg

anchor

∥∥∥ = dtrue,tag +

(
rg

true,tag − rg
anchor

)T

dtrue,tag

(~
r

g
lidar,tag − rg

true,tag

)
+ o
(~

r
g
lidar,tag − rg

true,tag

)
(9)

where rg
true,tag denotes the true position of the UWB mobile tag and o

(~
r

g
lidar,tag − rg

true,tag

)
is

an infinitesimal term.
Assuming that the lever-arm measurements ll have no calibration error, the distur-

bance analysis of Equation (1) is as follows:

~
r

g
lidar,tag =

~
r

g
lidar + ll

= rg
ture,lidar + δrg

lidar + ll

= rg
ture,tag + δrg

lidar

(10)

where rg
lidar,ture denotes the true position of the LiDAR center and δrg

lidar denotes the error
vector for the LiDAR position.

Substituting Equation (10) into Equation (9) yields the following formula:

d̃lidar,tag ≈ dtrue,tag +

(
rg

true,tag − rg
anchor

)T

dtrue,tag
δrg

lidar (11)

The TW-TOF ranging information measured by UWB can be expressed as:

d̃tag = dtrue,tag + εd,tag (12)

where εd,tag denotes the measurement noise.
Combining Equations (11) and (12), the measurement model for the integrated system

is as follows:
δzk = Hkδxk + vk (13)

where: 
δzk,j = d̃lidar,tag,j − d̃tag,j δxk =

[
δrg

lidar δvg ]T
6×1

Hk,j =

[ (
rg
true,tag−rg

anchor,j

)T

dtrue,tag,j
01×3

]
vk,j = −εd,tag,j

(14)

where symbols with subscript j indicate the relevant information of UWB LOS anchor j,
j = 1, 2, · · · , s; zk denotes the measurement vector; Hk denotes the design matrix of the
relationship between measurement and state; δxk denotes the error of the state vector; and
vk denotes the white noise sequence of the measurements, and its covariance matrix is Rk.

2.6. Innovation-Based Outlier-Resistant Robust EKF Algorithm

The filtering method is a common scheme for multisensor data fusion [41–44]. The
standard extended Kalman filter (EKF) carries out the optimal estimation of the real-time
state through prediction-measurement-correction, which minimizes the variance in the state
error. To maintain the optimal system state, fault measurements should be excluded prior
to Kalman updating. In Section 2.4, we use the LiDAR point cloud to perform some degree
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of quality control on the UWB raw data, effectively eliminating the NLOS measurements.
However, in addition to NLOS propagation, the UWB measurements are also influenced
by signal multipath effects, intensity fading and other factors. Especially for demanding
environments, the system is more random.

The theory of robust estimation provides a feasible solution to this problem. It does not
excessively require the unbiasedness and effectiveness of parameter estimation. Reducing
the weights of outliers can effectively suppress the influence of abnormal measurements
on the filtering results and improve the robustness of the system. The derivation of the
REKF is essentially the same as that of the standard EKF, with the main difference being
the replacement of the measurement noise covariance matrix Rk in the standard EKF with
an equivalent covariance matrix Rk, thereby adjusting the Kalman gain Kk to control the
adverse effect of measurement noise on parameter estimation.

This paper adopts the two-factor variance inflation model [45] to construct the equiva-
lent covariance matrix Rk :

Rk =

 σ2
11 · · · σ2

1n
...

. . .
...

σ2
n1 · · · σ2

nn

 =

 γ11σ2
11 · · · γ1nσ2

1n
...

. . .
...

γn1σ2
n1 · · · γnnσ2

nn

 (15)

where the diagonal elements σii denote the measurement noise between the UWB mobile
tag and each UWB anchor; the nondiagonal elements σij denote the correlation noise
between the UWB mobile tag and each UWB anchor, which are considered to be 0 in this
paper; and γij =

√
γiiγjj, γii and γjj are inflation factors, and γii can be expressed as:

γii =



1,
(∣∣ṽk,i

∣∣ ≤ k0
)

|ṽk,i|
k0

(
k1−k0

k1−|ṽk,i|

)
,
(
k0 <

∣∣ṽk,i
∣∣ ≤ k1

)
+∞,

(∣∣ṽk,i
∣∣ > k1

)
(16)

where the weight reduction factor k0 and the elimination factor k1 are the set thresholds,
usually k0 = 2.0 ∼ 3.0 and k1 = 4.5 ∼ 8.5 [18,41], with the best filtering performance
being achieved when k0 = 2.0 and k1 = 6.0 in this paper; and ṽk,i is the standardized
innovation, which can be expressed as:

ṽk,i =
(δzk −Hkδxk,k−1)i√(
HkPk,k−1HT

k + Rk
)

i,i

(17)

where δxk,k−1 and Pk,k−1 denote a priori estimates of the state error and its covariance
matrix, respectively.

The standardized innovation ṽk,i can better reflect the measurement anomalies. The
construction of the inflation factor shows that when gross error occurs in the measure-
ments, the standardized innovation exceeds the detection threshold of the system, and the
corresponding variance is inflated, reducing or eliminating the influence of abnormal mea-
surements on parameter estimation and ensuring the reliability and positioning accuracy
of the system. Otherwise, the measurement is considered to be normal, and the original
variance remains unchanged.
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After equivalently replacing the measurement noise covariance matrix, the recursive
equations of the REKF are obtained as follows:

¯
Kk = Pk,k−1HT

k (HkPk,k−1HT
k +

¯
Rk)
−1

δxk = δxk,k−1 +
¯
Kk(δzk −Hkδxk,k−1)

Pk =

(
I−

¯
KkHk

)
Pk,k−1

(18)

where
¯
Kk denotes the equivalent Kalman gain matrix; δxk and Pk denote the filter estimation

and its covariance matrix, respectively; and I denotes the identity matrix.

3. Experiments and Discussions
3.1. System Hardware

We implement the proposed UWB NLOS identification using the LiDAR point cloud
and the improved-UWB/LiDAR-SLAM tightly coupled positioning algorithm in C++ using
an ROS (Melodic version). To evaluate the effectiveness of the proposed algorithm, an
integrated positioning experimental platform is applied in this paper, as shown in Figure 6,
and two groups of experiments (static and dynamic state) are conducted in underground
parking lots. The datasets are acquired by the Velodyne VLP-16 3-D LiDAR and Time
Domain UWB PulsON440 modules, and the ground truth data are acquired in real time
by a Leica TS50 automatic tracking total station. The VLP-16 scanner has a measurement
range of up to 100 m with an accuracy of ±3 cm. Its vertical and horizontal fields of view
are ±15◦and 360◦, respectively. When the sampling rate is set to 10 Hz, the 16-line laser
scanner provides a vertical angular resolution of 2◦ and a horizontal angular resolution of
0.2◦. The PulsON440 module uses the TW-TOF method to accurately measure the distance
between two units with an accuracy of 5± 1 cm under LOS conditions, and the sampling
rate is set to 2 Hz. The ranging accuracy of the Leica TS50 automatic tracking total station
is 0.6 mm± 1 ppm, and the sampling rate is set to 10 Hz. All algorithms are tested on an
Intel computer (i7-10875H CPU @ 2.30 GHz, 32 GB RAM and Nvidia GeForce RTX 2060
GPU) with an ROS, allowing easy real-time operation.
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3.2. Evaluation of the UWB NLOS Identification Algorithm Using Static Data

To test the performance of the UWB NLOS identification using the LiDAR point cloud
algorithm, a static experiment is conducted in an underground parking lot of a shopping
mall. The experimental layout is shown in Figure 7. UWB anchor 1 and anchor 4 are in the
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NLOS region, with the line of sight to the UWB mobile tag being blocked by a wall column
and a vehicle, respectively. UWB anchor 2 and anchor 3 are in the LOS region, where
anchor 2 is placed on the edge of the wall column, very close to the column but not blocked
by it, which is a deliberate trap we set to detect the effectiveness of the algorithm. The
positions of the LiDAR and UWB modules are all precisely measured by the total station.

Remote Sens. 2022, 14, 1380 14 of 25 
 

 

blocked by it, which is a deliberate trap we set to detect the effectiveness of the algorithm. 
The positions of the LiDAR and UWB modules are all precisely measured by the total 
station. 

 
Figure 7. Experimental layout. 

In the static experiment, the distances between the UWB mobile tag and anchors are 
measured using the TW-TOF method, as shown in Figure 8, and the true distances are 
calculated using the measurement results of the total station according to the Euclidean 
distance formula. In this paper, the zero value in the purple dashed block in Figure 8 is 
considered to be a result of the loss of the current epoch measurement due to factors such 
as the actual environment and anchor placement, which is a normal phenomenon in UWB 
data acquisition. 

 
Figure 8. Time series of UWB raw measurements for different anchors. Blue: anchor 1; black: anchor 
2; green: anchor 3; and red: anchor 4. 

To evaluate the NLOS errors caused by indoor obstacles, we calculate the ranging 
errors for the four UWB anchors after removing the zero values from the ranging values, 
as shown in Figure 9. Compared with the LOS scenario, the occlusion of obstacles always 
causes positive NLOS errors, and by comparing UWB anchor 1 (Figure 9a) and anchor 4 
(Figure 9d), it is clear that different obstacles cause different degrees of NLOS errors. Due 
to the strong penetration of the UWB signal, the wall column causes larger NLOS errors 
than the vehicle, with a root mean square error (RMSE) of 3.348 m. When range values 
with positive errors are used for positioning, the positioning error inevitably increases. 
Therefore, to achieve better positioning accuracy, the identification of NLOS becomes par-
ticularly important. 
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In the static experiment, the distances between the UWB mobile tag and anchors are
measured using the TW-TOF method, as shown in Figure 8, and the true distances are
calculated using the measurement results of the total station according to the Euclidean
distance formula. In this paper, the zero value in the purple dashed block in Figure 8 is
considered to be a result of the loss of the current epoch measurement due to factors such
as the actual environment and anchor placement, which is a normal phenomenon in UWB
data acquisition.
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To evaluate the NLOS errors caused by indoor obstacles, we calculate the ranging
errors for the four UWB anchors after removing the zero values from the ranging values,
as shown in Figure 9. Compared with the LOS scenario, the occlusion of obstacles always
causes positive NLOS errors, and by comparing UWB anchor 1 (Figure 9a) and anchor 4
(Figure 9d), it is clear that different obstacles cause different degrees of NLOS errors. Due
to the strong penetration of the UWB signal, the wall column causes larger NLOS errors
than the vehicle, with a root mean square error (RMSE) of 3.348 m. When range values
with positive errors are used for positioning, the positioning error inevitably increases.
Therefore, to achieve better positioning accuracy, the identification of NLOS becomes
particularly important.
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forming a radius search using KD-tree along the line-of-sight direction. To prevent mis-
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points that block the line of sight, we effectively distinguish between true obstacle points 
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tion, thereby distinguishing between NLOS anchors and LOS anchors and improving the 
accuracy of NLOS identification. As shown in Table 1, according to the distance between 
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are 5, 7, 6 and 10. During the actual search, obstacle points are detected on the 4th search 
of UWB anchor 1, which confirms that the line of sight is blocked by obstacles through 
collision detection. Therefore, UWB anchor 1 is marked as an NLOS anchor, and the de-
tection is stopped. On the 6th search of UWB anchor 2, obstacle points are detected, which 
are determined by collision detection to be false obstacle points, i.e., the obstacle is on the 
side of the line of sight without occlusion. The same situation also occurs in the 3rd search 
of UWB anchor 4, but the result of the 8th search confirmed that there is an obstacle block-
ing the line of sight, so it is also marked as an NLOS anchor. In our experiment, the NLOS 
identification times for the four UWB anchors are 0.634 ms, 0.404 ms, 0.034 ms and 0.506 
ms, meaning that we can easily realize the real-time identification of NLOS. The number 
of NLOS anchors after NLOS identification is shown in Figure 11. Only one NLOS anchor 
(anchor 1) is identified in the first epoch due to insufficient information of the point cloud 
map. For each subsequent epoch, the proposed UWB NLOS identification algorithm can 
accurately and efficiently distinguish between LOS and NLOS anchors, and no more 
missed or false detections have occurred. In the static experiment, the success rate of UWB 
NLOS identification is up to 99.80%. 
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Figure 10 shows the LiDAR point cloud map (green points) in a certain epoch in
Algorithm 1 and the corresponding parameters for NLOS identification, such as the UWB
mobile tag coordinate (black triangle), UWB anchor coordinate (red triangles), line-of-sight
direction (blue lines) and search center points (blue points). Figure 10a is a 3-D view, and
Figure 10b–d shows the top view, front view and left-side view, respectively. As shown
in the different views in Figure 10, our proposed NLOS identification algorithm obtains
LiDAR point clouds (purple and orange points) within a radius of 1 m by performing a
radius search using KD-tree along the line-of-sight direction. To prevent misjudgment
that incorrectly treats the entire point cloud in the neighborhood as obstacle points that
block the line of sight, we effectively distinguish between true obstacle points (purple
points) and false obstacle points (orange points) through further collision detection, thereby
distinguishing between NLOS anchors and LOS anchors and improving the accuracy of
NLOS identification. As shown in Table 1, according to the distance between the UWB
mobile tag and anchors, the theoretical search times for the four UWB anchors are 5, 7, 6
and 10. During the actual search, obstacle points are detected on the 4th search of UWB
anchor 1, which confirms that the line of sight is blocked by obstacles through collision
detection. Therefore, UWB anchor 1 is marked as an NLOS anchor, and the detection
is stopped. On the 6th search of UWB anchor 2, obstacle points are detected, which are
determined by collision detection to be false obstacle points, i.e., the obstacle is on the side
of the line of sight without occlusion. The same situation also occurs in the 3rd search of
UWB anchor 4, but the result of the 8th search confirmed that there is an obstacle blocking
the line of sight, so it is also marked as an NLOS anchor. In our experiment, the NLOS
identification times for the four UWB anchors are 0.634 ms, 0.404 ms, 0.034 ms and 0.506 ms,
meaning that we can easily realize the real-time identification of NLOS. The number of
NLOS anchors after NLOS identification is shown in Figure 11. Only one NLOS anchor
(anchor 1) is identified in the first epoch due to insufficient information of the point cloud
map. For each subsequent epoch, the proposed UWB NLOS identification algorithm can
accurately and efficiently distinguish between LOS and NLOS anchors, and no more missed
or false detections have occurred. In the static experiment, the success rate of UWB NLOS
identification is up to 99.80%.
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Table 1. The corresponding parameters for NLOS identification.

Parameter Anchor 1 Anchor 2 Anchor 3 Anchor 4

Distance (m) 7.908 11.438 10.079 17.011
Theoretical search times 5 7 6 10

Actual search times 4 7 6 8
Search time (ms) 0.634 0.404 0.034 0.506
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3.3. Evaluation of the UWB NLOS Identification Algorithm Using Dynamic Data

To further verify the effectiveness of the UWB NLOS identification using the LiDAR
point cloud algorithm, a dynamic experiment is conducted in an underground parking lot of
a hospital. The experimental layout, which is shown in Figure 12, is obviously challenging
for the UWB positioning system. We deploy four UWB anchors in a 40 m × 40 m area
and use the integrated positioning experimental platform to obtain an evaluation dataset
with changing mobility. The purple lines and arrows in Figure 12 are the driving route
and direction, respectively. Pedestrians and vehicles are allowed to pass intermittently
throughout the experiment, thereby the UWB signals are mainly affected by the fixed
indoor structures (e.g., wall columns), experimenters, and passing vehicles.
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Figure 12. Experimental layout.

Figure 13 shows UWB raw measurements for each anchor and UWB LOS measure-
ments after NLOS identification. Figure 14 shows the error curve between UWB measure-
ments and the true values after removing the zero values, and the upper subgraphs show
a detailed enlargement of the error curve. Table 2 reports the results of the ranging error
evaluation, and ‘Max’ represents the maximum error. It is quite obvious that UWB raw
measurements contain a large number of outliers, with RMSEs of 2.210 m, 1.831 m, 1.612 m,
and 1.075 m and maximum errors of 37.105 m, 30.562 m, 51.658 m and 28.330 m for the
four anchor ranging values, respectively. The RMSEs of LOS measurements after NLOS
identification are reduced to 0.050 m, 0.098 m, 0.100 m and 0.097 m, which are reduced
by 97.74%, 94.65%, 93.80% and 90.98% compared to the raw measurements, respectively,
significantly improving the data quality of UWB measurements.
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Table 2. Ranging errors of the raw measurements and LOS measurements for different anchors.

Anchor 1 Anchor 2 Anchor 3 Anchor 4

Raw Mea-
surements

RMSE (m) 2.210 1.831 1.612 1.075
MAX (m) 37.105 30.562 51.658 28.330

LOS Mea-
surements

RMSE (m) 0.050 0.098 0.100 0.097
MAX (m) 0.902 0.629 0.879 0.704

Figure 15 shows the number of UWB NLOS anchors for each epoch identified by
NLOS identification algorithm. UWB raw measurements and UWB LOS measurements
are used as inputs to the UWB positioning system, and the parameters are solved using
the least squares (LS) method to obtain the positioning trajectories for LS and LS with
NLOS identification (NLOS identification + LS, NI-LS), as shown in Figure 16. Figure 17a–c
shows the position errors for the LS and NI-LS algorithms in the X, Y and plane directions,
respectively. Table 3 reports the results of the positioning error evaluation. The ‘MAE’
and ‘Std’ in Table 3 are the abbreviations representing mean absolute error and standard
deviation, respectively, and the ‘Availability’ is calculated by dividing the number of
positioning results by the total number of measurements.
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Table 3. Accuracy evaluation for the LS and NI-LS.

LS NI-LS

MAE (m)
X 0.676 0.253
Y 0.691 0.307

Plane 0.851 0.351

RMSE (m)
X 2.226 0.079
Y 1.617 0.120

Plane 2.752 0.144

Std (m)
X 2.190 0.195
Y 1.560 0.226

Plane 2.658 0.240

Max (m)
X 30.006 0.590
Y 20.685 0.787

Plane 30.483 0.826

Availability 100% 54.34%

The quality of the UWB ranging values seriously affects the positioning accuracy.
Direct parameter calculation using the raw measurements can reach an RMSE of 2.752 m in
the plane direction, with a maximum error of 30.483 m, which seriously deviates from the
ground truth and is no longer able to maintain an indoor high-precision positioning result.
After filtering the UWB data using our NLOS identification algorithm, the positioning
accuracy is significantly improved. Our NI-LS (red) method outperforms the LS method
(blue) for both error evaluation metrics, reducing the RMSEs of the position error in the
X, Y and plane directions by 96.45%, 92.58% and 94.77%, respectively, and reducing the
maximum error to 0.590 m, 0.787 m and 0.826 m, respectively, which provides solid evidence
for the effectiveness of the proposed method. However, since 2-D LS positioning requires
at least 3 ranging values, the NLOS number is no more than one, as shown by the red
points in Figure 15, reducing the availability of the NI-LS method to 54.34%. Figure 18
shows the NLOS identification time of the proposed method for different anchors in each
epoch. The average identification times for the four anchors are 0.809 ms, 0.919 ms, 0.940
ms, and 1.111 ms, and the maximum identification times are 14.537 ms, 2.004 ms, 5.063
ms, and 4.942 ms, respectively. In our experimental scenario, the average runtime of the
whole NLOS identification module is 41.099 ms, and the maximum runtime is 160.754 ms,
which does not significantly increase the computation time of the system and satisfies the
real-time requirements.
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From both static and dynamic experiments, it is clear that, due to good information
fusion and data association, Algorithm 1 can effectively identify NLOS errors and improve
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the accuracy and robustness of UWB positioning in complex indoor environments without
significantly increasing the amount of computation.

3.4. Evaluation of the Improved-UWB/LiDAR-SLAM Tightly Coupled Positioning Algorithm

To verify the effectiveness of the proposed improved-UWB/LiDAR-SLAM tightly
coupled algorithm with the REKF (NLOS identification + UWB/LiDAR-SLAM tightly
coupled + REKF, NI-TC-REKF), several different positioning methods are compared on
the evaluation dataset collected in Section 3.3. Considering that the data availability of
the NI-LS method is only 54.34%, we take the LOS measurements identified by NLOS
identification algorithm and the positioning results of LeGO-LOAM as the direct input
of the integrated system. In this experiment, we compare the trajectory solved by the
NI-TC-REKF algorithm with several other methods:

• NI-LS;
• LeGO-LOAM without loop closure;
• UWB/LiDAR-SLAM tightly coupled algorithm with the EKF (UWB/LiDAR-SLAM

tightly coupled + EKF, TC-EKF);
• UWB/LiDAR-SLAM tightly coupled algorithm with the REKF (UWB/LiDAR-SLAM

tightly coupled + REKF, TC-REKF);
• Improved-UWB/LiDAR-SLAM tightly coupled algorithm with the EKF (NLOS identi-

fication + UWB/LiDAR-SLAM tightly coupled + EKF, NI-TC-EKF).

The ground truth is provided by the Leica TS50 automatic tracking total station.
Figure 19 shows the comparison of the trajectories estimated by different comparative
methods and the ground truth. Figure 20a–c shows the position errors for different algo-
rithms in the X, Y and plane directions, respectively, and the specific statistical results are
shown in Table 4. In the table, ‘Scale’ represents the ability of the algorithm to calculate
global coordinates, with the red results indicating the best accuracy, blue results indicating
the second-best accuracy and green results indicating the third-best accuracy for each
error metric.
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Table 4. Accuracy evaluation for the NI-LS, LeGO-LOAM, TC-EKF, TC-REKF, NI-TC-EKF and
NI-TC-REKF algorithms.

NI-LS LeGO-
LOAM TC-EKF TC-REKF NI-TC-EKF NI-TC-REKF

MAE (m)
X 0.253 0.290 0.572 0.253 0.234 0.228
Y 0.307 0.265 0.550 0.253 0.236 0.230

Plane 0.351 0.335 0.692 0.318 0.293 0.286

RMSE (m)
X 0.079 0.087 1.210 0.105 0.072 0.066
Y 0.120 0.076 1.178 0.100 0.073 0.067

Plane 0.144 0.115 1.688 0.145 0.103 0.094

Std (m)
X 0.195 0.207 1.190 0.206 0.185 0.181
Y 0.226 0.197 1.165 0.204 0.186 0.182

Plane 0.240 0.224 1.633 0.240 0.215 0.210

Max (m)
X 0.590 0.372 12.801 1.167 0.394 0.317
Y 0.787 0.462 19.765 0.968 0.613 0.557

Plane 0.826 0.482 21.965 1.169 0.621 0.566

Scale Global Local Global Global Global Global

The comparison of NI-LS (cyan), LeGO-LOAM (magenta) and TC-EKF (orange) indi-
cates that if the quality of input sensor data is not controlled, abnormal measurements are
likely to interfere with the integrated system and have serious negative effects, resulting in
poor accuracy of the system that might be even worse than that of a single sensor. Compared
with the TC-EKF, the NI-TC-EKF (blue) and TC-REKF (green) algorithms substantially
improve the performance of the integrated system with significant improvements in the
positioning accuracy by using the UWB LOS data identified by Algorithm 1 as input to the
integrated system and by adjusting the measurement noise covariance matrix to reduce
the contribution of abnormal measurements to parameter estimation, respectively. The
RMSEs of the TC-REKF algorithm in the X, Y and plane directions are reduced by 91.32%,
91.51% and 91.41%, respectively, and its positioning accuracy is close to that of NI-LS and
slightly inferior to that of LeGO-LOAM. The RMSEs of the NI-TC-EKF algorithm in the
X, Y and plane directions are reduced by 94.05%, 93.80% and 93.90%, respectively, and
its positioning performance is better than that of the NI-LS (RMSEs in the X, Y and plane
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directions are reduced by 8.86%, 39.17% and 28.47%, respectively), LeGO-LOAM (RMSEs
in the X, Y and plane directions are reduced by 17.24%, 3.95% and 10.43%, respectively)
and TC-REKF (RMSEs in the X, Y and plane directions are reduced by 31.43%, 27.00%
and 28.97%, respectively) algorithms, which further illustrates the importance of the data
quality of the measurements. However, NI-TC-EKF is still affected by gross measurement
errors in some areas. As shown in Figure 19a, due to the occlusion of the wall column,
UWB anchor 3 is identified as an NLOS anchor, and the ranging errors for UWB anchors 1,
2 and 4 are 0.497 m, 0.081 m and 0.102 m, respectively. The positioning errors for NI-LS
and NI-TC-EKF in the plane direction are 0.826 m and 0.463 m, respectively.

It is quite obvious that the NI-TC-REKF (red) method, which combines NLOS iden-
tification with REKF, is more accurate than the other methods for most of the evaluation
metrics (as shown in Table 4). Compared with the NI-TC-EKF algorithm, the RMSEs of the
NI-TC-REKF algorithm in the X, Y and plane directions are reduced by 8.33%, 8.22% and
8.74%, respectively. The improvement is lower than that of TC-REKF relative to TC-EKF,
which is mainly attributed to the strict control of the NLOS identification algorithm on the
quality of UWB data. Compared with the single sensor, the RMSEs of the NI-TC-REKF al-
gorithm in the X, Y and plane directions are reduced by 16.46%, 44.17%, and 34.72% (NI-LS)
and 24.14%, 11.84%, and 18.26% (LeGO-LOAM), respectively. As shown in Figure 19, the
trajectory of NI-TC-REKF in multiple regions is also superior to those of the other methods
and more consistent with the ground truth, such as Figure 19b,c. As shown in Figure 20,
the error peaks and spike occurrence ratios of NI-TC-REKF are significantly reduced, and
the positioning accuracy and robustness are greatly improved.

Table 5 reports the computational load for each NI-TC-REKF module. In our tests, the
LiDAR-SLAM module is the dominant computational load of NI-TC-REKF algorithm, with
an average runtime of 560.849 ms. The NLOS identification module and the tightly coupled
module introduce an additional time consumption of 7.33% and 0.003% of LiDAR-SLAM,
respectively. In the tightly coupled module, the average runtimes of NI-TC-REKF and
NI-TC-EKF are 0.017 ms and 0.016 ms, and the maximum runtimes are 0.124 ms and 0.119
ms, respectively. The positioning accuracy is improved effectively while occupying only
a small amount of memory resources. In summary, the NI-TC-REKF algorithm performs
best when considering the accuracy, availability and ability to obtain global coordinates,
fully validating the effectiveness of the proposed tightly coupled method based on the
combination of NLOS identification and the REKF.

Table 5. Runtime of each NI-TC-REKF module.

LiDAR-SLAM NI Tightly Coupled Total

Average (ms) 560.849 41.099 0.017 602.657
Max (ms) 1072.22 160.754 0.124 1106.812

4. Conclusions

The presence of indoor obstacles affects the accuracy of UWB ranging to varying
degrees, thereby reducing the accuracy and reliability of the positioning system. To obtain
robust and reliable positioning results in complex indoor environments, we perform the
following work. First, we propose a method to detect, identify and eliminate UWB NLOS
efficiently and accurately through well-designed sensor fusion and data association by
exploiting the complementarity of UWB and LiDAR to improve the performance of UWB
dynamic positioning in real scenarios. Second, to make full use of both UWB and LiDAR
sensors, an improved-UWB/LiDAR-SLAM tightly coupled positioning algorithm is pro-
posed by combining the improved UWB measurements after NLOS identification and the
positioning results of LeGO-LOAM. Additionally, to better suppress the effects of UWB
gross errors on the integrated system, the REKF is used for accurate position estimation.
The effectiveness and performance of the proposed methods are verified and evaluated
through a series of experiments. (1) Both static and dynamic experiments show that the
quality of UWB LOS measurements after NLOS identification achieves satisfactory results,
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and the proposed algorithm can effectively identify NLOS errors without adding a large
amount of computation. Furthermore, the accuracy of ranging values (the RMSE of ranging
values is reduced by 94.29% on average in the dynamic experiment) and the robustness of
position estimation are substantially improved, and the success rate of NLOS identification
in the static experiment is up to 99.80%. (2) The tightly coupled method NI-TC-REKF,
which combines NLOS identification and the REKF, outperforms other comparative meth-
ods in terms of positioning performance and robustness, achieving satisfactory control of
sensor errors with RMSEs of 0.066 m, 0.067 m and 0.094 m in the X, Y and plane directions,
respectively, and maximum errors of 0.317 m, 0.557 m and 0.566 m, respectively.

The proposed NI-TC-REKF algorithm provides a novel solution for high-precision
positioning applications in GNSS-denied environments, such as automatic driving, reverse
car-searching in parking lots and warehousing logistics. However, the use of UWB ranging
values in this paper is not sufficient, and the complete exclusion of NLOS measurements
may lead to poor geometric distribution, which may backfire and increase positioning
errors. In future research, we will aim to better judge the discard and use of NLOS
measurements to improve the availability of data and the reliability of positioning. In
addition, we are considering integrating a low-cost inertial measurement unit (IMU) on
the existing platform, using the high-frequency attitude information output by the IMU
to improve the quality of LiDAR mapping and thereby improving the robustness and
accuracy of the integrated system for higher-speed, more agile systems.
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