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Abstract: Lately, generative adversarial networks (GAN)-based methods have drawn extensive
attention and achieved a promising performance in the field of hyperspectral anomaly detection
(HAD) owing to GAN’s powerful data generation capability. However, without considering the
background spatial features, most of these methods can not obtain a GAN with a strong background
generation ability. Besides, they fail to address the hyperspectral image (HSI) redundant information
disturbance problem in the anomaly detection part. To solve these issues, the unsupervised generative
adversarial network with background spatial feature enhancement and irredundant pooling (BEGAIP)
is proposed for HAD. To make better use of features, spatial and spectral features union extraction
idea is also applied to the proposed model. To be specific, in spatial branch, a new background
spatial feature enhancement way is proposed to get a data set containing relatively pure background
information to train GAN and reconstruct a more vivid background image. In a spectral branch,
irredundant pooling (IP) is invented to remove redundant information, which can also enhance the
background spectral feature. Finally, the features obtained from the spectral and spatial branch are
combined for HAD. The experimental results conducted on several HSI data sets display that the
model proposed acquire a better performance than other relevant algorithms.

Keywords: generative adversarial networks (GAN); hyperspectral anomaly detection (HAD);
background spatial feature enhancement (BE); irredundant pooling (IP)

1. Introduction

A hyperspectral image (HSI) is viewed as a 3-D matrix with spectral and spatial
dimensions. The former contains a large amount of spectral information with a high
resolution and the latter can provide rich structure information [1]. Depending on the
abundant spatial-spectral feature, HSI has received attention from relevant research fields,
including classification [2–4], spectral unmixing [5], and detection task [6]. Based on these
information processing methods, HSI has been applied in military, food quality, safety, and
agriculture [7]. In particular, the hyperspectral detection task has been a hot spot, which is
divided into anomaly and target detection [8,9]. Target detection is a supervised learning
way with a training set that needs a considerable amount of prior information. Anomaly
detection (AD), which finds pixels or pixels region different from their surroundings, is
also called hyperspectral anomaly detection (HAD) [10–12].

HAD is popularly supported by experts and extensively used in various fields because
it does not need prior information. In the past 20 years, many classical algorithms have
come out. The most well-known Reed–Xiaoli (RX) algorithm [13] supposes that the back-
ground obeys the multivariate Gaussian distribution. Anomalies are judged by computing
Mahalanobis distance between each test pixel and the background reconstructed. Then
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many RX-based algorithms, including the kernel RX (KRX) [14] and local RX (LRX) [15], are
put forward to enhance the detection effect. Nevertheless, the background model mean and
covariance matrix calculated by the RX-based methods in a local or whole image region are
inevitably mixed by the anomaly.

The representation-based approaches are also widely used in HAD. According to
the hypothesis that the background has the low-rank characteristics, it can be linearly
represented by the background dictionary. How to construct the dictionary is the vital part
of relevant algorithms and some efficient reconstruction methods have also appeared, such
as CRD [16] and LRASR [17]. However, the noise pixel in an image is not taken into account
by the representation-based algorithms, which only decompose the original data into the
background and abnormal pixel matrix. Hence, many noise pixels would be mistakenly
identified as anomalies, increasing the AD false alarm rate. PAB-DC [18], on a basis of the
construction of potential anomaly, and background dictionary, decomposes the original HSI
into three parts: background, anomaly and noise. The background and anomaly dictionary
is constructed, respectively, to linearly represent the corresponding image part. Then the
noise in HSI is separated from HSI. Although the high false alarm rate problem is addressed
in a way, the process is complicated. Unfortunately, many tasks are consumed to conduct
the theoretical derivation of mathematical formulas and the performance has not been
greatly improved.

The data processing methods based on deep neural networks and machine learn-
ing [19–21] show great advantage in the complex data processing, requiring researchers to
focus on model and parameters design. These data processing ways can solve the issue
that representation-based methods consume much power. Recently, with the continuous
development of computer hardware equipment and relevant theoretical knowledge, AD
technologies based on deep neural networks have made rapid progress [22,23]. The auto-
encoder (AE) [24] is taken as the model core by most of these methods [25,26]. However,
the generation ability of AE is poor. The neural network reconstructs the background by
learning the distribution of original HSI pixels, then matrix decomposition is employed
to obtain a residual image where the background is suppressed while the anomaly is
highlighted. For the sake of enhancing the ability of reconstruction, researchers also ap-
plied the idea of generative adversarial networks (GAN) [27] to the mentioned network,
making the AE a generator and adding a discriminator. The former deceives the latter
while the latter discern the former. By means of improving the generalization capacity of
neural networks through adversarial learning, these methods [25,26] have significantly
improved the performance of HAD. Yet, the background spatial feature is not taken into
consideration by the GAN-based network in [25,26], which would receive a GAN with a
weak reconstruction ability for background. Hence, the goal of acquiring the GAN with
a strong background generalization ability is not achieved. To tackle this matter, a new
way of gaining a training set with a background spatial feature enhancement (BE) is raised
according to the theory that background energy in each band have a bigger discrimination
degree [25]. We group bands and select the representative band in each group in accordance
with an energy discrimination degree, so that the training data set contains more pure
background spatial information. The targeted GAN network can be trained by learning
more pure background features. Besides, the generation capability of GAN is not stable.
Thereby, some false background pixels would be generated in the reconstructed image. It
leads to the appearance of false anomalies in the residual images compared to the initial
HSI, which is not beneficial to the HAD in the subsequent process. To solve this problem,
some strong constrained functions are proposed on the GAN networks. The contrastive
learning also has great development potential [28,29]. Additionally, the AD part of the
above deep neural network algorithms [25,26] is disturbed by HSI redundant information.
Focusing on this issue, the irredundant pooling (IP) is proposed.

To detect a hyperspcetral image anomaly better, an unsupervised generative adversar-
ial network with background enhancement and irredundant pooling (BEGAIP) is proposed
by us. HSI has abundant spectral and certain spatial features, so spatial and spectral union
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detection is proposed for HAD. From the view of HAD, HSI consists of two kinds of pixels:
background and anomaly. Hence, the background-anomaly separation idea is integrated
into the spatial and spectral anomaly detection branch of our model. In the spatial branch,
considering that background pixels obey Gaussian distribution and powerful data gen-
eration of GAN, BE-constrained two GANs are proposed to reconstruct a background
image. The first GAN is aimed at utilizing HSI pixels to generate a low dimension image
obeying Gaussian distribution, which means the low dimension background features map
is extracted. Besides, in order to make the background features in the extracted feature
map denser, BE is proposed by us to enhance the background spatial features in HSI.
Therefore, the second GAN can generate a background image well by making use of the
background features map obtained by the former. However, the GANs are not stable, some
constrained functions are proposed and imposed to prevent them from generating false
background pixels. Of course, the constrained functions can moderate, however not solve
the unstability problem thoroughly. Thus, there is the appearance of false anomalies in the
residual image because of false background pixels produced by reconstruction networks.
So, some morphological operations [30] and PCA [31] are used to improve the spatial
detection result. In the spectral branch, the Mahalanobis distance is used to detect spectral
anomalies. Given the characteristic that HSI has abundant spectral information but slight
redundancy, the irredundant pooling (IP) is proposed to protect spectral anomaly detection
from redundant information disturbance. The spectral and spatial anomaly detection maps
are fused as the final HAD result.

There are four contributions of the article, which are described below.

• Different from the traditional way, which only considers a pixel spectral value in
network training, the BE is proposed to prepare for training data sets. In this part, we
adopt the principle that the background energy in each band have a bigger discrimi-
nation degree than anomaly.

• The IP is invented in the spectral branch. We apply the grouping max pooling to
eliminate the redundant information while highlighting the available feature as much
as possible.

• Some strong constrained functions are imposed on the GAN, aimed at making the
networks more stable to reconstruct a hyperspectral background image.

• A spectral-spatial joint way, processing the HSI rather than residual image, is inte-
grated in the algorithm proposed to obtain the combination detection result, through
which we can make the best use of data.

The structure of the article is arranged as follows. In Section 2, related work including
the AE and GAN model is introduced. The BEGAIP model proposed for HAD is expa-
tiated by Section 3. Section 4 demonstrates the experimental results and analysis. Some
investigations are discussed in Section 5. Finally, this article is concluded in Section 6.

2. Related Work

In this part, the base components of the model BEGAIP proposed by us, including
autoencoder (AE) and generative adversarial networks (GAN), are described.

2.1. Autoencoder (AE)

An automatic encoder (AE) is a neural network used for data generation, which is
aimed to reconstruct the data with the distance as small as possible from the original data.
It performs backpropagation [32] by minimizing the distribution law gap between the
initial and data generated by AE. It consists of two parts: encoder and decoder. The former
maps the original data into low-dimensional data. The reduced dimension data contains
many important features in initial data and discard invalid information. The latter restores
the data generated by the encoder into data consistent with the dimension of the original
data. The latent feature layer is the part between the encoder and decoder, which is used to
temporarily store low-dimensional data. The formula of the encoder is as follows:
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z = g(wx + b) (1)

where g(·) corresponds to the encoder function, x is the input data of the network, and w
and b are the weight and offset coefficient, respectively. z is the low-dimensional data after
mapping, which contains important features in x. Similarly, the decoder function can also
be expressed by the formula:

x̃ = g′(w′z + b′) (2)

where g′(·) is the function corresponding to the decoder, and w′ and b′ are the weight and
offset coefficient of the decoder, x̃ is the data generated by the decoder by making use of z.
x̃ and the original data x contain a large amount of the same information, which is achieved
by the following constraints:

LR = ||x− x̃||2 (3)

where LR represents the reconstruction error in the whole process, which is represented by
an l2 norm. In order to minimize LR, it is necessary to propagate back loss to continuously
update the network parameters {w, b, w′, b′} to make the input and output data as similar
as possible while discarding ineffective features.

2.2. Generative Adversarial Networks (GAN)

GANs is a neural network model proposed by Lan Goodflow in 2014 [27], which is a
good generative model [33,34]. Recently, it has shown great advantages in unsupervised
application scenarios with complex data distribution. GAN is composed of a Generator
(G) and a Discriminator (D). The G aims to learn the input data Pdata(x) distribution and
generate data that is as close to them as possible. Then, the initial samples and reconstructed
samples are given to D. It spares no effort to recognize the false sample and gives the lower
score. The goal of G is to deceive the D while the task of the D is to identify the deception
of the former. It means that they continue to optimize the parameters of their own through
adversarial learning. The learning process can be described as the following function:

min
G

max
D

V(G, D) = min
G

max
D

EPx∼data(x)
[log D(x)]

+EPz∼data(z)
[log(1− D(G(z)))]

(4)

where V(G, D) is a classical loss function [35], x and z are the input data and the rand noise
data used by the G, respectively, Pdata(x) and Pdata(z) are the distribution laws of x and z.
log and E are logarithms and expectations in statistics. The training process of G and D is
carried out alternately and the result of one training is obtained according to Equation (4).
Maximum, from the perspective of D, manages to see through the deception. The D gives
a higher score to the real sample but a lower score to the false sample generated by the
G. Minimum, from the perspective of the G, successfully deceives the D. The D gives a
lower score to the real sample while a higher score to the false sample generated by the
G using noise data. Thus, in the periodical training process, we gain the best D when the
expectation sum in Equation (4) reaches the maximum. Similarly, optimal G is obtained
when the minimum appears.

3. Methodology

In this part, the model BEGAIP proposed is introduced in detail by including three
parts. The overall framework is illustrated in Figure 1. Firstly, in the spatial branch, we
propose the constrained GAN based on background spatial feature enhancement (BEGAN).
It is used to obtain a GAN with a strong background image generation capability, which
reconstructs the background matrix. Then the residual matrix with background suppressed
and anomaly relatively highlighted is obtained by matrix decomposition. The spatial
detection part is also proposed to improve the detection result. Secondly, the IP is presented
in the spectral branch, then regularized Mahalanobis distance is applied to gain the spectral
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feature. Thirdly, the features extracted from the spectral and spatial branch are fused in
proportion, and the synthesized image is used as the final HAD result.
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Figure 1. The architecture of unsupervised generative adversarial network with background spatial
feature enhancement and irredundant pooling (BEGAIP). It consists of five portions: background
spatial feature enhancement, constrained two GANs (GANz, GANo), spatial detection, irredundant
pooling, and regularized mahalanobis distance.

3.1. BEGAN-Based Spatial Anomaly Detection

The HSI spatial feature plays a significant part in HAD. In particular, in the detection
effect picture, the anomaly area can not be accurately recognized without considering
the spatial feature. To better apply background features to separate anomalies from the
background in the spatial view, BEGAN-based spatial anomaly detection is proposed.
It includes BE, constrained two GANs, and spatial detection. The algorithm details are
as follows.

3.1.1. Background Spatial Feature Enhancement

HSI consists of background and anomaly pixels. In particular, the number of back-
ground pixels is far more than the anomalies’ pixels. Thus, compared with anomaly pixels,
background pixels energy value has a bigger discrimination degree. From a spatial point
of view, the larger the gray value sum of all pixels element in this band, the more back-
ground spatial information contained in this band [25]. On the contrary, this band contains
relatively more anomaly features. Thus, in the BEGAIP spatial branch, the HSI RM×N×B

are grouped, where there are k1 bands, then the band with the largest gray value sum is
chosen in each group. In other words, the band containing as much spatial background
information as possible is selected. These bands form a new data set R1

M×N×B1 . The
specific structure is shown by the background spatial feature enhancement in Figure 1,
where M, N, and B1, which is equal to B divided by k1 are the height, width, and band
number of the new HSI data set.

3.1.2. Constrained Two GANs

In this section, we focus on constrained two GANs. The traditional unsupervised
learning methods ignore background spatial features in the training. Therefore, the network
will only learn the background pixel gray values. Besides, the GAN is not stable. Hence,
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there are some false background pixels in the image reconstructed by the GAN with a weak
background generalization ability. Therefore, the abnormal information contained in the
residual image obtained by matrix decomposition, Equation (5), is far more than the initial
HSI. The matrix decomposition formula is defined as follows:

X = S + A (5)

where XB×n = [x1, x2, ..., xn] ∈ RM×N×B, xi is a B-band pixel and n is the number of pixels
in the HSI, SB×n1 = [s1, s2...sn1] ∈ RM×N×B is the background pixel matrix reconstructed
by the network, and AB×n2 = [a1, a2...an2] ∈ RM×N×B is the anomalous pixel matrix. In
traditional neural network methods, a considerable amount of false anomalous information,
which is not contained in the X, appears in A.

To address the issue, we propose a new constrained GAN training method based on
BE. According to the characteristic that GAN tends to learn the distribution law of the
samples whose number is the largest in the training data and the number of background
pixel is far more than the anomaly pixel’s, if the new HSI set R1

M×N×B1 is used for training,
the GAN obtained can reconstruct the background image. As recommended by [25], the
original AE is modified by adding discriminator Dz and discriminator Do to the latent
feature layer and output layer of the decoder, respectively, which constitutes two GANs,
denoted as GANz and GANo. In line with the composition of the GAN model, the encoder
(En) and decoder (De) are generators of GANz and GANo, respectively, and Dz and Do
are discriminators of GANz and GANo, respectively. In addition, the encoder (En) and
discriminator Dz form the GANz, decoder (De) and discriminator Do consist of the GANo.
Similar to the anomaly detection algorithm based on RX, we also assume that background
pixels in HSI data sets conform to the Gaussian distribution, however anomalous pixels
do not. The discriminator Dz regards the noise obeying the Gaussian distribution as the
real sample and the background pixels also conform to Gaussian distribution. Thus, GANz
can extract the background pixels’ features. The GANo is applied to generate background
pixels by utilizing background features obtained by GANz. Therefore, the union of GANz
and GANo would help reconstruct the background image better. The new HSI data set
R1

M×N×B1 is reshaped into two dimensional matrix XB1×(N×M), where the number of
rows and columns are the number of bands and pixels. A pixel vector is a training data
sample. Generator En consists of 3 fully connected layers {B1, 800, 800, Bz} followed by
Leaky Relu [36] with slope 0.2, where Bz is the square root of B1. Discriminator Dz is
made up of 3 fully connected layers {Bz, 800, 800, 1} followed by Leaky Relu with slope 0.2
and Dropout with default 0.1, whose final activation function is sigmoid. Generator De is
composed of 3 fully connected layers {Bz, 800, 800, B1} followed by Leaky Relu with slope
0.2. Discriminator Do is formed by 3 fully connected layers {B1, 800, 800, 1} followed by
Leaky Relu with slope 0.2 and a dropout with a default of 0.1, whose final action function
is also sigmoid. In addition, the learning rate is set to 0.0001. The more specific details of
constrained two GANs components are depicted in Figure 2.

Additionally, to moderate GANs unstabitily and reconstruct the background image
perfectly, spectral angle constraint (6), latent layer constrain (7), and reconstruction error (3)
are added in the unsupervised network. Besides, the latent layer constrain (7) can make the
network robust to noise in a way. The details are as illustrated in Figure 3. The spectral
angle constraint is:

LSAC = arccos(
x · x̃i

‖x‖2 · ‖x̃i‖2
) (6)

in Equation (6), LSAC represents the spectral angle constraint, xi and x̃i are the original and
reconstructed pixel, respectively, and ‖ · ‖2 is the l2 norm of the vector.
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Figure 2. The more specific details of constrained two GANs components. (a) Generator (En).
(b) Discriminator (Dz). (c) Generator (De). (d) Discriminator (Do).
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Furthermore, constraint (7) is appended to the latent feature layer of AE. It is as follows:

LLLC = ‖z‖1 (7)
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where LLLC, z denote the latent layer constrain and low-dimension pixel vector produced
by the encoder. Combining the constrain (3), (6) and (7), the loss in the training process of
spatial branch network is defined as:

LTO = a0 · LR + a1 · LSAC + a2 · LLLC (8)

where LTO is the total loss of the whole network, a0, a1, and a2 are, respectively, the
homologous proportionality coefficient.

Compared with the traditional unsupervised method, the network with LTO can
reconstruct the more accurate background matrix quickly and stably. The detailed process
of BEGAN is described in Algorithm 1.

Algorithm 1: Background spatial feature enhancement-based constrained two
GANs training

Input: HSI data set H ∈ RM×N×B, group number k1
Output: Dz, En, Do, De

1 Each adjacent k1 HIS bands are divided into a group and one representative band
is selected by energy discrimination degree to construct new HSI data set
R1

M×N×B1(B1 = B/k1)
2 Convert new HSI R1

M×N×B1 into matrix XB1×L(L = M× N)

3 Input vector xB1×1
i ∈ XB1×L, latent feature layer Z̃Bz×1, parameters batchsize = L,

epoch = 50, a0 = 1, a1 = 0.1, a2 = 0.05
4 for j = 1; j ≤ eopch; j = j + 1 do
5 for i = 1; i ≤ batchsize; i = i + 1 do
6 Update GANz : Dz, En, by min

En
max

Dz
7 Update GANo : Do, De, by min

De
max

Do
8 Backpropagation: LTO = a0LR + a1LSAC + a2LLLC, min

En
max

Dz
,min

De
max

Do
9 to update Dz, En, Do, De

10 end
11 end
12 return Dz, En, Do, De;

3.1.3. Spatial Detection

Firstly, PCA is employed to select the band from the residual image. As the back-
ground is suppressed while the anomaly is enhanced, the band chosen contains the most
anomaly information, denoted as Gr. Then it is regarded as the base map of subsequent
spatial detection.

Secondly, due to the unstable generation ability of GAN, some irregular background
pixels are produced in the reconstructed image. It would lead to the matter that some
sparsely distributed false anomaly exists in Gr, increasing the detection false alarm rate. To
solve the problem, morphological opening and closing operation are adopted to eliminate
sporadic false anomalous pixels and smooth the boundary without changing the area of
true anomalies in the Gr. The details are depicted in Figure 4. Combining the morphology
open with the close operation, the image operation is adopted:

Mo(Gr) = |Gr−O(Gr)|+ |Gr− C(Gr)| (9)

where Gr is the base map, O(·), C(·) are the morphological opening and closing operation,
and | · | is the absolute value.
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Thirdly, to assist in removing false anomalous pixels from the Gr, the guide filter [37]
is used to dispose Mo(Gr) to get image Re:

Rei = ai·gri + bi, Rei ∈ Re, gri ∈ Mo(Gr) (10)

where ai and bi are the average values of linear function coefficients (aj, bj) covering
all overlapping windows Rei, respectively. Mo(Gr) itself is used as the guidance image.
Relevant parameters in the guide filter are set according to the paper [30]. Finally, for
making anomaly detection results more visual, the Otsu threshold algorithm [38] is applied
to approximately process Re, converting them into a binary image of 0 and 1 to acquire the
final spatial detection result.

PCA MO(Gr) Guide Filter

Spatial Detection

Otsu
Morphological Opening

Morphological Closing

Guidance Image

.. .

xi C M×N ×B
1∈ Gr C M×N ×1∈

Figure 4. The specific architecture of spatial detection.

3.2. Irredundant Pooling Regularized Mahalanobis Distance-Based Spectral Anomaly Detection

HSI contains abundant spectral and certain spatial features, where the former is vital
to HAD. In our model, the IP regularized Mahalanobis distance-based spectral anomaly
detection is put forward to extract spectral features better. It consists of IP, regularized
Mahalanobis distance, and spectral detection. The IP is proposed to highlight the most
useful HSI pixel component as much as possible by removing redundant information.
Regularized Mahalanobis distance is used to calculate the distance between each pixel and
background. Spectral detection is applied to process the distance matrix to obtain the final
result in the spectral branch. The details are as follows.

3.2.1. Irredundant Pooling

HSI is usually composed of hundreds of bands but has the characteristics of informa-
tion redundancy. Hence, spectral feature extraction of HAD would inevitably be interfered.
To address the matter, the IP is appended. As illustrated in Figure 5, adjacent k2 bands are
divided into the same group.

Then max pooling is applied to elements of each pixel vector in the group bands
from spectral dimensionality. The max gray value is taken as the representative of the
corresponding pixel in these bands. All pixels max gray value in this group form the new
representative band. In this way, we can remove the redundant information while retaining
the most useful pixel component, which plays a decisive role in solving the HSI redundant
information disturbance issue.
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Max Pooling

Irredundant Pooling

.. .

1

2

9
7
8

3

D B×( M ×N )

.. ..
6

8

D B
2

×( M ×N )

.. ..

R M×N ×B 

Rashape 6

5

6
8
7

4
7

9

3
4
5

8

3

9

9

5

Initial band1 New band1

.

R2
M×N ×B

2

K2

Figure 5. The specific detail of Irredundant Pooling.

3.2.2. Regularized Mahalanobis Distance

Mahalanobis distance is the most popular method in the field of AD, whose formula is:

D(x(i,j), π) = [(x(i,j) − u)T · Σ−1 · (x(i,j) − u)]
1
2 (11)

where x(i,j) is the pixel vector corresponding to spatial position (i, j) in the HSI, π is the
set of pixels in the whole HSI, (·)T represents the vector transpose, Σ−1 and u are the
inverse of the covariance matrix and average vector of the π, D(, ) is on behalf of the

Mahalanobis distance between the homologous pixel and background, and [·]
1
2 is the

square root operation.
Unfortunately, the HSI covariance matrix Σ may be ill-conditioned owing to high

correlation dimensionality. As suggested by [39], the traditional Mahalanobis distance is
modified. Under the premise that the energy of the matrix and correlation of the pixel
vector element remains unchanged as far as possible, we add a bias matrix(βE) into the
HSI covariance matrix, transforming it into a non-singular matrix. The altered formula is
as follows:

D(x(i,j), π) = [(x(i,j) − u)T · (Σ + βE)−1 · (x(i,j) − u)]
1
2 (12)

where E is the identity matrix of the same order as Σ and β is the regularization coefficient.
The IP-based regularized Mahalanobis distance algorithm achieved the better perfor-

mance. The distance matrix calculated by Equation (12) is the ultimate result of spectral
branch anomaly detection.

3.3. Combination

There is rich spectral and certain spatial information in HSI. Thus, features extracted
from spatial and spectral branch need to be merged to obtain complete information in the
original HSI. The fusion is as follows:

F = α · Re + γ · D (13)

where F is the final HAD result, α and γ are the linear coefficients of spatial and spectral
anomaly detection results, respectively. Considering that the two kinds of information are
equally important in HSI, they are both fixed at 0.5.

4. Experiments

In this section, we introduce the four public HSI data sets [40], related algorithms
used in comparative experiments, evaluation criteria, detection performance of different
algorithms on these data sets, and parameters settings.
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4.1. Data Description

1. San Diego data set: It is taken by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) from the San Diego area. They consist of 224 bands, however there are
35 bands of poor quality that are deleted in the experiment, such as water absorption
region. Consequently, there are 189 bands in the effective data set and the spatial
resolution is 3.5 m. The image size is 400× 400, where 100× 100 areas from the upper
left corners is selected for training and testing. Three aircraft are called anomalies,
with a total of 57 anomalous pixels. The pseudo-color image and ground-truth map
are shown in Figure 6a,b.

2. Los Angeles data set: The region shown in this image acquired by AVIRIS is the part of
urban area of Los Angeles. The spatial region size is 100× 100, the spatial resolution
is 7.1 m, and the number of available bands is 205. In the process of AD, ground
objects of different shapes, such as aircraft are regarded as anomalies, with a total of
170 abnormal pixels. The pseudo-color and ground-truth image are demonstrated in
Figure 7a,b.

3. Texas Coast data set (TC-I data set and TC-II data set): It includes some images taken
by the AVIRIS in the Texas Coast Area. There are two images with a spatial size of
100× 100, a spatial resolution of 17.2 m, and 207 available bands in total. Residential
houses of different shapes in the image are labeled as anomalous areas, containing
67 and 155 anomalous pixels, respectively. Figure 8a,b describe the pseudo-color
and the ground-truth map of TC-I. And Figure 9a,b show the pseudo-color and the
ground-truth map of TC-II.

4. Bay Champagne data set: It is collected by AVIRIS from the Bay Champagne area.
The image is made up of 188 available bands, whose spatial size is 100× 100 and
resolution is 4.4 m. Among them, things on the sea surface are considered as anomalies,
involving 11 pixels. The pseudo-color and the real ground-truth of the image are
given in Figure 10a,b.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Visual detection results of all the algorithms on the San Diego dataset. (a) Pseudocolor
image. (b) Ground-truth. (c) BEGAIP. (d) LRASR. (e) GTVLRR. (f) LSMAD. (g) RX. (h) RPCA. (i) LRX.
(j) CRD.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Visual detection results of all the algorithms on the Los Angeles dataset. (a) Pseudocolor
image. (b) Ground-truth. (c) BEGAIP. (d) LRASR. (e) GTVLRR. (f) LSMAD. (g) RX. (h) RPCA. (i) LRX.
(j) CRD.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Visual detection results of all the algorithms on the TC-I dataset. (a) Pseudocolor image.
(b) Ground-truth. (c) BEGAIP. (d) LRASR. (e) GTVLRR. (f) LSMAD. (g) RX. (h) RPCA. (i) LRX.
(j) CRD.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Visual detection results of all the algorithms on the TC-II dataset. (a) Pseudocolor image.
(b) Ground-truth. (c) BEGAIP. (d) LRASR. (e) GTVLRR. (f) LSMAD. (g) RX. (h) RPCA. (i) LRX.
(j) CRD.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Visual detection results of all the algorithms on the Bay Champagne dataset. (a) Pseudo-
color image. (b) Ground-truth. (c) BEGAIP. (d) LRASR. (e) GTVLRR. (f) LSMAD. (g) RX. (h) RPCA.
(i) LRX. (j) CRD.

4.2. Compared Methods and Evaluation Criteria

In this part, the compared methods and evaluation criteria are introduced.

4.2.1. Compared Methods

Taking the theory adopted, influence, and popularity into consideration, classic AD
algorithms in different time periods are selected. The compared algorithms cover RX [13],
LRX [15], CRD [16], RPCA [41], GTVLRR [42], LRASR [17], and LSMAD [43].

The RX is the typical statistics-based algorithm, which supposes that the background
obeys the standard normal distribution. Combined with mathematical knowledge, pixels’
Mahalanobis distance matrix is the criterion to judge whether a pixel is an anomaly. If
the distance value is too large, the pixel is likely to be anomaly, otherwise, it belongs to
the background. LRX is the variant of the RX, which is a little different from the RX. It
deems that background in the local area obeys the standard normal distribution. As for
CRD, a background pixel is approximately linearly expressed by the surroundings while
the anomaly can not. The RPCA is another kind of representation-based algorithm, which
decomposes HSI into two matrices: low-rank background and sparse anomaly matrix.
Finally, the l2 norm is imposed on the sparse matrix to detect an anomaly. For GTVLRR, the
whole image pixels are chosen as the dictionary for simplicity. Aiming to take advantage
of spatial information, the graph and total variation (TV) regularization are incorporated.
Furthermore, the LRASR is the classic representation-based AD algorithm. It constructs the
background dictionary used to linearly represent background pixels matrix by making use
of clustering and then with the way of matrix decomposition, sparse matrix representing
anomalies can be obtained. In addition, the sparse matrix is added to the l1 norm for the
final detection result. LSMAD is the representation-based version where the LRASR and
Mahalanobis distance are combined to gain a better performance.

4.2.2. Evaluation Criteria

To compare the detection performance of the model proposed and other compared
algorithms, the receiver operating characteristic (ROC) and the area under the curve (AUC)
value are adopted as the evaluation criteria [44,45]. In the HAD evaluation area, ROC is
the most popular [46]. It is like a function where the true positive rate (TPR) is uniquely
determined when the false positive rate (FPR) is fixed. Besides, FPR varies at the different
threshold value. The TPR and FPR formula are as follows:

TPR =
TP

TP + FN
(14)



Remote Sens. 2022, 14, 1265 14 of 23

FPR =
FP

FP + TN
. (15)

In fact, AD is an unsupervised pixel binary classification problem, including positive
and negative class. In Equation (14), a positive pixel is predicted truly, which is denoted as
TP. On the contrary, if a positive pixel is detected as a negative pixel falsely, it is denoted
as FN. Similarly, in Equation (15), FP represents false positive rate and TN means the true
negative rate. If FPR and TPR are independent variables and function values, respectively,
then they can form a function picture. This function curve is called the ROC curve and
its level indicates the performance of the tested model. In other words, the higher true
positive rate (TPR) means better when the false positive rate (FPR) is the same. From a
macro point of view, AUC (the area under ROC curve), is viewed as the evaluation criteria
of relevant models and is less than 1.0.

4.3. Detection Performance

The experimental results conducted on four data sets are analyzed in this section. The
AUC values on data sets of compared methods and BEGAIP model are described in Table 1.

Table 1. AUC values of several methods on the four data sets.

Methods San Diego Los Angeles TC-I TC-II Bay Champagne

RX 0.9106 0.9288 0.9907 0.9946 0.9998
LRX 0.8944 0.9386 0.9670 0.9501 0.9999
CRD 0.9754 0.9187 0.9817 0.9311 0.9999

RPCA 0.9165 0.9275 0.9922 0.9957 0.9995
GTVLRR 0.9851 0.9277 0.9391 0.9012 0.9943
LRASR 0.9860 0.9143 0.9443 0.9759 0.9984
LSMAD 0.9767 0.9353 0.9834 0.9838 0.9998
BEGAIP 0.9913 0.9478 0.9957 0.9984 0.9998

Firstly, from the point of the AUC value, the detection performance analysis is as
follows. As we can see, although the RX algorithm is seen as the benchmark, its detection
effect on all data sets is relatively stable compared with other compared algorithms. In
particular, its performance on the TC data set is only inferior to RPCA and the proposed
algorithm’s. LRX achieved the best (0.9999) and second-best detection effect (0.9386) on the
Bay Champagne and Los Angeles data set, respectively, however the worst detection result
(0.8944) was on the San Diego data set. The overall performance is extremely unstable.
Besides, it is greatly affected by the size of the window. If the size of the outer and inner
windows are not appropriate, the result is extremely terrible. Comparatively speaking, the
CRD algorithm has a stable performance. Besides, its AUC (0.9999) on the Bay Champagne
data sets is the best. Low-rank and sparse representation-based algorithms, including
GTVLRR, LRASR, and RPCA, fail to yield satisfying results. In contrast, LSMAD has a
better comprehensive performance. The new model proposed had an excellent performance
on four data sets. Its AUC values on the first three data sets are far higher than the second-
ranked. However, it is not the best on the fourth data set, whose AUC value (0.9998) is
only 0.0001 smaller than the LRX and CRD’s. This is because the compared algorithms
do not make effective use of spatial features. Unlike them, the proposed model BEGAIP
contains a branch based on BE and GAN to extract spatial features for HAD. Although
BEGAIP achieves the best results on the Los Angeles data set compared to other algorithms,
its AUC value is smaller than value obtained from other four HSIs. The reason is that the
pixels that exist in the background and anomaly boundary area almost obey the Gaussian
distribution. Therefore, these pixels are regarded as the background by two GANs. Besides,
the anomaly area in this HSI data set is small. Hence, the reduction rate of the anomaly area
detected by BEGAIP is greater than other data sets. However, the comprehensive results
on the five HSI of BEGAIP are far better than the compared methods. In addition, the ROC
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curves are illustrated in Figure 11, which shows five HSIs in four data sets, respectively. As
explained earlier, the higher the curve, the better corresponding algorithm performance.
As the picture shows, in a, b, c, and d, the curves of BEGAIP are always above that of the
compared algorithms. The BE and IP help to utilize spatial and spectral features better. As
for e, the curve of model proposed is below others only when FPR is small. The reason
may be that the pixels at the shoreline location do not obey the Gaussian distribution and
these pixels are mistakenly regarded as anomalies by BEGAIP. That leads to the matter that
the false alarm rate of BEGAIP on the Bay Champagne data set is relatively higher than
on other data sets. However, our model shows the best results when comparing the ROC
curves in the five figures. It verifies the good performance of our model again.

Secondly, the visual detection results on data sets are portrayed in Figures 6–10. They
respectively correspond to the San Diego, Los Angeles, TC-I, TC-II, and Bay Champagne
HSI data set, where a–j represent the true HSI, ground-truth, and detection result of different
methods. From only the effect diagram of HAD, the BEGAIP’s performance is far better
than that of the compared algorithms. In addition, it can be seen that the visual detection
result texture structure of BEGAIP on five HSIs is clearer than the compared algorithms.
The reason is that the BE-based spatial branch in our model takes spatial features into
consideration, which brings about such a good result. In c of Figures 6 and 8–10, the
anomaly area shape detected by BEGAIP is almost similar to the true anomaly area shape.
Due to the anomaly area in these four HSI data sets being large, although some anomaly
pixels in the boundary area between anomaly and background are not detected by the
BEGAIP, the left area shape does not change too much. On the contrary, in c of Figure 7,
some anomaly area is lost because these anomalies are almost boundary pixels obeying
the Gaussian distribution. They are not detected by the model well. On the whole, from
the view of the visual detection image and AUC value, a comprehensive performance of
BEGAIP is shown to be better than the compared algorithms. BEGAIP is also suitable for
the HSI data sets whose anomaly area is relatively large.
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Figure 11. ROC curves of all the algorithms on four data sets. (a) San Diego data set. (b) Los Angeles
data set. (c) TC data set-I. (d) TC data set-II. (e) Bay Champagne data set.

4.4. Parameters Settings

Relevant parameter settings are discussed in this part. The important parameters
settings of all algorithms on the four data sets are portrayed in Table 2. As for BEGAIP,
in the spatial branch, the k1 of BE is set according to the experimental results shown in
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Figure 12, where k1 is chosen from {1, 2, 3, 4, 5, 6, 7, 8}. As for the GAN network, they are set
by experimental outcomes. The input dimension and output dimension of encoder En are
B1 and Bz, which is equal to square roots of B1, consisting of 3 layers of a fully connected
network followed by Leaky ReLu. The input and output dimension of Dz in the AE latent
layer are Bz and 1, which is composed of 3 layers of a fully connected network followed
by Leaky ReLu and Dropout with a default parameter of 0.1. In the latent feature layer,
a0, a1, and a2 of the loss LTO are 1, 0.1, and 0.05. In particular, the LLLC is a smooth L1 loss
with β = 1.0 instead of the L1 loss function. De and Do both compose of 3 layers of fully
connected networks. The input and output dimension of the former are Bz and B1 while
the latter are B1 and 1. In the spatial detection, the guide filter size r and regularization
parameter ε are 3 and 0.5 according to the works of [30].

Table 2. Parameters Settings of algorithms on the data sets.

Methods San Diego Los Angeles TC-I TC-II Bay Champagne

LRX Wout = 25, Winner = 23 Wout = 25, Winner = 23 Wout = 15, Winner = 13 Wout = 25, Winner = 23 Wout = 25, Winner = 23

CRD Wout = 17, Winner = 15 Wout = 17, Winner = 15 Wout = 13, Winner = 7 Wout = 17, Winner = 15 Wout = 17, Winner = 15
λ = 10−6 λ = 10−6 λ = 10−6 λ = 10−6 λ = 10−6

RPCA π0 = 0.01 π0 = 0.01 π0 = 0.01 π0 = 0.01 π0 = 0.01

GTVLRR λ = 0.3, β = 0.3 λ = 0.3, β = 0.4 λ = 0.3, β = 0.3 λ = 0.3, β = 0.3 λ = 0.5, β = 0.2
γ = 0.05 γ = 0.2 γ = 0.05 γ = 0.1 γ = 0.05

LRASR λ = 0.01, β = 0.005 λ = 1, β = 0.1 λ = 0.01, β = 0.005 λ = 0.01, β = 0.005 λ = 1, β = 0.1
BEGAIP K1 = 3, K2 = 4 K1 = 3, K2 = 1 K1 = 2, K2 = 2 K1 = 3, K2 = 6 K1 = 3, K2 = 3
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Figure 12. The AUC value varies with parameters of K1 and K2. (a) San Diego data set. (b) Los
Angeles data set. (c) TC data set-I. (d) TC data set-II. (e) Bay Champagne data set.

In the spectral branch, in accordance with many experimental results illustrated in
Figure 12, in which k2 varies in {1, 2, 3, 4, 5, 6, 7, 8}, the k2 of IP is chosen for each data set.
The bias matrix coefficient β in (12) is fixed at 0.01, as recommended by [39]. Regarding
the compared methods, there are no important parameters in RX and LSMAD. For LRX
and CRD, their optimal outer and inner windows size are set on the basis of [47] and
experiments, where the outer size varies from 5 to 29 and the inner size varies from 3 to 27.
The suitable regularization parameter λ in CRD is set to 10−6, as suggested by the original
literature [16]. Combining [17] and the experimental results, the perfect regularization
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parameter λ and β of LRASR are selected from {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1}
and {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}, respectively, for each HSI. For GTVLRR, advised
by [42], the suitable parameter λ, β, and γ are picked from {0.3, 0.5}, {0.2, 0.3, 0.4}, and
{0.05, 0.1, 0.2}, respectively for every data set. As to RPCA, the π0 is fixed at 0.01 in accor-
dance with [48]. The relevant experiments were repeated 10 times, and the average value is
taken as the final result.

Figure 12a–e shows that k1 of BE and k2 of the IP play an important part on the
performance of model proposed. The variation curves of the BEGAIP performance with
parameters k1 or k2 are similar to a parabola. As for the BE, the reason is that it discards
some useful bands containing much background spatial features when k1 is too large and
its background spatial features enhancement degree is poor when k1 is small, thus the
GANs with a strong background generation ability can not be obtained. That accounts
for the bad detection results. As for the IP, the new band generated by IP is meaningless
because the pixel component dimension has no correlation when k2 is too large and there is
a large amount of redundant information when k1 is small, which are both not beneficial to
the subsequent spectral anomaly detection. Therefore, the parameters settings of k1 and k2
are vital to the performance of BEGAIP.

5. Investigations

In this section, in order to further verify the role of relevant components and the
efficiency of the proposed model, some investigations are carried out and discussed from
four perspectives. Firstly, three different version of IPs, including IP with min pooling, IP
with average pooling, and IP with max pooling, are arranged to explore which pooling
is the best for IP. Secondly, the role of innovative components, containing constrained
functions, BE, and IP, is discussed according to the eight experimental scenarios’ results
and adopted logic. Thirdly, the computing time of all the methods with the best parameters
setting shown in Table 2 are recorded. Their computational efficiency is also evaluated by
us. Finally, to confirm the robustness of our proposed model against noise, experiments are
carried out on the HSI data set with synthetic noise.

5.1. Investigation of Different Version Irredundant Pooling (IP)

AUC values of IP with different pooling on the data sets are demonstrated in Table 3.
The model without an IP and with the best parameters setting (BEGAIP without IP), which
is the benchmark, are also conducted on the data sets to make the results persuasive.

Table 3. AUC values of IP with different pooling on data sets.

Versions Bay Champagne Data Set TC Data Set-I

BEGAIP (without IP) 0.9964 0.9935
IP (min) 0.9920 0.9875

IP (average) 0.9928 0.9922
IP (max) 0.9998 0.9957

From Table 3, we can see that the IP with min pooling obtains the worst results. Besides,
BEGAIP without IP and IP with average pooling have a similar effect, as they did not
consider the importance of features in adjacent bands at the same location of hyperspectral
data, resulting in poor results. The version with IP (max pooling) is the most excellent
among the experimental scenes. It ensures the best use of spectral features by highlighting
the most significant components. Of course, group number k2, the number of the adjacent
bands assigned to the same group, is also important. The process of the investigation is
illustrated in Figure 12 and the results are recorded in Table 2, the optional parameter is
from the {1, 2, 3, 4, 5, 6}.
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5.2. Investigation of the Innovative Part

In this part, the innovations of our model are discussed from the view of the logic
and application. The innovations include background spatial feature enhancement (BE),
irredundant pooling (IP), and constrain function which is made up of LR, LSAC, and LLLC.

From the point of logic, the two GANs in the proposed model are used to learn the
distribution law of the HSI pixels and to reconstruct the background image, the BE is aimed
at enhancing the HSI spatial features. Thus, the BE-GANs would learn more background
information to generate a more realistic background image. Although the GAN has a
powerful data generation ability, it is not stable. The constrain function is imposed to
prevent it from generating false background pixels. Of course, the constrain function can
moderate, however not solve the instability problem of GANs thoroughly. The HSI has
rich spectral features, however also information redundancy. IP is targeted at eliminating
redundancy, while highlighting useful information, and protecting the spectral anomaly
detection from being disturbed. By these analyses, we can learn that the innovations play a
significant role to enhance the performance of BEGAIP for HAD.

To verify the role of the innovative part from the application view, a self-comparison
experiment is conducted on the HSI data sets. Eight algorithm versions are prepared in
total. We regard only two GANs without constrained functions loss in the spatial path and
regularized Mahalanobis distance (MD) in the spectral branch as the benchmark, denoted
as GAN + MD and arranged in the first experiment. The second is GAN + MD with
additional reconstruction loss LR between the input of the GANz and output of the GANo,
represented as GAN + LR + MD. Similarly, the spectral angle constraint LSAC and latent
layer constrain LLLC are added to the GAN + MD according to Figure 3. They are the third
and fourth experimental scenarios, respectively. Three loss functions are imposed on the
GAN networks together, which means the two GANs are constrained. It is assigned in
the fifth, represented as CGAN + MD. We add the BE to the spatial branch in the fifth
scene. The view is of the BE + CGAN + MD and arranged in the sixth part. The IP is
appended to the spectral branch in the fifth experiment, of which (CGAN + IP + MD) is
the seventh scenario. The eighth corresponds to the BEGAIP proposed, comparing the
fifth, sixth, and seventh experiment. It consists of BE and CGAN + IP + MD, denoted
as BE + CGAN + IP + MD. To avoid the experimental contingency, each experiment is
repeated 5 times and the average AUC value is taken as the final result. The specific data
are exhibited in Table 4.

Table 4. AUC values of eight algorithm versions on the data sets.

Versions San Diego Los Angeles TC-I TC-II Bay Champagne

GAN + MD 0.9670 0.9132 0.9815 0.9946 0.9854
GAN + LR + MD 0.9744 0.9316 0.9862 0.9954 0.9909

GAN + LSAC + MD 0.9673 0.9164 0.9819 0.9959 0.9861
GAN + LLLC + MD 0.9678 0.9153 0.9833 0.9949 0.9876

CGAN + MD 0.9751 0.9420 0.9875 0.9964 0.9923
BE + CGAN + MD 0.9888 0.9442 0.9935 0.9972 0.9964
CGAN + IP + MD 0.9820 0.9420 0.9877 0.9975 0.9935

BE + CGAN + IP + MD 0.9913 0.9478 0.9957 0.9984 0.9998

As Table 4 shows, the benchmark algorithm GAN + MD obtains the worst results on five
HSI datasets. The performance of the method of GAN + LR + MD, GAN + LSAC + MD,
GAN + LLLC + MD are better than the benchmark. This is because the proposed con-
strained functions ensure the GANs are stable. It can reconstruct the background image
well. The AUC value of the fifth algorithm CGAN + MD is far bigger than the benchmark.
The reason is that when these three constrained functions are combined, the two GANs net-
works become more stable. Thus, the GANs can better reconstruct the background image.
The result of the BE + CGAN + MD is better than the fifth method. This is because the BE
can provide HSI with background spatial features enhanced for constrained two GANs
training. Therefore, the first GAN (GANz) would generate a low dimensional background
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image with more pure background spatial features, which is beneficial for the second GAN
(GANo) to reconstruct the background image. The AUC value of the seventh method is
bigger than the fifth method. IP, removing the redundant information and highlighting the
most useful information, prevents spectral anomaly detection from redundant information
interference. Thus, the seventh method obtains a better result when compared to the fifth
algorithm. Therefore, the results in Table 4 verify the positive effect of the innovative part,
including the constrained function, BE, and IP again.

5.3. Investigation of Computing Time

The experiments of model BEGAIP were conducted on GeForce RTX 2070 SUPER,
Pycharm 2019.3.3 x64, Python 3.6.0, torch-gpu 1.8.1, and CUDA 11.1.96. We used MATLAB
R2020a for the experiments of the compared methods on GeForce RTX 2070 SUPER. The
time cost of all the algorithms on the data sets is demonstrated in Table 5 and the processing
time of BEGAIP proposed, varying with the HSI spatial size and spectral dimensions is
illustrated in Figure 13, which are recorded in seconds.

The network proposed is complex owing to many parameters that need to be learned
in the spatial branch. It may spend twenty minutes optimizing and training. In this article,
the time from the data input to acquisition of detection result, excluding GAN training time,
is taken as the computing time. As displayed in Table 5, it can be concluded that BEGAIP
is not the best algorithm, however it is quicker than LRX, GTVLRR, LRASR, LSMAD
except RX, CRD, and RPCA. Although the application of GANs has improved the accuracy,
they result in the expense of time. How to reduce computing time would be a concern
for future work. Nevertheless, the comprehensive result, involving the AUC value and
visual detection image, is far better than that of RX, CRD, and RPCA. It again confirms the
performance of the method designed for HAD.

Table 5. Average time cost (second) of all the algorithms on the data sets.

Methods San Diego Los Angeles TC-I TC-II Bay Champagne

RX 0.3487 0.3394 0.3383 0.3385 0.3295
LRX 50.182 42.242 52.412 41.355 33.013
CRD 7.9219 7.4165 17.611 7.1397 6.7964

RPCA 8.4508 11.005 10.850 12.244 8.6443
GTVLRR 193.26 198.99 229.40 206.43 220.18
LRASR 47.281 56.037 52.722 57.853 98.447
LSMAD 11.534 11.842 11.815 12.570 11.093
BEGAIP 10.145 11.195 10.720 9.7566 10.1674

In order to explore how the processing time increases with respect to the size of the
image, two groups of experiments are conducted on HIS data sets. In the first group of
experiments, the dimensions of four HIS data sets are fixed, and we change the spatial size
of the selected square HSI area for the experiments. Each time, we add 10 to the side length
of the region. In this way, we can learn how the processing time varies with an increase in
spatial size. In the second group of experiments, the spatial size is fixed at 100×100, and
we add the 30 bands every time to explore how the processing time increases with respect
to the dimensions of the image. The results are shown in Figure 13:
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Figure 13. The processing time of the proposed BEGAIP varies with the HSI spatial size and spectral
dimensions. (a) The processing time varies with the spatial size when the spectral dimensions are
fixed. (b) The processing time varies with the spectral dimension when the spatial size is fixed.

In the picture, we can see that the spatial size and spectral dimensions of the HSI have
an important effect on the processing time of the model. In Figure 13a,b, the computing
time becomes bigger along with an enlarged spatial size or increased spectral dimensions.
The reason being that the number of parameters that need to be learned increases in spatial
branch and the scale of matrix processed enlarges in the spectral branch. When spatial sizes
or channels of different HSI are the same, the processing time is different. This is because
the grouping band selection in BE and redundant information elimination of IP change
dimensions of HSI to be processed.

5.4. Investigation of Model BEGAIP for HAD Robustness against Noise

In this section, we confirm the robustness of BEGAIP against noise when it is used for
HAD. Firstly, Gaussian noises with a different signal-to-noise ratio (SNR) {10 dB, 20 dB,
30 dB, 40 dB, 50 dB, 60 dB, 70 dB, 80 dB} are added to four HSI data sets. The mean
and standard deviation of noise are 0 and 1, respectively. Then, several experiments are
conducted on these synthetic data sets. The results are shown in Figure 14.
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Figure 14. ROC curves of all the algorithms on four synthetic data sets. (a) San Diego data set. (b) Los
Angeles data set. (c) TC data set-I. (d) TC data set-II. (e) Bay Champagne data set.
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As we can see, the robustness of BEGAIP against noise is not the best, however it is
excellent when it is used for HAD. In Figure 14, the ROC curves of model proposed in a, c,
d, and e are stable when SNR is bigger than 30 dB, and decline when SNR is smaller than
30 dB. Since the LLLC, constrained two GANs, and Mahalanobis distance can eliminate
the influence of a small amount of noise on HAD. Besides, the anomaly area in these
three HSIs is relatively large, and the energy of the background in each band has a bigger
discrimination degree. Therefore, the BE can obtain a more pure background spatial feature
set. The constrained two GANs can reconstruct the background image well. However,
when SNR is lower than 30 dB, there is considerable noise in these three data sets and
HSIs are almost damaged. For LLLC, constrained two GANs and Mahalanobis distance
can not completely eliminate the noise effect on HAD, which leads to bad results. The
BEGAIP curve of b slightly fluctuates when the SNR is higher than 30 dB, which is due to
the smaller anomaly area in the synthetic HSI data. On the whole, the proposed model has
good robustness to noise when it is used for HAD.

6. Conclusions

In this article, a new model called BEGAIP is designed for HAD. The BE is applied to
acquire a relatively pure background spatial information data set for the GAN networks
training, strong constrain functions make GAN network stable and IP is made use of to
remove redundant information. The method is examined on four HSI data sets and the
experimental results show that our model is better than the relevant classical algorithms
based on RX and low-rank sparse representation. From the perspective of the AUC value,
the proposed BEGAIP is excellent. From the view of the visual detection image, the anomaly
in the HSI can be recognized easily through different colors. Besides, the computing time
of the proposed model on the HSI data sets is less than that of the LRX, GTVLRR, LRASR,
and LSMAD algorithms.

From the reflection of the experimental process, we have learnt some lessons. As
for the model collapse owing to the unstability of GAN, selecting the ideal epoch and
designing strong constrained functions are good choices. The learning rate of the optimizer
is also significant to the performance of the model.

Of course, the false alarm rate is relatively high in the final detection map on a certain
data set, where there are some pixels included in the background, however are mistaken
as anomalies. In future, some time needs to be spent designing more efficient networks,
reducing the false alarm rate, and processing anomalies in the boundary area well to further
enhance its performance.
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