
����������
�������

Citation: Tinega, H.C.; Chen, E.; Ma,

L.; Nyasaka, D.O.; Mariita, R.M.

HybridGBN-SR: A Deep 3D/2D

Genome Graph-Based Network for

Hyperspectral Image Classification.

Remote Sens. 2022, 14, 1332.

https://doi.org/10.3390/rs14061332

Academic Editors: Pedro

Latorre-Carmona and Antonio

J. Plaza

Received: 22 February 2022

Accepted: 7 March 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

HybridGBN-SR: A Deep 3D/2D Genome Graph-Based Network
for Hyperspectral Image Classification
Haron C. Tinega 1, Enqing Chen 1,*, Long Ma 1 , Divinah O. Nyasaka 2 and Richard M. Mariita 3

1 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China;
tinegaharon@gmail.com (H.C.T.); ielongma@zzu.edu.cn (L.M.)

2 The Kenya Forest Service, Nairobi P.O. Box 30513-00100, Kenya; dondieki@kenyaforestservice.org
3 Microbial BioSolutions, Troy, New York, NY 12180, USA; richard.mariita@microbialbiosolutions.com
* Correspondence: ieeqchen@zzu.edu.cn; Tel.: +86-371-6778-1544

Abstract: The successful application of deep learning approaches in remote sensing image classifica-
tion requires large hyperspectral image (HSI) datasets to learn discriminative spectral–spatial features
simultaneously. To date, the HSI datasets available for image classification are relatively small to
train deep learning methods. This study proposes a deep 3D/2D genome graph-based network
(abbreviated as HybridGBN-SR) that is computationally efficient and not prone to overfitting even
with extremely few training sample data. At the feature extraction level, the HybridGBN-SR utilizes
the three-dimensional (3D) and two-dimensional (2D) Genoblocks trained using very few samples
while improving HSI classification accuracy. The design of a Genoblock is based on a biological
genome graph. From the experimental results, the study shows that our model achieves better
classification accuracy than the compared state-of-the-art methods over the three publicly available
HSI benchmarking datasets such as the Indian Pines (IP), the University of Pavia (UP), and the
Salinas Scene (SA). For instance, using only 5% labeled data for training in IP, and 1% in UP and SA,
the overall classification accuracy of the proposed HybridGBN-SR is 97.42%, 97.85%, and 99.34%,
respectively, which is better than the compared state-of-the-art methods.

Keywords: convolutional neural networks; genome graph; hyperspectral image classification; remote
sensing; remote sensing image classification; residual learning; spectral–spatial features

1. Introduction

Remote sensing works by moving a vision system (satellite or aircraft) across the
Earth’s surface at various spatial resolutions and in different spectral bands of the magnetic
spectrum to capture hyperspectral images (HSI) [1]. The vision system uses both imaging
and spectroscopic methods to spatially locate specific components within the image scene
under investigation based on their spectral features. The collected HSI data are a three-
dimensional data structure with the x and y axes capturing the dimensions of the spatial
images, and the z-axis is the number of spectral bands. Consequently, each pixel located on
the x–y spatial domain contains a label representing the physical land cover of the target
location [2].

For feature extraction and classification purposes, the voluminous spectral–spatial
cues present in the HSI image represent an advantage in the detailed representation of
the analyzed samples. However, they contain high spectral redundancy caused by sig-
nificant interclass similarity and intraclass variability caused by changes in atmospheric,
illumination, temporal, and environmental conditions, leading to data handling, stor-
age, and analysis challenges [2]. For instance, an HSI system with a spatial resolution
of 145× 145 pixels will produce an image with 21,025 pixels for one spectral band. If
the data contain 200 spectral bands, then a single image would produce over 4 million
(145 × 145 × 200) data points. To overcome the challenges of spectral redundancy, most of

Remote Sens. 2022, 14, 1332. https://doi.org/10.3390/rs14061332 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14061332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5011-2161
https://orcid.org/0000-0002-6792-2726
https://orcid.org/0000-0003-4430-464X
https://doi.org/10.3390/rs14061332
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14061332?type=check_update&version=2

Remote Sens. 2022, 14, 1332 2 of 20

the HSI classification methods first employ dimensionality reduction methods to solve the
curse of dimensionality introduced by spectral bands before extracting discriminative fea-
tures from the resultant HSI data cube [3,4]. Some of the dimensionality reduction methods
employed include, but are not limited to, the independent component analysis (ICA) [5],
linear discriminant analysis (LDA) [6], and principal component analysis (PCA) [7]. Of all
the aforementioned methods, PCA has become a popular dimensionality method among
hyperspectral imaging [7–12]. Therefore, this paper uses PCA in dimensionality reduction.

This paper uses a convolutional neural network (CNN) in feature learning and ex-
traction. Over the years, CNN has replaced rule-based methods because of its ability to
extract reliable and effective features. CNN aims to extract highly discriminative features
from input data [1]. Early feature extraction and learning experiments separately extracted
spectral and spatial features, resulting in unsatisfactory classification results. Recent studies
have recorded improved HSI classification accuracy when spectral–spatial features are
simultaneously extracted, causing a shift of focus to developing models that utilize 3D
convolutions in their network structure. Several researchers, such as Chen et al. [3] and
Li et al. [8], simultaneously processed spectral–spatial features using the 3D-CNN model,
which takes cubes of spatial size 7 × 7 and 5 × 5, respectively. Since then, numerous
authors have implemented the 3D-CNN method to purposely extract deep spectral–spatial
information concurrently [9,10]. Although the joint extraction of spectral–spatial features
using 3D-CNNs achieved better classification accuracy, they are computationally expen-
sive to be uniquely employed in HSI analysis and decrease in precision as the network
deepens [11,12]. Several approaches have been proposed to address the challenge intro-
duced by the 3D-CNNs to develop deep lightweight models that simultaneously process
spectral–spatial cues for HSI classification. For instance, Roy et al. [13] replaced some
3D-CNN layers with the low-cost 2D-CNN in the network structure to develop a hybrid
model that achieved state-of-the-art accuracies across all the HSI experimental datasets.
Garifulla et al. [14] replaced the fully-connected (FC) layer with the global average pooling
to reduce the network parameters and improve its inference speed [15]. Other researchers
have used atrous (dilated) or deep-wise separable convolution instead of the conventional
convolution in their network design to create lightweight models [16,17].

This paper extends the work of designing deep HSI classification models by proposing
an optimal HybridGBN model variant abbreviated as HybridGBN-SR that trains on very
few labeled training samples while increasing the classification accuracy. Unlike other meth-
ods that focus only on accuracy or speed, our network emphasizes the trade-off between
these two; seemingly in a contrary aspect, the proposed model reduces the computation
time while guaranteeing high classification accuracy. Therefore, the contributions of this
paper are as follows: First, the proposed HybridGBN model variants utilize Genoblocks (a
concept borrowed from biological genome graphs) in their network design. The Genoblocks
contain identical and non-identical residual connections to enhance the feature learning
of the HSI model even with very few training samples. Secondly, we further demonstrate
the potential of residual learning in discriminative feature extraction by reinforcing the
Genoblocks with various residual connectors, which resulted in the development of Hy-
bridGBN variants: HybridGBN-Vanilla, HybridGBN-SR, and HybridGBN-SSR. Lastly, we
further the research of developing 3D/2D hybrid models in remote image classification to
reduce model complexity.

The rest of this paper is organized as follows: Section 2 describes the proposed network;
Section 3 contains the experimental setup and results discussion; Section 4 contains the
conclusion of this research.

2. The Context of the Proposed Model

The proposed model seeks to extend research by developing deep models for HSI
classification that can train on extremely few training samples while achieving high clas-
sification accuracy. The framework of the proposed model consists of preprocessing and
feature learning classification steps as shown in Figure 1.

Remote Sens. 2022, 14, 1332 3 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 22

2. The Context of the Proposed Model
The proposed model seeks to extend research by developing deep models for HSI

classification that can train on extremely few training samples while achieving high
classification accuracy. The framework of the proposed model consists of preprocessing
and feature learning classification steps as shown in Figure 1.

Figure 1. The framework of the proposed HybridGBN Model Variants.

In the data preprocessing step, as illustrated in Figure 1, the dimensionality of the
original HSI data cube is reduced using the PCA method, and overlapping 3D patches
are extracted using the neighborhood extraction approach. The extracted patches are then
fed into the feature learning and classification step. First, the (Bottom) Geno3Dblock
performs 3D convolutions on the input data. Then, its output is reshaped and once again
fed into the second (top) Geno2Dblock, which performs 2D convolutions to extract more
discriminative features. This approach was inspired by Roy et al. [13] in developing the
HybridSN, which implements a bottom-heavy approach where 3D-CNN is employed at
the bottom, followed by a spatial 2D-CNN at the top. Roy argues that the 3D-CNN at the
bottom of the architecture facilitates the joint spectral–spatial feature representation,
while the 2D-CNN on the top layers learns more abstract-level spatial representation. We
then vectorize the feature maps of the last layer using global average pooling (GAP) [14]
before forwarding to the FC layers and then to softmax layers for classification.

2.1. HSI Data Preprocessing Step
Assume a raw HSI data cube H with spatial dimensionality k ∈ R × and b number

of spectral bands. HSI data cube H can be viewed as a two-dimensional matrix k × b
with each pixel composed of b spectral bands to form a one-hot label vector V = (v1, v2, . . . vz) ∈ R × × , where c denotes the class categories for each dataset. We apply
the PCA method to reduce the data redundancy along the spectral dimension b in
original HSI data cube H. The resulting HSI data cube I contains lesser spectral bands w
such that w b while maintaining the spatial dimension k. We begin the PCA process
by computing the covariance matrix, the product of the preprocessed data matrix, and its
transpose (See line 2 of pseudo Algorithm 1). These steps aim to determine the variance
of the input data variables from the mean with respect to each other to discern their
correlation [18].

Algorithm 1: Spectral Data Reduction and Neighborhood Extraction
1 Input: H(k × b) HSI data matrix, k pixels, b number of bands.
2 Compute the covariance matrix Q = H H.
3 Compute the eigenvalues and eigenvector of Q.

4 Sort the eigenvectors to decrease eigenvalues: D, E, F, and normalize the columns to
unity.

5 Make the diagonal entries of D and F non-negative.
6 Choose the value ww such that w b.

Figure 1. The framework of the proposed HybridGBN Model Variants.

In the data preprocessing step, as illustrated in Figure 1, the dimensionality of the
original HSI data cube is reduced using the PCA method, and overlapping 3D patches
are extracted using the neighborhood extraction approach. The extracted patches are
then fed into the feature learning and classification step. First, the (Bottom) Geno3Dblock
performs 3D convolutions on the input data. Then, its output is reshaped and once again
fed into the second (top) Geno2Dblock, which performs 2D convolutions to extract more
discriminative features. This approach was inspired by Roy et al. [13] in developing the
HybridSN, which implements a bottom-heavy approach where 3D-CNN is employed at
the bottom, followed by a spatial 2D-CNN at the top. Roy argues that the 3D-CNN at the
bottom of the architecture facilitates the joint spectral–spatial feature representation, while
the 2D-CNN on the top layers learns more abstract-level spatial representation. We then
vectorize the feature maps of the last layer using global average pooling (GAP) [14] before
forwarding to the FC layers and then to softmax layers for classification.

2.1. HSI Data Preprocessing Step

Assume a raw HSI data cube H with spatial dimensionality k ∈ Rs×s and b number of
spectral bands. HSI data cube H can be viewed as a two-dimensional matrix k× b with each
pixel composed of b spectral bands to form a one-hot label vector V = (v1, v2, . . . vz) ∈
R1×1×c , where c denotes the class categories for each dataset. We apply the PCA method
to reduce the data redundancy along the spectral dimension b in original HSI data cube
H. The resulting HSI data cube I contains lesser spectral bands w such that w < b
while maintaining the spatial dimension k. We begin the PCA process by computing the
covariance matrix, the product of the preprocessed data matrix, and its transpose (See line
2 of pseudo Algorithm 1). These steps aim to determine the variance of the input data
variables from the mean with respect to each other to discern their correlation [18].

The following process involves the extraction of eigenvectors and eigenvalues asso-
ciated with the covariance matrix to identify the principal components (See line 3). For
each eigenvector, there is an eigenvalue, which indicates the variance in each principal
component. The number of eigenvectors is equal to the number of eigenvalues, equivalent
to the number of spectral bands b in the raw HSI data cube. Here, dimensionality reduction
is attributed to the non-zero eigenvalues of the data matrix H of dimensionality k× b .

The data matrix H(k× b) is decomposed using singular value decomposition (SVD)
into H = DEFT where D(k× k) is the matrix of eigenvectors of the covariance matrix HHT,
E(k× b) is a diagonal matrix with eigenvalues as the main diagonal entries, and F(b× b)
is the matrix of eigenvectors of the covariance matrix HTH. Therefore, the total size for
decomposition representation of H is k× k + k× b + b× b, which is larger than k× b ,
the size of H. Organizing information in principal components enables dimensionality
reduction of spectral bands without losing valuable information. Therefore, the goal of
PCA is to find an integer w smaller than b and use the first w columns of D while restricting
E to the first w eigenvalues to show the effect of dimensionality reduction (See line 6).

Remote Sens. 2022, 14, 1332 4 of 20

Algorithm 1: Spectral Data Reduction and Neighborhood Extraction

1 Input: H(k× b) HSI data matrix, k pixels, b number of bands.
2 Compute the covariance matrix Q = 1

B HTH.
3 Compute the eigenvalues and eigenvector of Q.
4 Sort the eigenvectors to decrease eigenvalues: D, E, F, and normalize the columns to unity.
5 Make the diagonal entries of D and F non-negative.
6 Choose the value ww such that w < b.
7 Construct the transform matrix I(k×w) from the selected w eigenvectors.

8
Transform H(k× b) to I(k×w) in eigenspace to express data in terms of eigenvectors
reduced from b to w. This gives a new set of basis vectors and a reduced b dimensional
subspace of b vectors where data resides.

9 Reduced HSI data cube I will have dimensionality s× s×w, where w < b.
10 Perform neighborhood extraction on the new data cube I ∈ Rs×s×w.
11 Output: G number of small overlapping 3D patches of spatial dimension p× p and depth q.

The computed eigenvectors are ranked in the descending order, i.e., from highest
to the lowest in order of their eigenvalues, to find the principal components in order of
significance. If we choose to keep w components (eigenvectors) out of b and discard the
rest, we have a data matrix I(k×w), which can form a feature vector. Therefore, a feature
vector is a matrix of vectors with eigenvectors of the components that we retain as columns.
In this way, we have reduced the spectral dimensionality from b to w to form matrix I of
k×w dimensions. Finally, we use this k×w eigenvector matrix to transform the samples
to the new subspace. Applying PCA as a data reductionist method (see Figure 2) reduces
dimensionality in the new space, not the original space [11].

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 22

7 Construct the transform matrix I(k × w) from the selected w eigenvectors.

8
Transform H(k × b) to I(k × w) in eigenspace to express data in terms of
eigenvectors reduced from b to w . This gives a new set of basis vectors and a
reduced b dimensional subspace of b vectors where data resides.

9 Reduced HSI data cube I will have dimensionality s × s × w, where w b.
10 Perform neighborhood extraction on the new data cube I ∈ R × × .

11 Output: G number of small overlapping 3D patches of spatial dimension p × p
and depth q.

The following process involves the extraction of eigenvectors and eigenvalues
associated with the covariance matrix to identify the principal components (See line 3).
For each eigenvector, there is an eigenvalue, which indicates the variance in each
principal component. The number of eigenvectors is equal to the number of eigenvalues,
equivalent to the number of spectral bands b in the raw HSI data cube. Here,
dimensionality reduction is attributed to the non-zero eigenvalues of the data matrix H of dimensionality k × b .

The data matrix H(k × b) is decomposed using singular value decomposition (SVD)
into H = DEF where D(k × k) is the matrix of eigenvectors of the covariance
matrix HH , E(k × b) is a diagonal matrix with eigenvalues as the main diagonal entries,
and F(b × b) is the matrix of eigenvectors of the covariance matrix H H. Therefore, the
total size for decomposition representation of H is k × k + k × b + b × b, which is
larger than k × b , the size of H . Organizing information in principal components enables
dimensionality reduction of spectral bands without losing valuable information.
Therefore, the goal of PCA is to find an integer w smaller than b and use the first w
columns of D while restricting E to the first w eigenvalues to show the effect of
dimensionality reduction (See line 6).

The computed eigenvectors are ranked in the descending order, i.e., from highest to
the lowest in order of their eigenvalues, to find the principal components in order of
significance. If we choose to keep w components (eigenvectors) out of b and discard the
rest, we have a data matrix I(k × w), which can form a feature vector. Therefore, a
feature vector is a matrix of vectors with eigenvectors of the components that we retain as
columns. In this way, we have reduced the spectral dimensionality from b to w to form
matrix I of k × w dimensions. Finally, we use this k × w eigenvector matrix to
transform the samples to the new subspace. Applying PCA as a data reductionist method
(see Figure 2) reduces dimensionality in the new space, not the original space [11].

Figure 2. Preprocessing of raw HSI data cube.

The new data cube I ∈ R × × is divided into G small overlapping 3D patches of
spatial dimension p × p and depth q as shown in Figure 2. The label of the central pixel
decides the truth labels at the spatial location(x, y).

Figure 2. Preprocessing of raw HSI data cube.

The new data cube I ∈ Rs×s×w is divided into G small overlapping 3D patches of
spatial dimension p× p and depth q as shown in Figure 2. The label of the central pixel
decides the truth labels at the spatial location (x, y).

2.2. Feature Extraction and Classification Step

This is the second step in our model design, as shown in Figure 1. We propose
using a biological genome graph in feature extraction and classification and replacing 3D
convolutions at the top of the network with low-cost 2D convolutions.

According to Manolov et al. [19], a tetraploid genome shown as variegated blocks (see
Figure 3a) can be intertwined to form a complex pattern of the assembly graph without
repeats or sequencing error (see Figure 3b). Graph genomics use graph-based alignment,
which can correctly position all reads on the genome, as opposed to linear alignment, which is
reference-based and cannot align all reads or use all of the available genome data. A graph
genome is constructed from a population of genome sequences, such that a sequence path
represents each haploid genome in this population through the graph [20]. Schatz et al. [21]
and Rakocevic et al. [22] experimentally demonstrated that a graph genome could improve
the volume of aligned reads, resolve haplotypes, and create a more accurate depiction of
population diversity [18,20]. In this perspective, we propose HybridGBN models that utilize
Genoblocks, a concept borrowed from genomics, in their network design.

Remote Sens. 2022, 14, 1332 5 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 22

2.2. Feature Extraction and Classification Step
This is the second step in our model design, as shown in Figure 1. We propose using

a biological genome graph in feature extraction and classification and replacing 3D
convolutions at the top of the network with low-cost 2D convolutions.

According to Manolov et al. [19], a tetraploid genome shown as variegated blocks
(see Figure 3a) can be intertwined to form a complex pattern of the assembly graph
without repeats or sequencing error (see Figure 3b). Graph genomics use graph-based
alignment, which can correctly position all reads on the genome, as opposed to linear
alignment, which is reference-based and cannot align all reads or use all of the available
genome data. A graph genome is constructed from a population of genome sequences,
such that a sequence path represents each haploid genome in this population through the
graph [20]. Schatz et al. [21] and Rakocevic et al. [22] experimentally demonstrated that a
graph genome could improve the volume of aligned reads, resolve haplotypes, and
create a more accurate depiction of population diversity [18,20]. In this perspective, we
propose HybridGBN models that utilize Genoblocks, a concept borrowed from
genomics, in their network design.

(a)

(b)

Figure 3. (a) tetraploid genome (b) assembly graph.

2.2.1. The Architecture of Genoblocks
The Genoblocks use CNNs in their design. The CNNs have three parts: the input,

hidden, and output layers. The role of the hidden (convolutional) layer is to perform the
convolution operation, i.e., transforming the input received into some form and passing
it to the next layer without losing its characteristics.

Mathematically, an individual neuron is computed by striding a weight filter T
with bias n on a vector of inputs E to produce an output feature map m. The term
striding in CNN refers to the number of pixels (in integer) by which the filter window
shifts (either from left to right and from top to bottom) after each operation until all pixels
are convolved. Mathematically, this can be explained as follows m = f(TE + n) (1)

where f(°) is a nonlinear function used as an activation function to introduce the
nonlinearity.

We use the rectified linear unit (ReLU) function since it is more efficient than the
sigmoid function in the convergence of the training procedure [23]. The ReLU function is
defined as follows f = max (0, x) (2)

Research in computer vision has shown that the depth of the network has a higher
advantage than the width of the network in terms of better feature learning and fitting
[15,24]. Successful training of deep networks using small samples can be realized through
residual connections [11]. Works by Mou et al. [24] and Zhong et al. [10] exhibited

Figure 3. (a) tetraploid genome (b) assembly graph.

2.2.1. The Architecture of Genoblocks

The Genoblocks use CNNs in their design. The CNNs have three parts: the input,
hidden, and output layers. The role of the hidden (convolutional) layer is to perform the
convolution operation, i.e., transforming the input received into some form and passing it
to the next layer without losing its characteristics.

Mathematically, an individual neuron is computed by striding a weight filter T with
bias n on a vector of inputs E to produce an output feature map m. The term striding in
CNN refers to the number of pixels (in integer) by which the filter window shifts (either
from left to right and from top to bottom) after each operation until all pixels are convolved.
Mathematically, this can be explained as follows

m = f(TE + n) (1)

where f(◦) is a nonlinear function used as an activation function to introduce the nonlinearity.
We use the rectified linear unit (ReLU) function since it is more efficient than the

sigmoid function in the convergence of the training procedure [23]. The ReLU function is
defined as follows

f = max(0, x) (2)

Research in computer vision has shown that the depth of the network has a higher ad-
vantage than the width of the network in terms of better feature learning and fitting [15,24].
Successful training of deep networks using small samples can be realized through residual
connections [11]. Works by Mou et al. [24] and Zhong et al. [10] exhibited extensive network
residual learning (RL) models to extract additional discriminative characteristics for HSI
classification [11] to sufficiently solve the degradation problem profound in deep networks.
Hence, the strength of Genoblocks lies in its utilization of the residual connections and
multi-scale kernels that extract abundant contextual features to attain a high rate of gener-
alizability [25]. A vanilla Genoblock shown in Figure 4 utilizes identical and non-identical
residual connections to recover lost features during convolution

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

extensive network residual learning (RL) models to extract additional discriminative
characteristics for HSI classification [11] to sufficiently solve the degradation problem
profound in deep networks. Hence, the strength of Genoblocks lies in its utilization of the
residual connections and multi-scale kernels that extract abundant contextual features to
attain a high rate of generalizability [25]. A vanilla Genoblock shown in Figure 4 utilizes
identical and non-identical residual connections to recover lost features during
convolution

Figure 4. Identity and non-identity residual network in a vanilla Genoblock.

2.2.2. The Genoblock Variants
The Geno3Dblock is the first (bottom) block in the structure of the proposed

HybridGBN model. Figure 4 illustrates the basic Genoblock from which we created the
three variants: Geno3Dblock-Vanilla (see Figure 5), Geno3Dblock-SR (see Figure 6), and
Geno3Dblock-SSR (see Figure 7). We use ReLU as the activation function for each
convolution layer. Therefore, the activation value of these Geno3Dblock variants at
spectral–spatial position (x, y, z) in the j feature map of the i layer is denoted
as v ,, , , and is given by v ,, , = f n , + (T⨂E) , (3)

where parameter n , is the bias value for the j feature map of the i layer, T is the
kernel function with the learned weights, E is the input or the layer, and ⨂ denotes the
convolution operator.

Figure 5. Framework of Geno3Dblock-Vanilla.

Figure 4. Identity and non-identity residual network in a vanilla Genoblock.

Remote Sens. 2022, 14, 1332 6 of 20

2.2.2. The Genoblock Variants

The Geno3Dblock is the first (bottom) block in the structure of the proposed Hy-
bridGBN model. Figure 4 illustrates the basic Genoblock from which we created the
three variants: Geno3Dblock-Vanilla (see Figure 5), Geno3Dblock-SR (see Figure 6), and
Geno3Dblock-SSR (see Figure 7). We use ReLU as the activation function for each convolu-
tion layer. Therefore, the activation value of these Geno3Dblock variants at spectral–spatial
position (x, y, z) in the jth feature map of the ith layer is denoted as vx,y,z

i,j , and is given by

vx,y,z
i,j = f(ni,j + (T⊗ E)i,j) (3)

where parameter ni,j is the bias value for the jth feature map of the ith layer, T is the
kernel function with the learned weights, E is the input or the layer, and ⊗ denotes the
convolution operator.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 22

extensive network residual learning (RL) models to extract additional discriminative
characteristics for HSI classification [11] to sufficiently solve the degradation problem
profound in deep networks. Hence, the strength of Genoblocks lies in its utilization of the
residual connections and multi-scale kernels that extract abundant contextual features to
attain a high rate of generalizability [25]. A vanilla Genoblock shown in Figure 4 utilizes
identical and non-identical residual connections to recover lost features during
convolution

Figure 4. Identity and non-identity residual network in a vanilla Genoblock.

2.2.2. The Genoblock Variants
The Geno3Dblock is the first (bottom) block in the structure of the proposed

HybridGBN model. Figure 4 illustrates the basic Genoblock from which we created the
three variants: Geno3Dblock-Vanilla (see Figure 5), Geno3Dblock-SR (see Figure 6), and
Geno3Dblock-SSR (see Figure 7). We use ReLU as the activation function for each
convolution layer. Therefore, the activation value of these Geno3Dblock variants at
spectral–spatial position (x, y, z) in the j feature map of the i layer is denoted
as v ,, , , and is given by v ,, , = f n , + (T⨂E) , (3)

where parameter n , is the bias value for the j feature map of the i layer, T is the
kernel function with the learned weights, E is the input or the layer, and ⨂ denotes the
convolution operator.

Figure 5. Framework of Geno3Dblock-Vanilla. Figure 5. Framework of Geno3Dblock-Vanilla.

Similarly, the convolution operator (T⊗ E)i,j is given by

(T⊗ E)i,j =
M

∑
m =1

Ri−1

∑
r=0

Qi−1

∑
q=0

P−1

∑
p =0

wr,q,p
i,j,m × v(x+r),(y+q),(z+p)

(i−1),m (4)

Parameters Ri, Qi, and Pi denote the kernel width, height, and depth dimensions,
respectively. M is the total number of feature maps in the (i− 1)th layer connected to the
current feature map. wr,q,p

i,j,m is the value of the weight parameter for position (r, q, p) kernel

connected to the mth feature map in the previous layer.
Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

Figure 6. Framework of Geno3Dblock-SR.

Figure 7. Framework of Geno3Dblock-SSR.

Similarly, the convolution operator (T⨂E) , is given by

(T⨂E) , = w , ,, , × v(),(),(),() (4)

Parameters R , Q , and P denote the kernel width, height, and depth dimensions,
respectively. M is the total number of feature maps in the (i − 1) layer connected to the
current feature map. w , ,, , is the value of the weight parameter for position (r, q, p)
kernel connected to the m feature map in the previous layer.

We apply padding P to facilitate the use of an identical residue connection that
requires preserving the input image dimensions. In CNN, padding refers to the number
of pixels added to the border of an image when the kernel processes it to avoid shrinking.
Padding is vital in image processing using CNN as it extends the image area, which
assists the kernel in producing more accurate image analyses. We can perform padding
by either replicating the edge of the original image or zero padding. Zero padding is a
popular technique to pad the input volume with zeros. Zero padding an output image O
for any given layer is given by

O = (G − F + 2P)S × (H − F + 2P)S × D (5)

Figure 6. Framework of Geno3Dblock-SR.

Remote Sens. 2022, 14, 1332 7 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 22

Figure 6. Framework of Geno3Dblock-SR.

Figure 7. Framework of Geno3Dblock-SSR.

Similarly, the convolution operator (T⨂E) , is given by

(T⨂E) , = w , ,, , × v(),(),(),() (4)

Parameters R , Q , and P denote the kernel width, height, and depth dimensions,
respectively. M is the total number of feature maps in the (i − 1) layer connected to the
current feature map. w , ,, , is the value of the weight parameter for position (r, q, p)
kernel connected to the m feature map in the previous layer.

We apply padding P to facilitate the use of an identical residue connection that
requires preserving the input image dimensions. In CNN, padding refers to the number
of pixels added to the border of an image when the kernel processes it to avoid shrinking.
Padding is vital in image processing using CNN as it extends the image area, which
assists the kernel in producing more accurate image analyses. We can perform padding
by either replicating the edge of the original image or zero padding. Zero padding is a
popular technique to pad the input volume with zeros. Zero padding an output image O
for any given layer is given by

O = (G − F + 2P)S × (H − F + 2P)S × D (5)

Figure 7. Framework of Geno3Dblock-SSR.

We apply padding P to facilitate the use of an identical residue connection that requires
preserving the input image dimensions. In CNN, padding refers to the number of pixels
added to the border of an image when the kernel processes it to avoid shrinking. Padding is
vital in image processing using CNN as it extends the image area, which assists the kernel
in producing more accurate image analyses. We can perform padding by either replicating
the edge of the original image or zero padding. Zero padding is a popular technique to
pad the input volume with zeros. Zero padding an output image O for any given layer is
given by

O = [(G− F + 2P)S]× [(H− F + 2P)S]×
[
Dy

]
(5)

where O is the output dimension, G is the width of the input, H is the height of the input, F
is the filter size, P is the padding, and S is the stride. Dy is the depth of the output image.

The Geno3Dblock-Vanilla: This block utilizes multi-scale kernels (i.e., 3 × 3 × 3, 5 × 5
× 5) to extract multi-scale features from the image map. The structure of the Geno3Dblock-
Vanilla is as shown in Figure 5. This is the basic building block used to develop the
HybridGBN-Vanilla model.

The Geno3Dblock-SR: This block adds an extra spatial residual (SR) connection to the
basic building block (Geno3Dblock-Vanilla), as shown in Figure 6. This block is used in the
development of the HybridGBN-SR model.

The Geno3Dblock-SSR: Here, the spatial residual (SR) connection in Geno3Dblock-SR
is replaced with a spectral–spatial residual (SSR) connector, as shown in Figure 7. We
utilized this block in the development of the HybridGBN-SSR model.

The output of the above Geno3Dblocks is reshaped before passing to the top Geno2Dblock
for further feature learning. Reshaping is the deformation of 3D features to 2D features to
reduce the model operational cost. For instance, a convolutional layer with 64 feature map
data of the size of 3 × 3 × 3 can be reshaped into 192 2D feature maps of size 3 × 3, as shown
in Figure 8.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22

where O is the output dimension, G is the width of the input, H is the height of the
input, F is the filter size, P is the padding, and S is the stride. D is the depth of the
output image.

The Geno3Dblock-Vanilla: This block utilizes multi-scale kernels (i.e., 3 × 3 × 3, 5 × 5
× 5) to extract multi-scale features from the image map. The structure of the
Geno3Dblock-Vanilla is as shown in Figure 5. This is the basic building block used to
develop the HybridGBN-Vanilla model.

The Geno3Dblock-SR: This block adds an extra spatial residual (SR) connection to
the basic building block (Geno3Dblock-Vanilla), as shown in Figure 7. This block is used
in the development of the HybridGBN-SR model.

The Geno3Dblock-SSR: Here, the spatial residual (SR) connection in
Geno3Dblock-SR is replaced with a spectral–spatial residual (SSR) connector. We utilized
this block in the development of the HybridGBN-SSR model.

The output of the above Geno3Dblocks is reshaped before passing to the top
Geno2Dblock for further feature learning. Reshaping is the deformation of 3D features to
2D features to reduce the model operational cost. For instance, a convolutional layer with
64 feature map data of the size of 3 × 3 × 3 can be reshaped into 192 2D feature maps of
size 3 × 3, as shown in Figure 8.

Figure 8. Framework for 3D to 2D feature deformation.

Geno2Dblock: To reduce the model complexity, we developed the Geno2Dblock
shown in Figure 9, which is used in the second (top) block of the proposed HybridGBN
model variants to learn more discriminative spatial features. It utilizes maxpooling2D
and dilated convolution arranged in parallel to capture the context information and
multi-scale features [26].

Figure 9. The Framework of Geno2Dblock.

The activation value of the 2D convolution in the Geno2Dblock at the i layer at
spatial position (x, y) in the j feature map is given by

Figure 8. Framework for 3D to 2D feature deformation.

Geno2Dblock: To reduce the model complexity, we developed the Geno2Dblock
shown in Figure 9, which is used in the second (top) block of the proposed HybridGBN
model variants to learn more discriminative spatial features. It utilizes maxpooling2D and

Remote Sens. 2022, 14, 1332 8 of 20

dilated convolution arranged in parallel to capture the context information and multi-scale
features [26].

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22

where O is the output dimension, G is the width of the input, H is the height of the
input, F is the filter size, P is the padding, and S is the stride. D is the depth of the
output image.

The Geno3Dblock-Vanilla: This block utilizes multi-scale kernels (i.e., 3 × 3 × 3, 5 × 5
× 5) to extract multi-scale features from the image map. The structure of the
Geno3Dblock-Vanilla is as shown in Figure 5. This is the basic building block used to
develop the HybridGBN-Vanilla model.

The Geno3Dblock-SR: This block adds an extra spatial residual (SR) connection to
the basic building block (Geno3Dblock-Vanilla), as shown in Figure 7. This block is used
in the development of the HybridGBN-SR model.

The Geno3Dblock-SSR: Here, the spatial residual (SR) connection in
Geno3Dblock-SR is replaced with a spectral–spatial residual (SSR) connector. We utilized
this block in the development of the HybridGBN-SSR model.

The output of the above Geno3Dblocks is reshaped before passing to the top
Geno2Dblock for further feature learning. Reshaping is the deformation of 3D features to
2D features to reduce the model operational cost. For instance, a convolutional layer with
64 feature map data of the size of 3 × 3 × 3 can be reshaped into 192 2D feature maps of
size 3 × 3, as shown in Figure 8.

Figure 8. Framework for 3D to 2D feature deformation.

Geno2Dblock: To reduce the model complexity, we developed the Geno2Dblock
shown in Figure 9, which is used in the second (top) block of the proposed HybridGBN
model variants to learn more discriminative spatial features. It utilizes maxpooling2D
and dilated convolution arranged in parallel to capture the context information and
multi-scale features [26].

Figure 9. The Framework of Geno2Dblock.

The activation value of the 2D convolution in the Geno2Dblock at the i layer at
spatial position (x, y) in the j feature map is given by

Figure 9. The Framework of Geno2Dblock.

The activation value of the 2D convolution in the Geno2Dblock at the ith layer at
spatial position (x, y) in the jth feature map is given by

vx,y
i,j = f

(
ni,j + (T⊗ E)i,j

)
(6)

The convolution operator (T⊗ E)i,j for a 2D layer at spatial position (x, y) in the jth

feature map can be further explained as

(T⊗ E)i,j =
M

∑
m=1

Ri−1

∑
r=0

Qi−1

∑
q=0

wr,q
i,j,m × v(x+r),(y+q)

(i−1),m (7)

where, wr,q
i,j,m is the weight for spatial position (r, q) kernel connected to the previous layer′s mth

feature map.
We utilized max2Dpooling in the Geno2Dblock to help recover lost features during

the convolution process and control overfitting. The max2Dpooling function partitions
the input feature map into a set of rectangles and outputs the maximum value for each
sub-region. Mathematically, the general pooling function can be computed as follows

cZk
l = gp

(
cFk

l

)
(8)

where cZk
l represents the pooled feature map of lth layer for kth input feature map cFk

l , and
gp (.) defines the type of pooling operation. In this research, gp (.) is a MaxPooling2D.

In place of flattening, we used the global average pooling (GAP) to reduce the number
of network parameters and effectively avert the model from overfitting. GAP achieves this
by reducing each h×w feature map to a single number by taking the average of all hw
values. We then used two FC layers to learn more discriminative features further.

The output from the FC layers is then passed to the softmax layer to perform classifi-
cation. The softmax function is a probabilistic-based function that uses a probability score

Remote Sens. 2022, 14, 1332 9 of 20

to measure the correlation between output and reference values. Therefore, the probability
that a given input belongs to the class c label of the HSI dataset is given by

p(yi) =
eyi

∑C
j=1 eyj p(yi)

for i = 1, . . . c, . . . , C, and y = y1, . . . , yC ∈ RC
(9)

where yi = 1, . . . , C are the target ground truth values of the input vector to the softmax
function and p(yi) as the output class membership distribution with i as the index of the
test pixel.

The number of kernels of the last layer is set to equal the number of classes defined in
the HSI dataset under study.

We can treat the whole procedure of training HybridGBN model variants as optimizing
parameters to minimize the multiclass loss function between the network outputs and
the ground truth values for the training data set. The network is fine-tuned through the
backpropagation. The loss function L is given by

L =
N

∑
i=1

C

∑
c=1

max(0, 1− p(yi)) (10)

Finally, the prediction label is decided by taking the argmin value ŷi of the loss function

ŷi =
argmin L

c
(11)

3. Experimental Results and Discussion

In this section, we report the quantitative and qualitative results of the proposed
HybridGBN model variants in comparison with the other state-of-the-art methods such
as 2D-CNN, M3D-DCN, HybridSN, R-HybridSN, and SSRN over the selected publicly
available HSI datasets, namely Indian Pines (IP), University of Pavia (UP), and Salinas
Scene (SA). This section is divided into Sections 3.1–3.6 that describe experimental datasets,
experimental setup, evaluation criteria, experimental results, and discussions on very small
training sample data, varying training sample data, and the time complexity of the selected
models over IP, UP, and SA datasets.

3.1. Experimental Datasets

The IP dataset was collected by the airborne visible/infrared imaging spectrometer
(AVIRIS) sensor flying over the IP test site in Northwestern Indiana. The original image is
145× 145× 220 in dimension. After discarding 20 spectral bands due to water absorption,
the data used in this experiment have the size of 145 × 145 × 200. The ground truth of the
IP scene dataset consists of 16 not mutually exclusive labels [27].

The UP dataset was collected by a Reflective Optics System Imaging Spectrometer
(ROSIS) flying over Pavia city, northern Italy. The spectral–spatial dimension of the original
HSI image is 610 × 340 × 1155. We reduced these dimensions to 610 × 340 × 103 by
eliminating 12 noisy bands [1,18]. The UP dataset has nine classes; except for one class
(Shadows), the rest of the classes have more than 1000 labeled pixels.

The SA dataset was captured by the AVIRIS sensor flying over the Salinas Valley,
California. The original size of the HSI image is 512× 217× 224. After eliminating 20 bands
covering the water absorption region, the resultant image size used in this experiment is
512× 217× 204. The land cover has been categorized into 16 class labels [27].

3.2. Experimental Setup

All experiments were conducted online using Google Colab Inc. We split our datasets
into training and testing sets. We report the results as the average of seven runs. Moreover,
we applied the grid search method to select the best optimizer method, learning rate, dropout,

Remote Sens. 2022, 14, 1332 10 of 20

and epochs for the proposed method. For all the datasets, we chose Adam optimizer with
learning rates of 0.0005, 0.0007, and 0.001 for IP, UP, and SA datasets, respectively. The optimal
dropout for IP, UP, and SA was 0.35, 0.5, and 0.4, respectively, while the optimal epochs for IP,
UP, and SA were 100, 150, and 100. Using HybridGBN-Vanilla as the basic building block, we
varied the spatial window size over IP, UP, and SA datasets to obtain the optimal window size.
Considering the overall accuracy (OA), average accuracy (AA), and Kappa coefficient (Kappa),
the optimal spatial window size of the HybridGBN-Vanilla over IP, UP, and SA datasets is
19 × 19, 15 × 15, and 23 × 23 respectively. Therefore, the dimensions of the overlapping
3D patches of the input volume are set to 19 × 19 × 30, 15 × 15 × 15, and 23 × 23 × 15,
respectively. We used the same window size on HybridGBN variants (e.g., HybridGBN-SSR
and HybridGBN-SR) for a fair comparison.

3.3. Evaluation Criteria

To assess the performance of the proposed HSI models, we use the Kappa, OA, and
AA evaluation measures.

The OA represents the percentage of correctly classified samples, with 100% accuracy
being a perfect classification where all samples were classified correctly. It is given by

OA =
Correctly classified samples
The total number of samples

(12)

where Correctly classified samples are cases where the predicted results are the same as
the actual ground truth label.

The AA gives the mean result of per class classification accuracies, and it is given by

AA =
1
c

C

∑
i=1

(x) (13)

where c is the number of classes, and x is the percentage of correctly classified pixels in a
single class.

The Kappa provides information on what percentage of the classification map concurs
with the ground truth map, and it is given by

Kappa =
Po − Pe

1− Pe
(14)

Po denotes the observed agreement, which is the model classification accuracy, and Pe
symbolizes the expected agreement between the model classification map and the ground
truth map by chance probability. When the Kappa value is 1, it indicates perfect agreement,
while 0 indicates agreement by chance.

3.4. Experimental Results and Discussions on Very Small Training Sample Data

This section aims to show the robustness of the models on very little training sample
data, i.e., 5% for IP, and 1% for UP and SA datasets, respectively. We use the remaining
sample data portion for testing.

3.4.1. Distribution of the Training and Testing Sample Data over IP, UP, and SA Datasets on
Very Little Sample Data

Tables 1–3 provide the detailed distribution of the training and testing samples of IP,
UP, and SA datasets.

Remote Sens. 2022, 14, 1332 11 of 20

Table 1. Per Class information for IP dataset.

Class No Class Label Total Samples
(Pixels)

Total Samples
(%) Training Testing

1 Alfalfa 46 0.45 2 44
2 Corn-notill 1428 13.93 71 1357
3 Corn-mintill 830 8.1 41 789
4 Corn 237 2.31 12 225
5 Grass-pasture 483 4.71 24 459
6 Grass-trees 730 7.12 37 693
7 Grass-pasture-mowed 28 0.27 1 27
8 Hay-windrowed 478 4.66 24 454
9 Oats 20 0.2 1 19
10 Soybean-notill 972 9.48 49 923
11 Soybean-mintill 2455 23.95 123 2332
12 Soybean-clean 593 5.79 30 563
13 Wheat 205 2 10 195
14 Woods 1265 12.34 63 1202

15 Buildings-Grass-Trees-
Drives 386 3.77 19 367

16 Stone-Steel-Towers 93 0.91 5 88

Table 2. Per Class information for the UP dataset.

Class No Class Label Total Samples (Pixels) Total Samples (%) Training Testing

1 Asphalt 6631 15.5 66 6565
2 Meadows 18,649 43.6 186 18,463
3 Gravel 2099 4.91 21 2078
4 Trees 3064 7.16 31 3033
5 Painted 1345 3.14 13 1332
6 Bare 5029 11.76 50 4979
7 Bitumen 1330 3.11 13 1317
8 Self-Blocking 3682 8.61 37 3645
9 Shadows 947 2.21 10 937

Table 3. Per Class information for the SA dataset.

Class No Class Label Total Samples (Pixels) Total Samples (%) Training Testing

1 Broccoli_green_weeds_1 2009 3.71 20 1989
2 Broccoli_green_weeds_2 3726 6.88 37 3689
3 Fallow 1976 3.65 20 1956
4 Fallow_rough_plow 1394 2.58 14 1380
5 Fallow_smooth 2678 4.95 27 2651
6 Stubble 3959 7.31 39 3920
7 Celery 3579 6.61 36 3543
8 Grapes_untrained 11,271 20.82 113 11,158
9 Soil_vineyard_develop 6203 11.46 62 6141
10 Corn_senesced_green_weeds 3278 6.06 33 3245
11 Lettuce_romaine_4wk 1068 1.97 11 1057
12 Lettuce_romaine_5wk 1927 3.56 19 1908
13 Lettuce_romaine_6wk 916 1.69 9 907
14 Lettuce_romaine_7wk 1070 1.98 11 1059
15 Vineyard_untrained 7268 13.43 72 7196
16 Vineyard_vertical_trellis 1807 3.34 18 1789

From Table 1, we can observe that the IP dataset is unbalanced, with some classes
having one or two training samples when a minimal sample size of 5% is chosen. Table 2
shows that the UP dataset is a slightly balanced dataset with most classes well represented
even at minimal training sample data of 1%. Hence, we expect the classifiers to have better
classification accuracies than the IP dataset. We can see in Table 3 that all classes are well
represented at 1% training sample data for the SA dataset. Therefore, we conclude that the
IP is the most unstable dataset, followed by the UP and SA datasets.

Remote Sens. 2022, 14, 1332 12 of 20

3.4.2. The Performance of Selected Models over IP, UP, and SA Datasets Using Very
Limited Training Sample Data

This subsection presents per class accuracy, the Kappa, OA, and AA of the compared
methods in an extreme condition of very small sample data over IP, UP, and SA datasets, as
shown in Tables 4–6.

Table 4. The Kappa, OA, and AA results in a percentage of the compared models at 5% training
sample data over IP dataset.

Class 2D-CNN M3D-
DCNN HybridSN R-

HybridSN SSRN HybridGBN
-Vanilla

HybridGBN
-SSR

HybridGBN
-SR

1 7.95 27.5 61.82 45 12.99 84.68 81.13 83.12
2 70.69 59.15 92.25 95.45 93.04 94.76 95.96 95.55
3 52.84 45.07 92.97 97.36 93.72 98.89 98.58 99.51
4 27.51 38.49 78.22 94.8 72.38 93.44 93.7 96.38
5 90.44 70.33 96.6 98.85 98.16 99.69 99.72 99.6
6 98.59 97.2 98.11 99.32 99.86 99.07 98.99 99.09
7 10.37 18.52 68.52 95.56 0 98.37 95.77 99.47
8 99.96 98.04 99.96 100 99.94 100 100 100
9 16.32 25.79 83.68 65.26 0 64.66 76.69 78.2

10 67.84 55.85 96.12 95.9 91.01 97.83 97.29 96.61
11 78.16 76.2 96.66 98.09 95.63 97.89 98.36 98.21
12 42.01 33.89 85.44 89.15 87.9 90.57 91.29 92.46
13 98.97 91.23 94.97 99.74 98.53 97.05 98.53 98.1
14 97.65 94.68 99.34 99.26 99.82 99.56 99.3 99.73
15 62.62 42.37 82.92 87.66 82.09 94.36 92.76 92.41
16 76.02 49.32 80 88.18 82.31 91.52 91.06 89.94

Kappa 0.718 ± 0.01 0.642 ± 0.045 0.934 ± 0.012 0.96 ± 0.004 0.923 ± 0.49 0.968 ± 0.43 0.97 ± 0.4 0.971 ± 0.25
OA (%) 75.47 ± 0.81 68.88 ± 3.77 94.24 ± 1.01 96.46 ± 0.33 93.39 ± 0.43 97.15 ± 0.38 97.32 ± 0.35 97.42 ± 0.22
AA (%) 62.37 ± 1.64 57.73 ± 6.52 87.97 ± 1.93 90.6 ± 1.53 75.28 ± 1.25 93.9 ± 1.11 94.32 ± 1.89 94.9 ± 2.4

Table 5. The Kappa, OA, and AA results in a percentage of the compared models at 1% training
sample data over the UP dataset.

Class 2D-CNN M3D-
DCNN HybridSN R-

HybridSN SSRN HybridGBN
-Vanilla

HybridGBN
-SSR

HybridGBN
-SR

1 96.88 90.56 95.72 96.94 98.76 97.54 98.02 98.13
2 99.01 89.47 99.68 99.69 99.91 99.65 99.81 99.55
3 75.08 59.11 84.38 87.17 85.72 90.77 90.67 93.81
4 87.74 93.25 87.7 89.15 94.85 90.23 87.49 91.07
5 98.17 93.66 98.99 99.51 99.76 99.75 99.5 99.09
6 75.51 69.63 96.82 98.44 96.11 97.55 97.49 98.85
7 61.32 65.71 84.42 95.82 95.98 99.29 95.75 99.44
8 80.61 78.35 89.18 93.28 94.96 93.8 92.22 95.82
9 97.97 94.41 71.71 77.82 99.89 91.65 94.22 92.07

Kappa 0.881 ± 0.008 0.798 ± 0.016 0.935 ± 0.011 0.955 ± 0.007 0.97 ± 0.54 0.964 ± 0.56 0.960 ± 0.82 0.972 ± 0.53
OA (%) 91.13 ± 0.55 84.63 ± 1.21 95.09 ± 0.8 96.59 ± 0.5 97.67 ± 0.4 97.28 ± 0.42 97.02 ± 0.61 97.85 ± 0.4
AA (%) 85.81 ± 1.48 81.57 ± 1.79 89.84 ± 1.93 93.09 ± 1.2 96.22 ± 0.82 95.58 ± 0.79 95.02 ± 1.26 96.42 ± 0.54

We observe in Tables 4 and 6 that the Kappa, OA, and AA of the proposed HybridGBN
variants (HybridGBN-Vanilla, HybridGBN-SR, and HybridGBN-SSR) are higher than the
compared state-of-the-art methods such as the 2D-CNN, M3D-DCNN, SSRN, R-HybridSN,
and HybridSN for IP and SA datasets. However, only the proposed HybridGBN-SR method
records superior performance in the UP dataset over all the compared models.

Across all the datasets, the M3D-DCNN recorded the lowest classification accuracy
because it mainly uses multi-scale 3D dense blocks in its network structure, which is prone
to overfitting when subjected to limited training sample data. We note that the accuracy
of 2D-CNN is slightly higher than that of M3D-DCNN due to its ability to extract more
discriminative spatial features vital to HSI classification. On the other hand, HybridSN [13]
utilizes both 3D-CNNs and 2D-CNN in the HSI network structure. The SSRN posits better
classification accuracy than 2D-CNN and M3D-CNN in all datasets. It defeats HybridSN
in the UP dataset because it uses skip connections to extract deep features, effectively

Remote Sens. 2022, 14, 1332 13 of 20

addressing the degradation problem in the deep depth network. The R-HybridSN [28]
achieved better classification performance than all the earlier mentioned methods because
it utilizes non-identical multi-scale residual connections in its network structure.

Table 6. The Kappa, OA, and AA results in a percentage of the compared models at 1% training
sample data over the SA dataset.

Class 2D-CNN M3D-
DCNN HybridSN R-

HybridSN SSRN HybridGBN
-Vanilla

HybridGBN
-SSR

HybridGBN
-SR

1 99.97 94.88 99.99 100 100 100 100 100
2 99.86 99.61 100 99.97 100 100 100 100
3 99.43 91.89 99.82 99.49 99.96 99.92 99.97 100
4 98.83 98.33 98.38 98.72 99.72 99.23 97.64 99.67
5 96.77 98.83 99.26 98.43 98.73 98.43 98.66 99
6 99.79 98.09 99.93 99.9 100 99.89 99.89 99.71
7 99.33 97.67 99.95 99.96 99.99 99.95 99.94 100
8 87.39 82.4 97.77 98.23 95.06 99.75 99.64 99.69
9 99.97 98.14 99.99 99.99 100 100 100 100

10 93.98 87.6 98.36 97.9 98.33 98.78 98.78 99
11 89.62 86.72 96.06 96.46 97.42 99.53 98.72 99.18
12 99.99 96.99 97.44 99.09 100 99.98 99.59 99.69
13 98.52 97.14 97.42 82.82 93.02 82.89 85.42 93.89
14 97.64 91.78 99.52 97.25 95.62 94.94 98.03 95.71
15 79.46 64.42 97.06 95.12 88.18 97.2 98.31 98.21
16 95.71 78.14 100 99.71 99.49 99.98 99.98 99.96

Kappa 0.928 ± 0.003 0.867 ± 0.002 0.985 ± 0.007 0.98 ± 0.004 0.966 ± 0.61 0.989 ± 0.61 0.991 ± 0.34 0.993 ± 0.16
OA (%) 93.55 ± 0.26 88.02 ± 1.35 98.72 ± 0.59 98.25 ± 0.4 96.94 ± 0.55 98.91 ± 0.55 99.16 ± 0.31 99.34 ± 0.14
AA (%) 96.02 ± 0.42 91.41 ± 0.81 98.81 ± 0.5 97.69 ± 0.69 97.84 ± 0.52 97.84 ± 1 98.41 ± 1.06 98.98 ± 0.32

Comparing the HybridGBN variants, we observe that the classification performance
of HybridGBN-SR and HybridGBN-SSR is better than that of HybridGBN-Vanilla. Hence,
adding a non-identical residual connection to the basic building block can significantly im-
prove the classification accuracy across all the experimental datasets. For example, in Table 4,
we can observe that the proposed HybridGBN-SR improves OA and AA of HybridGBN-SSR
by +0.1% and +0.58%, respectively, and that of HybridGBN-Vanilla by +0.27% and +1%,
respectively, in the IP dataset. In the UP dataset (see Table 5), the proposed HybridGBN-SR
increases the OA and AA of HybridGBN-SSR by +0.83% and +1.4%, and that of HybridGBN-
Vanilla by +0.57% and +0.84%, respectively. In SA (see Table 6), the OA and AA of the
proposed HybridGBN-SR are higher than HybridGBN-SSR by +0.18% and +0.57%, and higher
than HybridGBN-Vanilla by +0.43% and +1.14%, respectively. We can observe a significant
improvement in average accuracy compared with the overall accuracy. The HybridGBN-SR
performs better on classes with meager training sample data. For instance, at class 7 of the
IP dataset, the HybridGBN-SR improves the per class accuracy of 2D-CNN, M3D-CNN,
SSRN, HybridSN, and R-HybridSN by +89.1%, +80.95%, +99.47%, +30.95%, and +3.91%,
respectively. The difference in performance between HybridGBN-SSR and HybridGBN-SR
can be attributed to the additional residual connections at the bottom block of the network. In
HybridGBN-SSR, the additional residual connection simultaneously extracts spatial–spectral
features. Unlike in HybridGBN-SSR, the additional residual connection in HybridGBN-SR ex-
tracts spatial features only while preserving raw spectral features, resulting in the convolution
of high-level spatial features with low-level spectral features in the top network layers. To the
best of our knowledge, this leads to the extraction of more discriminative features and, hence,
increases classification accuracy.

In comparison with other state-of-the-art methods the HybridGBN-SR improves the
overall accuracy of 2D-CNN, M3D-CNN, SSRN, HybridSN, and R-HybridSN by +21.95,
+28.54, +4.03, +3.18, +0.96 on the IP dataset (see Table 4), +6.72%, +3.22%, +2.76%, +1.26%,
+0.18% on the UP dataset (see Table 5), and +5.79%, +11.32%, +0.62%, +1.09%,+2.4% on
the SA dataset (see Table 6), respectively. This trend is more pronounced in classes with
less than 1% training sample points. In this perspective, we propose the HybridGBN-SR

Remote Sens. 2022, 14, 1332 14 of 20

that can learn more discriminate features at extremely small training data samples and in
unbalanced datasets.

3.4.3. Training Accuracy and Loss Graph of the Selected Models on Very Limited Sample Data

We can observe in Figures 10–12 that the proposed HybridGBN-SR converges better
than SSRN and HybridSN and worse than R-HybridSN over the IP and UP datasets. The
HybridGBN-SR training and loss graph in the SA dataset is comparable to R-HybridSN
and HybridSN, indicating its competitiveness over the SA dataset (See Figure 12).

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 22

can learn more discriminate features at extremely small training data samples and in
unbalanced datasets.
3.4.3. Training Accuracy and Loss Graph of the Selected Models on Very Limited
Sample Data

We can observe in Figures 10–12 that the proposed HybridGBN-SR converges better
than SSRN and HybridSN and worse than R-HybridSN over the IP and UP datasets. The
HybridGBN-SR training and loss graph in the SA dataset is comparable to R-HybridSN
and HybridSN, indicating its competitiveness over the SA dataset (See Figure 12).

.

Figure 10. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over IP dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 11. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over UP dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 12. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over SA dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 10. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over IP dataset: (a) The training accuracy graph; (b) The loss convergence graph.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 22

can learn more discriminate features at extremely small training data samples and in
unbalanced datasets.
3.4.3. Training Accuracy and Loss Graph of the Selected Models on Very Limited
Sample Data

We can observe in Figures 10–12 that the proposed HybridGBN-SR converges better
than SSRN and HybridSN and worse than R-HybridSN over the IP and UP datasets. The
HybridGBN-SR training and loss graph in the SA dataset is comparable to R-HybridSN
and HybridSN, indicating its competitiveness over the SA dataset (See Figure 12).

.

Figure 10. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over IP dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 11. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over UP dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 12. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over SA dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 11. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over UP dataset: (a) The training accuracy graph; (b) The loss convergence graph.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 22

can learn more discriminate features at extremely small training data samples and in
unbalanced datasets.
3.4.3. Training Accuracy and Loss Graph of the Selected Models on Very Limited
Sample Data

We can observe in Figures 10–12 that the proposed HybridGBN-SR converges better
than SSRN and HybridSN and worse than R-HybridSN over the IP and UP datasets. The
HybridGBN-SR training and loss graph in the SA dataset is comparable to R-HybridSN
and HybridSN, indicating its competitiveness over the SA dataset (See Figure 12).

.

Figure 10. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over IP dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 11. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over UP dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 12. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over SA dataset: (a) The training accuracy graph; (b) The loss convergence graph

Figure 12. Training graphs for R-HybridSN, HybridSN, SSRN, and HybridGBN-SR for each epoch
over SA dataset: (a) The training accuracy graph; (b) The loss convergence graph.

Remote Sens. 2022, 14, 1332 15 of 20

3.4.4. Confusion Matrix

This subsection further demonstrates the competitiveness of the proposed HybridGBN-
SR using the confusion matrix over the IP, UP, and SA datasets.

With a closer look at the confusion matrix in Figures 13–15 we can observe that most
of the sample data of the proposed HybridGBN-SR lie in the diagonal line even with
limited training data compared to SSRN, HybridSN, and R-HybridSN over the IP, UP,
and SA datasets. Therefore, the proposed model correctly classified most sample data,
demonstrating its robustness over a small training data.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22

3.4.4. Confusion Matrix
This subsection further demonstrates the competitiveness of the proposed

HybridGBN-SR using the confusion matrix over the IP, UP, and SA datasets.
With a closer look at the confusion matrix in Figures 13–15 we can observe that most

of the sample data of the proposed HybridGBN-SR lie in the diagonal line even with
limited training data compared to SSRN, HybridSN, and R-HybridSN over the IP, UP,
and SA datasets. Therefore, the proposed model correctly classified most sample data,
demonstrating its robustness over a small training data.

Figure 13. The confusion matrix of IP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 14. The confusion matrix of UP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 15. The confusion matrix of SA dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 13. The confusion matrix of IP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22

3.4.4. Confusion Matrix
This subsection further demonstrates the competitiveness of the proposed

HybridGBN-SR using the confusion matrix over the IP, UP, and SA datasets.
With a closer look at the confusion matrix in Figures 13–15 we can observe that most

of the sample data of the proposed HybridGBN-SR lie in the diagonal line even with
limited training data compared to SSRN, HybridSN, and R-HybridSN over the IP, UP,
and SA datasets. Therefore, the proposed model correctly classified most sample data,
demonstrating its robustness over a small training data.

Figure 13. The confusion matrix of IP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 14. The confusion matrix of UP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 15. The confusion matrix of SA dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 14. The confusion matrix of UP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22

3.4.4. Confusion Matrix
This subsection further demonstrates the competitiveness of the proposed

HybridGBN-SR using the confusion matrix over the IP, UP, and SA datasets.
With a closer look at the confusion matrix in Figures 13–15 we can observe that most

of the sample data of the proposed HybridGBN-SR lie in the diagonal line even with
limited training data compared to SSRN, HybridSN, and R-HybridSN over the IP, UP,
and SA datasets. Therefore, the proposed model correctly classified most sample data,
demonstrating its robustness over a small training data.

Figure 13. The confusion matrix of IP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 14. The confusion matrix of UP dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Figure 15. The confusion matrix of SA dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.
Figure 15. The confusion matrix of SA dataset: (a) R-HybridSN; (b) HybridSN; (c) SSRN; (d)
HybridGBN-SR.

Remote Sens. 2022, 14, 1332 16 of 20

3.4.5. Classification Diagrams

We observe in Figures 16–18 that the SSRN, HybridSN, and R-HybridSN have more
noisy scattered points in the classification maps, unlike the proposed HybridGBN-SR
method over the IP, UP, and SA datasets. Therefore, the proposed method can remove
the noisy scattered points and leads to smoother classification results without blurring the
boundaries than the compared models when subjected to less training sample data.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22

3.4.5. Classification Diagrams
We observe in Figures 16–18 that the SSRN, HybridSN, and R-HybridSN have more

noisy scattered points in the classification maps, unlike the proposed HybridGBN-SR
method over the IP, UP, and SA datasets. Therefore, the proposed method can remove
the noisy scattered points and leads to smoother classification results without blurring
the boundaries than the compared models when subjected to less training sample data.

(a) (b) (c) (d) (e)

Figure 16. Classification maps of IP dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN; (d)
SSRN (e) HybridGBN-SR.

(a) (b) (c) (d) (e)

Figure 17. Classification maps of UP dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN; (d)
SSRN (e) HybridGBN-SR.

Figure 16. Classification maps of IP dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN;
(d) SSRN (e) HybridGBN-SR.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 22

3.4.5. Classification Diagrams
We observe in Figures 16–18 that the SSRN, HybridSN, and R-HybridSN have more

noisy scattered points in the classification maps, unlike the proposed HybridGBN-SR
method over the IP, UP, and SA datasets. Therefore, the proposed method can remove
the noisy scattered points and leads to smoother classification results without blurring
the boundaries than the compared models when subjected to less training sample data.

(a) (b) (c) (d) (e)

Figure 16. Classification maps of IP dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN; (d)
SSRN (e) HybridGBN-SR.

(a) (b) (c) (d) (e)

Figure 17. Classification maps of UP dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN; (d)
SSRN (e) HybridGBN-SR.

Figure 17. Classification maps of UP dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN;
(d) SSRN (e) HybridGBN-SR.

Remote Sens. 2022, 14, 1332 17 of 20Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 22

(a) (b) (c) (d) (e)

Figure 18. Classification maps of SA dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN; (d)
SSRN (e) HybridGBN-SR.

3.5. Varying Training Sample Data
To further compare the performance of the proposed Hybrid-SR with the selected

state-of-the-art models, we varied the training sample data. We randomly trained the
models at 2%, 5%, 10%, and 20% of the IP dataset, and 0.4%, 0.8%, 1%, 2%, and 5% of the
UP and SA datasets, and then tested the models on the remaining data portion. The
purpose of these experiments was to observe the variation trend and sensitivity of OA
with the changing amount of training samples of the proposed HybridGBN-SR model
compared with the selected state-of-the-art methods over the IP, UP, and SA datasets.
The result is summarized in Tables 7–9.

Table 7. The effect of varying the training sample data for the SSRN, Hybrid, R-HybridSN, and
HybridGBN-SR models on the overall accuracy (OA) over the IP dataset.

Training Sample Data in Percentage
Model 20% 10% 8% 5% 2%

2D-CNN 91.23 ± 0.21 83.86 ± 1 82.43 ± 0.62 75.47 ± 0.81 67.13 ± 1.12
M3D-DCNN 90.03 ± 2.18 80.1 ± 4.56 78.04 ± 2.13 68.88 ± 3.77 62.28 ± 3.18

HybridSN 99.3 ± 0.18 97.66 ± 0.23 96.37 ± 1.19 94.24 ± 1.01 83.14 ± 1.6
R-HybridSN 99.52 ± 0.16 98.44 ± 0.44 98.12 ± 0.35 96.46 ± 0.33 86.67 ± 1.02

SSRN 98.91 ± 0.12 97.25 ± 0.35 96.33 ± 0.41 93.39 ± 0.43 84.3 ± 1.61
HybridGBN-SR 99.3 ± 0.2 98.62 ± 0.22 98.31 ± 0.26 97.42 ± 0.22 91.44 ± 0.39

Figure 18. Classification maps of SA dataset: (a) Ground truth; (b) R-HybridSN; (c) HybridSN;
(d) SSRN (e) HybridGBN-SR.

3.5. Varying Training Sample Data

To further compare the performance of the proposed Hybrid-SR with the selected
state-of-the-art models, we varied the training sample data. We randomly trained the
models at 2%, 5%, 10%, and 20% of the IP dataset, and 0.4%, 0.8%, 1%, 2%, and 5% of
the UP and SA datasets, and then tested the models on the remaining data portion. The
purpose of these experiments was to observe the variation trend and sensitivity of OA with
the changing amount of training samples of the proposed HybridGBN-SR model compared
with the selected state-of-the-art methods over the IP, UP, and SA datasets. The result is
summarized in Tables 7–9.

Table 7. The effect of varying the training sample data for the SSRN, Hybrid, R-HybridSN, and
HybridGBN-SR models on the overall accuracy (OA) over the IP dataset.

Training Sample Data in Percentage
Model 20% 10% 8% 5% 2%

2D-CNN 91.23 ± 0.21 83.86 ± 1 82.43 ± 0.62 75.47 ± 0.81 67.13 ± 1.12
M3D-DCNN 90.03 ± 2.18 80.1 ± 4.56 78.04 ± 2.13 68.88 ± 3.77 62.28 ± 3.18

HybridSN 99.3 ± 0.18 97.66 ± 0.23 96.37 ± 1.19 94.24 ± 1.01 83.14 ± 1.6
R-HybridSN 99.52 ± 0.16 98.44 ± 0.44 98.12 ± 0.35 96.46 ± 0.33 86.67 ± 1.02

SSRN 98.91 ± 0.12 97.25 ± 0.35 96.33 ± 0.41 93.39 ± 0.43 84.3 ± 1.61
HybridGBN-SR 99.3 ± 0.2 98.62 ± 0.22 98.31 ± 0.26 97.42 ± 0.22 91.44 ± 0.39

Table 8. The effect of varying the training sample data for the SSRN, Hybrid, R-HybridSN, and
HybridGBN-SR models on the overall accuracy (OA) over the UP dataset.

Model
Training Sample Data

5% 2% 1% 0.80% 0.40%

2D-CNN 96.59 ± 0.21 94.5 ± 0.4 91.82 ± 0.56 89.98 ± 0.38 85.27 ± 0.90
M3D-DCNN 92.8 ± 0.95 89.27 ± 1.35 87.19 ± 1.71 82.75 ± 2.84 76.53 ± 3.94

HybridSN 99.45 ± 0.09 97.86 ± 0.56 95.86 ± 0.93 93.3 ± 1.41 85.95 ± 1.58
SSRN 99.57 ± 0.13 99.07 ± 0.17 97.67 ± 0.4 97.12 ± 0.28 93.41 ± 0.77

R-HybridSN 99.47 ± 0.14 98.47 ± 0.27 96.4 ± 1.66 95.64 ± 0.52 91.60 ± 1.12
HybridGBN-SR 99.54 ± 0.07 99.13 ± 0.17 97.85 ± 0.4 97.33 ± 0.45 94.14 ± 0.61

Remote Sens. 2022, 14, 1332 18 of 20

Table 9. The effect of varying the training sample data for the SSRN, Hybrid, R-HybridSN, and
HybridGBN-SR models on the overall accuracy (OA) over the SA dataset.

Model
Training Sample Data

5% 2% 1.00% 0.80% 0.40%

2D-CNN 96.63 ± 0.24 94.67 ± 0.15 93.55 ± 0.26 93.03 ± 0.26 91.38 ± 0.44
M3D-DCNN 92.65 ± 0.49 90.17 ± 0.56 88.02 ± 1.35 86.82 ± 1.18 83.42 ± 1.6

HybridSN 99.83 ± 0.1 99.57 ± 0.25 98.72 ± 0.59 97.78 ± 0.78 94.88 ± 0.9
R-HybridSN 99.82 ± 0.04 99.36 ± 0.14 98.25 ± 0.4 96.97 ± 0.57 94.33 ± 0.48

SSRN 98.7 ± 0.51 98.02 ± 0.16 96.94 ± 0.55 96.87 ± 0.29 93.64 ± 0.22
HybridGBN-SR 99.94 ± 0.02 99.72 ± 0.11 99.34 ± 0.14 98.37 ± 0.43 95.8 ± 1.19

We observe in Tables 7–9 that the proposed HybridGBN-SR model has better overall
accuracy than the state-of-the-art models in almost all the training sample data splits.
Figure 19 illustrates that as the training sample data are reduced, the classification accuracy
gap between the proposed HybridGBN-SR model and the selected state-of-the-art models
widens, demonstrating different reduction speeds among the compared models. For
instance, in the IP dataset (see Table 7 and Figure 19a), at 8% of the training sample data, the
HybridGBN-SR improves the overall accuracy of 2D-CNN, M3D-CNN, SSRN, HybridSN,
and R-HybridSN by +15.88%, +20.27%, +1.98%, +1.94%, and +0.19%, respectively. In
comparison, at 2% training sample data, the HybridGBN-SR improves the overall accuracy
of 2D-CNN, M3D-CNN, SSRN, HybridSN, and R-HybridSN by +24.31%, +29.16%, +7.14%,
+8.3%, and +4.77%, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 22

Table 8. The effect of varying the training sample data for the SSRN, Hybrid, R-HybridSN, and
HybridGBN-SR models on the overall accuracy (OA) over the UP dataset.

Model
Training Sample Data

5% 2% 1% 0.80% 0.40%
2D-CNN 96.59 ± 0.21 94.5 ± 0.4 91.82 ± 0.56 89.98 ± 0.38 85.27 ± 0.90

M3D-DCNN 92.8 ± 0.95 89.27 ± 1.35 87.19 ± 1.71 82.75 ± 2.84 76.53 ± 3.94
HybridSN 99.45 ± 0.09 97.86 ± 0.56 95.86 ± 0.93 93.3 ± 1.41 85.95 ± 1.58

SSRN 99.57 ± 0.13 99.07 ± 0.17 97.67 ± 0.4 97.12 ± 0.28 93.41 ± 0.77
R-HybridSN 99.47 ± 0.14 98.47 ± 0.27 96.4 ± 1.66 95.64 ± 0.52 91.60 ± 1.12

HybridGBN-SR 99.54 ± 0.07 99.13 ± 0.17 97.85 ± 0.4 97.33 ± 0.45 94.14 ± 0.61

Table 9. The effect of varying the training sample data for the SSRN, Hybrid, R-HybridSN, and
HybridGBN-SR models on the overall accuracy (OA) over the SA dataset.

Model Training Sample Data
5% 2% 1.00% 0.80% 0.40%

2D-CNN 96.63 ± 0.24 94.67 ± 0.15 93.55 ± 0.26 93.03 ± 0.26 91.38 ± 0.44
M3D-DCNN 92.65 ± 0.49 90.17 ± 0.56 88.02 ± 1.35 86.82 ± 1.18 83.42 ± 1.6

HybridSN 99.83 ± 0.1 99.57 ± 0.25 98.72 ± 0.59 97.78 ± 0.78 94.88 ± 0.9
R-HybridSN 99.82 ± 0.04 99.36 ± 0.14 98.25 ± 0.4 96.97 ± 0.57 94.33 ± 0.48

SSRN 98.7 ± 0.51 98.02 ± 0.16 96.94 ± 0.55 96.87 ± 0.29 93.64 ± 0.22
HybridGBN-SR 99.94 ± 0.02 99.72 ± 0.11 99.34 ± 0.14 98.37 ± 0.43 95.8 ± 1.19

We observe in Tables 7–9 that the proposed HybridGBN-SR model has better overall
accuracy than the state-of-the-art models in almost all the training sample data splits.
Figure 19 illustrates that as the training sample data are reduced, the classification
accuracy gap between the proposed HybridGBN-SR model and the selected
state-of-the-art models widens, demonstrating different reduction speeds among the
compared models. For instance, in the IP dataset (see Table 7 and Figure 19a), at 8% of the
training sample data, the HybridGBN-SR improves the overall accuracy of 2D-CNN,
M3D-CNN, SSRN, HybridSN, and R-HybridSN by +15.88%, +20.27%, +1.98%, +1.94%,
and +0.19%, respectively. In comparison, at 2% training sample data, the HybridGBN-SR
improves the overall accuracy of 2D-CNN, M3D-CNN, SSRN, HybridSN, and
R-HybridSN by +24.31%, +29.16%, +7.14%, +8.3%, and +4.77%, respectively.

Figure 19. Varying training sample data for (a) IP; (b) UP; (c) SA datasets.

In the SA dataset (See Table 9 and Figure 19c), at 5% and 0.04% training sample data,
the proposed HybridGBN-SR model increases the overall accuracy (OA) of the
second-best model (HybridSN) by +0.11% and +0.92, respectively. It shows an increase in
the performance gap between our model and other models as the training sample data
drastically reduce. The same trend is observed in the UP dataset (See Table 8 and Figure

Figure 19. Varying training sample data for (a) IP; (b) UP; (c) SA datasets.

In the SA dataset (See Table 9 and Figure 19c), at 5% and 0.04% training sample
data, the proposed HybridGBN-SR model increases the overall accuracy (OA) of the
second-best model (HybridSN) by +0.11% and +0.92, respectively. It shows an increase
in the performance gap between our model and other models as the training sample
data drastically reduce. The same trend is observed in the UP dataset (See Table 8 and
Figure 19b). Therefore, we can conclude that the robustness of the proposed HybridGBN-
SR model is more pronounced as the amount of training portion decreases across all the
experimental datasets. This implies that the proposed HybridGBN-SR model can extract
sufficient discriminative features even at minimal training sample data. We attribute this to
the genomic residue connection in the design of the HybridGBN-SR model.

3.6. The Time Complexity of the Selected Models over IP, UP, and SA Datasets

Table 10 summarizes the training and testing time in seconds of SSRN, HybridSN, R-
HybridSN, and the proposed HybridGBN over the IP dataset on 5% training and 95% testing
sample data, and over UP and SA datasets on 1% training and 99% testing sample data.

The computational efficiency in training and testing time (in seconds) shown in
Table 10 indicates that the proposed HybridGBN-SR model performs better than SSRN, is
comparable with R-HybridSN, and worse than HybridSN over the three datasets. However,
we observe that the training and testing time of the deep learning model is related to the

Remote Sens. 2022, 14, 1332 19 of 20

experimental environment, model structure, number of training epochs, amount of training
samples, patch size, etc. For instance, the HybridSN model trains and tests faster than the
other models due to its simple network structure. The SSRN is the slowest in training and
testing because it contains a deep network structure and takes a long time to learn (number
of epochs). Lastly, the speed difference between the HybridGBN-SR and R-HybridSN can
be attributed to the network optimization parameters.

Table 10. The training and testing time in seconds over IP, UP, and SA datasets using SSRN, HybridSN,
R-HybridSN, and HybridGBN-SR.

Dataset
SSRN HybridSN R-HybridSN HybridGBN-SR

Train Test Train Test Train Test Train Test

IP 91.1 2.6 31.9 3.2 23.1 2.6 43.6 3.4
UP 108.9 7.3 12.4 6.9 30.1 9.4 21.3 6.2
SA 122.6 12.3 13.2 8.9 16.4 12.3 30.2 12.9

4. Conclusions

This work seeks to further the scientific work of developing deep networks for HSI
classification. We propose a deep 3D/2D genome graph-based network (abbreviated as
HybridGBN-SR) model that extracts discriminative spectral–spatial features from very
few training samples. In the network design, the proposed HybridGBN-SR model uses
the Genoblocks, a concept borrowed from biological graph genomes. The Genoblocks
innovatively utilize multi-scale kernels, identical and non-identical residual connections,
to extract abundant contextual features vital to attaining a high generalizability rate. The
residual connections promote the backpropagation of gradients to extract more discrimina-
tive features and prevent overfitting, leading to high classification accuracy. The proposed
HybridGBN-SR model achieves reduced computational cost by replacing the Geno3Dblock
with the low-cost Geno2Dblock at the top of the network structure. The Geno2Dblock
contains dilated 2D convolutions to extract further discriminative HSI features, resulting in
increased model computational efficiency while maintaining classification accuracy. The
proposed HybridGBN-SR model’s robustness is evidenced by its better convergence than
SSRN and HybridSN across all the datasets and its ability to achieve better classification
accuracy with a small number of training samples as compared to the state-of-the-art
methods such as SSRN, HybridSN, and R-HybridSN over the IP, UP, and SA.

Author Contributions: Conceptualization, H.C.T., E.C., R.M.M. and D.O.N.; software, H.C.T. and
D.O.N.; resources, E.C.; writing—original draft preparation, H.C.T., D.O.N. and R.M.M.; writing—
review and editing, H.C.T., E.C., L.M., D.O.N. and R.M.M.; supervision, E.C. and L.M.; funding
acquisition, E.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grants U1804152 and 62101503.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets used in this research are openly accessible online (http:
//www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed on
15 February 2022)).

Acknowledgments: The authors express gratitude to http://www.ehu.eus (accessed on 15 February
2022) for publicly providing the original hyperspectral images to advance research remote sensing.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus

Remote Sens. 2022, 14, 1332 20 of 20

References
1. Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An

Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [CrossRef]
2. Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern Trends in Hyperspectral Image Analysis: A Review. IEEE

Access 2018, 6, 14118–14129. [CrossRef]
3. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on

Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]
4. Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification

through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Sympo-
sium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962.

5. Villa, A.; Benediktsson, J.A.; Chanussot, J.; Jutten, C. Hyperspectral Image Classification With Independent Component Discrimi-
nant Analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4865–4876. [CrossRef]

6. Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images With Regularized Linear Discriminant
Analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [CrossRef]

7. Licciardi, G.; Marpu, P.R.; Chanussot, J.; Benediktsson, J.A. Linear Versus Nonlinear PCA for the Classification of Hyperspectral
Data Based on the Extended Morphological Profiles. IEEE Geosci. Remote Sens. Lett. 2011, 9, 447–451. [CrossRef]

8. Lin, Z.; Chen, Y.; Zhao, X.; Wang, G. Spectral-spatial classification of hyperspectral image using autoencoders. In Proceedings of
the 2013 9th International Conference on Information, Communications & Signal Processing, Tainan, Taiwan, 10–13 December
2013; pp. 1–5. [CrossRef]

9. Ben Hamida, A.; Benoit, A.; Lambert, P.; Ben Amar, C. 3-D Deep Learning Approach for Remote Sensing Image Classification.
IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [CrossRef]

10. Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep
Learning Framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [CrossRef]

11. Nyabuga, D.O.; Song, J.; Liu, G.; Adjeisah, M. A 3D-2D Convolutional Neural Network and Transfer Learning for Hyperspectral
Image Classification. Comput. Intell. Neurosci. 2021, 2021, 1759111. [CrossRef]

12. Qiu, Z.; Yao, T.; Mei, T. Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5534–5542. [CrossRef]

13. Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral
Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [CrossRef]

14. Garifulla, M.; Shin, J.; Kim, C.; Kim, W.H.; Kim, H.J.; Kim, J.; Hong, S. A Case Study of Quantizing Convolutional Neural
Networks for Fast Disease Diagnosis on Portable Medical Devices. Sensors 2021, 22, 219. [CrossRef] [PubMed]

15. Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural
Networks. Remote Sens. 2021, 13, 4712. [CrossRef]

16. Tan, M.; Le, Q.V. MixConv: Mixed depthwise convolutional kernels. arXiv 2019, arXiv:1907.09595.
17. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.
18. Tinega, H.; Chen, E.; Ma, L.; Mariita, R.M.; Nyasaka, D. Hyperspectral Image Classification Using Deep Genome Graph-Based

Approach. Sensors 2021, 21, 6467. [CrossRef] [PubMed]
19. Manolov, A.; Konanov, D.; Fedorov, D.; Osmolovsky, I.; Vereshchagin, R.; Ilina, E. Genome Complexity Browser: Visualization

and quantification of genome variability. PLoS Comput. Biol. 2020, 16, e1008222. [CrossRef]
20. Yang, X.; Lee, W.-P.; Ye, K.; Lee, C. One reference genome is not enough. Genome Biol. 2019, 20, 104. [CrossRef]
21. Schatz, M.C.; Witkowski, J.; McCombie, W.R. Current challenges in de novo plant genome sequencing and assembly. Genome Biol.

2012, 13, 243. [CrossRef]
22. Rakocevic, G.; Semenyuk, V.; Lee, W.-P.; Spencer, J.; Browning, J.; Johnson, I.J.; Arsenijevic, V.; Nadj, J.; Ghose, K.; Suciu, M.C.;

et al. Fast and accurate genomic analyses using genome graphs. Nat. Genet. 2019, 51, 354–362. [CrossRef]
23. Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.-S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges,

Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [CrossRef]
24. Mou, L.; Ghamisi, P.; Zhu, X.X. Unsupervised Spectral–Spatial Feature Learning via Deep Residual Conv–Deconv Network for

Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 56, 391–406. [CrossRef]
25. He, M.; Li, B.; Chen, H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In Proceedings

of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908.
26. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848.
[CrossRef] [PubMed]

27. Liu, G.; Qi, L.; Tie, Y.; Ma, L. Hyperspectral Image Classification Using Kernel Fused Representation via a Spatial-Spectral
Composite Kernel With Ideal Regularization. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1422–1426. [CrossRef]

28. Feng, F.; Wang, S.; Wang, C.; Zhang, J. Learning Deep Hierarchical Spatial–Spectral Features for Hyperspectral Image Classification
Based on Residual 3D-2D CNN. Sensors 2019, 19, 5276. [CrossRef] [PubMed]

http://doi.org/10.1109/TGRS.2019.2907932
http://doi.org/10.1109/ACCESS.2018.2812999
http://doi.org/10.1109/TGRS.2016.2584107
http://doi.org/10.1109/TGRS.2011.2153861
http://doi.org/10.1109/TGRS.2008.2005729
http://doi.org/10.1109/LGRS.2011.2172185
http://doi.org/10.1109/icics.2013.6782778
http://doi.org/10.1109/TGRS.2018.2818945
http://doi.org/10.1109/TGRS.2017.2755542
http://doi.org/10.1155/2021/1759111
http://doi.org/10.1109/iccv.2017.590
http://doi.org/10.1109/LGRS.2019.2918719
http://doi.org/10.3390/s22010219
http://www.ncbi.nlm.nih.gov/pubmed/35009760
http://doi.org/10.3390/rs13224712
http://doi.org/10.3390/s21196467
http://www.ncbi.nlm.nih.gov/pubmed/34640786
http://doi.org/10.1371/journal.pcbi.1008222
http://doi.org/10.1186/s13059-019-1717-0
http://doi.org/10.1186/gb-2012-13-4-243
http://doi.org/10.1038/s41588-018-0316-4
http://doi.org/10.1109/JSTARS.2020.3005403
http://doi.org/10.1109/TGRS.2017.2748160
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://doi.org/10.1109/LGRS.2019.2898913
http://doi.org/10.3390/s19235276
http://www.ncbi.nlm.nih.gov/pubmed/31795511

	Introduction
	The Context of the Proposed Model
	HSI Data Preprocessing Step
	Feature Extraction and Classification Step
	The Architecture of Genoblocks
	The Genoblock Variants

	Experimental Results and Discussion
	Experimental Datasets
	Experimental Setup
	Evaluation Criteria
	Experimental Results and Discussions on Very Small Training Sample Data
	Distribution of the Training and Testing Sample Data over IP, UP, and SA Datasets on Very Little Sample Data
	The Performance of Selected Models over IP, UP, and SA Datasets Using Very Limited Training Sample Data
	Training Accuracy and Loss Graph of the Selected Models on Very Limited Sample Data
	Confusion Matrix
	Classification Diagrams

	Varying Training Sample Data
	The Time Complexity of the Selected Models over IP, UP, and SA Datasets

	Conclusions
	References

