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Abstract: The requirement of timeliness is increasing while obtaining precise tempo-spatial informa-
tion with the development of global navigation satellite systems (GNSSs). Due to the poor network
environment and communication conditions in some regions or application scenarios, it is difficult for
users to receive real-time (RT) precise products. The hourly updated ultra-rapid products with low
latency and high accuracy are of great interest in GNSS real-time and near-real-time fields. However,
it is difficult to achieve the high-rate one-hourly updated precise clock estimation (PCE); since many
ambiguity parameters need to be estimated, the computation is time-consuming. At present, the
highest time resolution of ultra-rapid clock offsets is 15 min. The low samplings affect the prediction
accuracy of clock offsets and the precise point positioning (PPP) performances. To meet these re-
quirements, we proposed an efficient method and design a new framework for high-rate one-hourly
updated ultra-rapid PCE. We modified the epoch-difference (ED) PCE model in the parameter esti-
mation. According to the characteristics of the modified ED PCE model, the Open Multi-Processing
(OpenMP) and Intel Math Kernel Library (MKL) technologies are used to construct a parallel system
to realize the parallelism among satellites, epochs, and stations. The comprehensive assessment in
the precision of clock offsets and PPP performances is conducted. The result demonstrates that the
one-hourly updated multi-GNSS clock offsets with 30 s sampling can be obtained within 20 min. The
estimated clock offsets accuracy increases with the improvement of the time resolution. The STD and
RMS are improved by (0.97 to 9.09% and 0.12 to 5.56%) in the observation session, (2.82 to 23.08% and
0.95 to 9.09%) in the first hour of the prediction session, and (0.11 to 3.85% and 0.12 to 4.19%) in the
second hour of the prediction session compared with low-rate products, respectively. The high-rate
one-hourly updated ultra-rapid clock offsets significantly improves the RT-PPP performances. The
positioning accuracy can be improved by 1.52~25.74%, and the convergence time can be improved by
21.96~65.75%. The RT-PPP performances are basically the same as GeoForschungsZentrum Potsdam
(GFZ) rapid products and slightly better than the Center National d’Etudes Spatiales (CNES) RT
products (CLK93). The one-hourly updated ultra-rapid products with low latency, high accuracy,
and not limited by network conditions can be well applied to real-time or near real-time applications
and research.

Keywords: high-rate; one-hourly updated ultra-rapid clock offsets; precise clock estimation (PCE);
epoch-difference (ED); parallel processing; precise point positioning (PPP)

1. Introduction

Precise satellite orbits and clock offsets are essential for obtaining precise tempo-spatial
information in precise point positioning (PPP), which plays an important role in precise
orbit determination (POD) for low Earth orbit (LEO) satellites, atmospheric retrieval, precise
positioning, timing, and so on. The International GNSS Service (IGS) has officially provided
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final, rapid, and ultra-rapid products since 5 November 2000 [1]. As summarized in IGS
product introductions (https://igs.org/products/#about, accessed on 1 March 2022), the
IGS final products with highest precision are delayed for 12~18 days; the rapid products
are delayed for 17~41 h [2]. With the development of global navigation satellite systems
(GNSSs) and the increasing requirements for positioning accuracy and low latency, the
final and rapid products can hardly meet the real-time and near-real-time user needs. The
ultra-rapid products with low latency and high accuracy are of great interest in GNSS
real-time and near-real-time fields. IGS integrated ultra-rapid GPS-only products from
eight analysis centers (AC), Center for Orbit Determination in Europe (CODE), Natural
Resources Canada (NRCan), and so on, which are updated every six hours [3,4]. At present,
the latency and time resolution of the ultra-rapid products released by most ACs are 6 h
and 15 min, respectively. The ultra-rapid orbits and clock offsets consist of observation and
prediction sessions. The high latency means that we need to predict the satellite orbit and
clock offsets for a longer time. With the increase in prediction time, the accuracy of satellite
orbits and clock offsets will be reduced correspondingly. Especially for satellite clock offsets
prediction, the accuracy of satellite clock offsets will be reduced with the longer prediction
time. Therefore, with the six-hourly updated ultra-rapid GPS-only products, it is difficult
to meet the high-precision real-time applications due to the low sampling and accuracy
loss of clock offsets prediction.

To support better real-time services, IGS established the Real Time Working Group
(RTWG) and provided the real-time service (RTS) to the GNSS community [5]. The Center
National d’Etudes Spatiales (CNES) adopted the Kalman Filter (KF) estimator for satellite
precise clock estimation (PCE) based on the raw observations [6]. The EPOS-RT and
PANDA software used the Square Root Information Filter (SRIF) to obtain the real-time
clock offsets based on the mixed-differenced model [7–9]. Whether in the raw observation
receiving or real-time product broadcasting, a good network is essential for the real-time
PCE. However, the available observations for real-time product solution will be affected by
the network environment, and its corresponding product accuracy will be decreased [5]. In
addition, it is difficult for users with poor network environment and communication ability
to receive real-time precise products. On the contrary, the ultra-rapid products estimation
is not expected to require high network conditions. It is not necessary for server and
client to receive data continuously. All the same, the high latency and low samplings for
ultra-rapid products are the problems that cannot be ignored. Therefore, it is important to
provide the ultra-rapid orbit and clock products with low latency, high precision, and high
samplings. To reduce the latency, Li et al. [10] used multi-thread technology and decreased
the sampling rate (5 to 10 min) to estimate one-hourly updated multi-GNSS products based
on undifferenced (UD) ionosphere-free (IF) models. Similarly, Chen et al. [11] updated data
processing strategy and optimized software to obtain one-hourly updated multi-GNSS
products with 5 min sampling. Wuhan University (WHU) GNSS AC released one-hourly
updated multi-GNSS products with 5 min sampling [12,13]. Although, the latency and
the samplings of ultra-rapid clock offsets has been improved from 6 to 1 h and 15 to
5~10 min, respectively. However, the samplings are not adequate for some applications.
The time resolution of satellite clock offsets will affect the PPP in terms of convergence time
and positioning accuracy, especially for the kinematic PPP applications [7,14,15]. To meet
real-time needs and improve the positioning performance, it is meaningful to develop the
high-rate one-hourly ultra-rapid PCE.

Furthermore, the single GPS is gradually developing to multi-constellation GNSS [16].
Multi-GNSS observations can improve the positioning accuracy, convergence time, and the
stability and reliability of GNSS services [17]. However, the development of multi-GNSS
has brought severe challenges to GNSS data processing. Figure 1 depicts the number
of estimated parameters for the different PCE models with the increase in the number
of the tracking stations. Due to the large number of estimation parameters (including
ambiguities) in multi-GNSS, the computation is time-consuming. Bock et al. [18] proposed
the epoch-difference (ED) PCE model to achieve high-rate GPS-only PCE for final products.

https://igs.org/products/#about
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In addition, most GNSS ACs used this model to obtain high-rate rapid and final products.
Although the ED model greatly reduces the time-consuming, the current ED model and
data processing strategy are difficult to realize the high-rate one-hourly updated ultra-rapid
PCE. The research on high-rate one-hourly updated ultra-rapid multi-GNSS PCE is slightly
insufficient. To meet the real-time and near-real-time requirements for multi-GNSS PPP
and ensure the stability and reliability of GNSS precise service, it is necessary to investigate
the multi-GNSS high-rate one-hourly updated ultra-rapid multi-GNSS PCE.
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Figure 1. The number of estimated parameters for the different PCE models with the increase in the
number of the tracking stations, in which UD PCE, ED PCE, and MED PCE denote undifferenced
ionosphere-free PCE model, epoch-difference PCE model, and modified epoch-difference PCE,
respectively. Suppose a station can track six satellites for each constellation in one epoch.

With this background, we introduce an efficient model and design a new framework
for high-rate one-hourly updated ultra-rapid PCE. We investigate the influence of tropo-
spheric delay on ED clock offsets based on the traditional ED model and further propose
the modified ED PCE model to reduce the latency and improve calculation efficiency. Fur-
thermore, Open Multi-Processing (OpenMP) and Intel Math Kernel Library (Intel MKL)
technologies are used to improve the PCE processing efficiency and improve the time
resolution. First, we present the mathematical models of multi-GNSS modified ED PCE
and the methods of restoring ED clock offsets to absolute clock offsets in Section 2. Then,
the data processing strategies of multi-GNSS modified ED PCE and new data processing
framework are depicted in Section 3. In the following section, we verify the accuracy of
the estimated clock offsets. Furthermore, the real-time PPP (RT-PPP) performance using
real-time products and high-rate one-hourly updated products are also compared. Finally,
we summarize the contributions and give some recommendations.

2. Methods

This section begins with the single-frequency observation models. Then, the modified
ED models using GPS, BDS-2, BDS-3, GLONASS, and Galileo observations are developed
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in detail. Additionally, the methods of restoring ED clock offsets to absolute clock offsets
are introduced.

The linearized equations of single-frequency observation equation can be expressed
as [19]:Ps

r,j = Rs
r + c ·

(
δtr + br

j + b̃r
j

)
− c ·

(
δts + bs

j + b̃s
j

)
+ gw · τw + Is

r,j + εPj

Φs
r,j = Rs

r + c ·
(

δtr + Br
j + B̃r

j

)
− c ·

(
δts + Bs

j + B̃s
j

)
+ gw · τw − Is

r,j + λj · Ns
r,j + εΦj

(1)

where r, s, and j depict the receiver, satellite, and the frequency band, respectively; P and
Φ are the range and phase observations; Rs

r is the geometrical range between satellite to
receiver; c is the lightspeed; δtr and δts denote the receiver and satellite clock offsets; br

j
and bs

j represent the receiver and satellite constant time-invariant uncalibrated code delays
(UCDs); Br

j and Bs
j depict the corresponding constant time-invariant uncalibrated phase

delays (UPDs); b̃r
j , b̃s

j , B̃r
j , and B̃s

j represent time-varying part; τw and gw depict the zenith
wet delay (ZWD) and the corresponding wet mapping function; Is

r,j is the slant ionospheric
delay; Ns

r,j denote the integer ambiguity with its wavelength λj; εPj and εΦj are the range
and phase observation noises containing multipath and unmodeled error.

Most IGS and International GNSS Monitoring and Assessment System (iGMAS) ACs
adopted undifferenced IF model to obtain the satellite clock offsets [1], which can be
expressed as:{

Ps
r,IFi,j

= Rs
r + c · δtr

IFi,j
− c · δts

IFi,j
+ gw · τw + εPIFi,j

Φs
r,IFi,j

= Rs
r + c · δtr

IFi,j
− c · δts

IFi,j
+ gw · τw + λIFi,j · Ns

r,IFi,j
+ εΦIFi,j

(2)

The IF combination for observations and hardware delays can be described as [19]:

αi,j =
f 2
i

f 2
i − f 2

j
; βi,j =

− f 2
j

f 2
i − f 2

j

(·)IFi,j
= αi,j · (·)i + βi,j · (·)j

(·) = Ps
r , Φs

r, br, bs, Br, Bs, b̃r, b̃s, B̃r, B̃s

δtr
IFi,j

= δtr + br
IFi,j

+ B̃r
IFi,j

δts
IFi,j

= δts + bs
IFi,j

+ B̃s
IFi,j

λIFi,j · Ns
r,IFi,j

=
(

Br
IFi,j

− br
IFi,j

)
−
(

Bs
IFi,j

− bs
IFi,j

)
+ αi,j · λj · Ns

r,j + βi,j · λi · Ns
r,i

(3)

where αi,j and βi,j are frequency factors; fi and f j depict the ith and jth frequency; Ps
r,IFi,j

,

Φs
r,IFi,j

, br
IFi,j

, bs
IFi,j

, Br
IFi,j

, Bs
IFi,j

, b̃r
IFi,j

, b̃s
IFi,j

, B̃r
IFi,j

, and B̃s
IFi,j

are IF combinations for the corre-
sponding observations and hardware delays, respectively; NIF denote the float ambiguity;
εPIFi,j

and εΦIFi,j
are IF observations noises for pseudorange and carrier phase, and εPIFi,j

will

absorb b̃r
IFi,j

− B̃r
IFi,j

+ B̃s
IFi,j

− b̃s
IFi,j

.
As mentioned above, it is difficult to achieve the high-rate one-hourly updated PCE

because of many estimated parameters for the UD model. To ensure the accuracy, stability,
and computational efficiency of one-hourly ultra-rapid PCE, the ED model is applied to
perform PCE, which can be expressed as:{

∆Ps
r,IFi,j

(tk+1, tk) = c · ∆δtr
IFi,j

(tk+1, tk)− c · ∆δts
IFi,j

(tk+1, tk) + ∆gw(tk+1, tk) · τw(tk+1) + ε∆PIFi,j

∆Φs
r,IFi,j

(tk+1, tk) = c · ∆δtr
IFi,j

(tk+1, tk)− c · ∆δts
IFi,j

(tk+1, tk) + ∆gw(tk+1, tk) · τw(tk+1) + ε∆ΦIFi,j

(4)

where ∆ is the ED operator; s = GPS, BDS, GLONASS, Galileo; for example, the ED clock
offsets are ∆δtr

IFi,j
(tk+1, tk) = δtr

IFi,j
(tk+1)− δtr

IFi,j
(tk). The ambiguity can be removed by ED

operation when there are no cycle slips in carrier phase observations. The inter-system bias
is quite stable over a day and can be eliminated by ED [20]. Therefore, only ZWDs and
the ED clock offsets of receiver and satellite remain. One receiver equipped high-precision
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atomic clock is selected as reference clock to avoid the singularity between receiver and
satellite clock offsets.

Although the traditional ED model and the corresponding data processing strategy
are difficult to achieve the high-rate one-hourly updated ultra-rapid PCE, the ED model
greatly reduces the number of estimated parameters and reduces the consuming time.
Based on the characteristic of traditional ED model and the corresponding data processing
strategy, we investigated the influence of tropospheric delays on ED PCE. Generally, the
tropospheric delays cannot be ignored in the ED PCE. The systematic bias caused by
mapping function and systematic variation of tropospheric delays will be absorbed by
absolute clock offsets [7,21]. The ZWD are generally solved once an hour. If ZWD can be
eliminated by ED, as shown in Figure 1, the estimated parameters will be further reduced.
In addition, there is no correlation between epochs on the premise of estimating ED clock
offsets as white noise. The parallel processing between epochs can be realized to further
improve the solution efficiency. The modified ED model without ZWD estimations can be
expressed as: ∆Ps

r,IFi,j

∆Φs
r,IFi,j

clkre f

 =

[
eT

n ⊗ e2 ⊗ em eT
k ⊗ e1 ⊗ em

eT
1 ⊗ e1 ⊗ el

][ ∆δtr
IFi,j

∆δts
IFi,j

]
+

[
ε∆PIFi,j

ε∆ΦIFi,j

]
(5)

where n is the number of stations, m represents the number of observations, k depicts the
number of the satellites, l is the number of observations at reference station. en, em, ek, and
el are n-row, m-row, k-row, and l-row vector in which all values are 1; clkre f is the reference
clock. For simplicity, SHA1 and SHA2 denote the modified ED PCE model (ignoring ZWD)
and the traditional ED PCE model (estimating ZWD), respectively.

The estimated ED clock offsets must be restored to the absolute clock offsets before
it can be used normally. The low-rate clock offsets are used as control points to obtain
absolute clock offsets, which can be written as [18]:



δ̃t f ix(t1)
∆δt(t2, t1)

∆δ̃t(t3, t2)
. . .

∆δt(ti, ti−1)

δ̃t f ix(ti)
∆δt(ti+1, ti)

. . .
∆δt(tn, tn−1)

δ̃t f ix(tn)


=



δt(t1)
−δt(t1) δt(t2)

−δt(t2) δt(t3)

· · ·
...

−δt(ti−1) δt(ti)
δt(ti)
−δt(ti) δt(ti+1)

· · ·
...

−δt(tn−1) −δt(tn)
−δt(tn)



(6)

where δ̃t f ix(t1), δ̃t f ix(ti), and δ̃t f ix(tn) are the low-rate clock offsets; ∆δt(ti+1, ti) is the
estimated ED clock offsets; n denotes the number of epochs of the low-rate clock offsets.

3. Datasets and Processing Strategies
3.1. Datasets

Approximately 120 stations are used to estimate the high-rate one-hourly ultra-rapid
clock offsets. The hourly updated observations from IGS MGEX and iGMAS are used
to perform the PCE. The selected GNSS stations are shown in Figure 2. To verify the
performance of high-rate hourly updated ultra-rapid clock offsets, the GNSS stations
without PCE are selected for RT-PPP. The stations marked red are used for high-rate PCE,
and the other GNSS stations marked blue are used for RT-PPP.
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3.2. Processing Strategies

The one-hourly updated ultra-rapid multi-GNSS PCE processing strategies are illustrated
in Table 1. The dual-frequency observations of L1 (1575.42 MHz) and L2 (1227.60 MHz) for
GPS, G1 (1602+k*9/16 MHz) and G2 (1246+k*7/16 MHz) for GLONASS, E1 (1575.42 MHz)
and E5a (1176.45 MHz) for Galileo, B1I (1561.098 MHz) and B3I (1268.52 MHz) for BDS-2
and BDS-3 are used to generate high-rate hourly updated ultra-rapid multi-GNSS clock
offsets. The satellite orbit and station coordinates are fixed to the SHAO one-hourly updated
ultra-rapid solutions [11]. The reference frame and time system of SHAO (Shanghai
Astronomical Observatory) precise products are ITRF 2014 and GPS time (GPST), and the
satellite orbit and clock offsets is 5 min sampling [11]. As for the noteworthy clock, one
receiver equipped high-accuracy atomic clock is selected as the reference clock to avoid
the singularity between receiver and satellite ED clock offsets. Because the low-rate clock
offsets are used as control points to obtain absolute clock offsets, the reference clock is
consistent with SHAO to avoid additional bias. The dry tropospheric delay is corrected
using the modified Hopfield model and Global Pressure and Temperature 3 (GPT3), and
the Vienna mapping functions 3 (VMF3) is used to obtain the mapping functions of both
dry and wet parts [22]. Regarding the wet part, the two schemes mentioned above are
proposed to investigate the effect of troposphere estimation on PCE. As for phase center
offset (PCO) and phase center variations (PCV), GPS, GLONASS, Galileo satellite antennas
are corrected using the antenna file data provided by IGS MGEX [23,24]. BDS-2 and BDS-3
are corrected using the BeiDou official data (http://www.beidou.gov.cn/, accessed on
1 March 2022).

Table 1. The data processing strategy for precise clock estimation (PCE).

Items Strategies

System GPS GLONASS Galileo BDS-2 BDS-3

Frequency L1/L2 G1/G2 E1/E5a B1I/B3I B1I/B3I

Observations Pseudorange and carrier phase observations

Elevation cutoff 7 degrees

Observation weighting Elevation weight [sin(elevation)]

Satellite orbit Fixed by SHAO one-hourly updated ultra-rapid precise orbit
products

Satellite ED clock offsets Estimated

http://www.beidou.gov.cn/
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Table 1. Cont.

Items Strategies

Satellite absolute clock offsets Estimated by using satellite ED clock offsets and low-rate
absolute clock offsets

Receiver coordinate Fixed by SHAO station coordinates

Reference clock Receiver clock

Receiver ED clock Ordinary station: EstimatedReference station: Fixed

Tropospheric delay
SHA1: Modified Hopfield for dry and wet part
SHA2: Modified Hopfield for dry part and estimated for wet
part (10−9 m2/s)

Ionospheric delay Eliminated first order by IF observations

Satellite antenna IGS MGEX values BDS official

Receiver antenna IGS MGEX values

Phase windup effect Corrected [25]

Relativistic effect Corrected [26]

Earth rotation Corrected [26]

Tide effect Solid Earth, Pole, and Ocean tide

Ambiguity Eliminated by ED model

Figure 3 illustrates the slide window for one-hourly updated ultra-rapid orbit and
clock offsets products generation. To achieve one-hourly updated ultra-rapid orbit and
clock offsets, the computation time of POD and high-rate PCE is within one hour. SHAO
can solve low-rate ultra-rapid multi-GNSS orbit and clock offsets in 35 to 40 min based
on the Lenovo SR650 server (4*Inter (R) Xeon (R) Gold 6244 CPU @3.60 GHz), which
means that the high-rate PCE needs to be solved in about 20 min. Moreover, the latency of
one-hourly ultra-rapid multi-GNSS satellite products is one hour, we need to predict it to
meet the real-time applications. The orbit prediction method is integrating the prediction
orbit by the fitted orbit, from 24 h, and adjacent afore 24 h orbits (observation session) [11].
The clock offsets prediction model is modified Auto Regressive Integrated Moving Average
(ARIMA) [27].
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Figure 3. The slide window for one-hourly updated ultra-rapid orbit and clock offsets products
generation.

According to the characteristics of the modified ED PCE model, we propose a corre-
sponding new data processing flow, as shown in Figure 4, to achieve high-rate one-hourly
updated ultra-rapid PCE. First, the IGS real-time stream and one-hourly updated observa-
tions obtained from IGS MGEX and iGMAS are merged and preprocessed. After that, the
POD is performed to obtain one-hourly updated ultra-rapid precise products including
orbit, low-rate clock offsets, Earth rotation parameters (ERP), and station coordinates. Then,
the one-hourly updated ultra-rapid precise products and observations are imputed into
high-rate PCE system marked red in Figure 4. In the processing of calculating correction
information, there is no correlation between stations, the OpenMP can be used for parallel
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processing of multiple stations. In the processing of calculating ED clock offsets, the Intel
MKL is used to accelerate the matrix solution. Because the SHA1 model does not need
to estimate ZWD, the OpenMP can be used for parallel processing of multiple epochs.
However, the OpenMP cannot be used for SHA2 parallel processing of multiple epochs.
In the process of obtaining absolute clock offsets, the OpenMP can be used for parallel
processing of multiple satellites and Intel MKL can be used to accelerate the matrix solution.
This high-rate PCE system has strong flexibility, and it can be connected to the ultra-rapid,
rapid, final, and real-time POD system to obtain high-rate clock offsets.

 

Figure 3. The slide window for one-hourly updated ultra-rapid orbit and clock offsets products 
generation. 
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generation. 
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Figure 4. The data processing flow for one-hourly updated ultra-rapid orbit and clock offsets products
generation.

4. Validation and Results

This part begins with the validation of the estimated clock offsets. Because the high-
rate one-hourly updated ultra-rapid products are mainly oriented to real-time and near-real-
time users, we compared the estimated high-rate clock offsets and real-time clock offsets
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provided by CNES (CLK93) in terms of the clock offsets accuracy and PPP performances.
Finally, the performance of the estimated clock offsets is discussed.

4.1. The ED Clock Offsets

The time series of estimated ED clock offsets and its comparison with GFZ rapid
(GBM) and CODE final (COD) multi-GNSS products are depicted in Figure 5. To show
ED clock offsets more clearly, the ED clock offsets are shifted by the same amount (1 ns)
to avoid overlapping. Figure 6 shows their differences. Because BDS constellations are
composed of Geostationary Earth Orbit (GEO), Inclined Geosynchronous Satellite Orbit
(IGSO), and Medium Earth Orbit (MEO) satellites, different orbit types of BDS satellites
have different accuracy in POD [28,29]. Therefore, the corresponding clock offsets have
different accuracy for different orbit types. In order to analyze BDS-2 objectively, we discuss
it separately. From Figures 5 and 6, we can find that the difference between GBM and
the estimated ED clock offsets for SHA1 and SHA2 is very small, and they are basically
distributed on the diagonal with slope of 1. From Figures 5 and 7, we can draw a similar
conclusion that the estimated ED clock offsets are basically consistent with COD. This
means that the performance of the estimated ED clock is basically consistent with GBM
and COD. Certainly, we can also find that the performance of BDS-2 is slightly worse than
other systems, especially for GEO satellites. There are three reasons for the difference. First,
BDS-2 is a regional navigation system, and the stations tracked BDS-2 signals are basically
located in Asia and Europe. There are less observations for BDS-2 POD and PCE because
of the unevenly distributed stations. Secondly, BDS-2 contains five GEO and seven IGSO
satellites. The orbit accuracy of BDS-2 GEO and IGSO satellites is poor due to the force
models and the observation geometry. Therefore, the estimated ED clock offsets calculated
by fixed GEO orbit is slightly poor. Last, but most important, there are some differences
between GFZ and SHAO in BDS data processing strategies in terms of the precise attitude
model, the solar radiation pressure model, and DCB corrections [11,30], which leads to
the poor consistency of the results. In order to more accurately and objectively explain
the accuracy of the estimated ED clock offsets compared with GBM and COD, the mean,
STD, and RMS of the estimated ED clock offsets between GBM, COD and SHA1, SHA2 for
multi-GNSS satellites are listed in Table 2. Our calculation is basically consistent with the
results of GBM and COD. The difference in ED clock offsets between GBM, COD and SHA1,
SHA2 for GPS and Galileo satellites range from 6 to 7 ps, and the difference for BDS and
Galileo range from 10 to 16 ps. The results in Table 2 confirm the findings of Figures 5–7.

Table 2. The statistics of means, STD, and RMS for GPS, BDS-2 GEO, BDS-2 IGSO, BDS-2 MEO,
BDS-3, GLONASS, and Galileo satellites ED clock (unit: ps).

Type
System

GPS
BDS-2
(GEO)

BDS-2
(IGSO)

BDS-2
(MEO) BDS-3 GLONASS Galileo

SHA1
(GBM)

Mean −0.26 0.96 −0.47 −0.30 −0.37 −0.20 −0.25
STD 6.45 21.31 15.19 14.36 11.04 12.64 7.17
RMS 6.46 21.33 15.20 14.36 11.05 12.65 7.17

SHA2
(GBM)

Mean −0.13 0.94 −0.43 −0.25 −0.24 −0.13 −0.18
STD 6.29 21.25 15.54 14.56 11.03 12.71 7.16
RMS 6.32 21.27 15.55 14.57 11.03 12.71 7.16

SHA1
(COD)

Mean −0.21 Non −0.27 −0.22 −0.25 −0.11 −0.22
STD 6.73 Non 14.93 14.50 11.22 12.61 6.87
RMS 6.82 Non 15.01 14.52 11.24 12.71 6.90

SHA2
(COD)

Mean −0.09 Non −0.15 −0.17 −0.13 −0.03 −0.12
STD 6.54 Non 15.46 13.90 11.46 13.26 7.32
RMS 6.57 Non 15.50 14.00 11.48 13.30 7.34
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Now, turn to the influence of tropospheric delays on ED clock offsets estimation.
Figures 5–7 not only show the difference between GBM, COD, and the estimated ED clock
offsets but also depict the difference between SHA1 and SHA2. As shown in Figure 5,
SHA1 and SHA2 are highly overlapped, and it is difficult to distinguish the difference.
From Figures 6 and 7 and Table 2, we can see that the difference between SHA1 and SHA2
is very small, ranging from 0 to 0.35 ps in terms of the statistics of mean, STD, and RMS
for GPS, BDS-2 GEO, BDS-2 IGSO, BDS-2 MEO, BDS-3, GLONASS, and Galileo satellites,
which can be ignored. To prove this point more favorably and reflect the situation of each
satellite clearly, the relationship between SHA1 and SHA2 in terms of the mean, STD, and
RMS of each satellite is depicted in Figure 8. The mean of each satellite for SHA2 is closer
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to 0 than SHA1, but the difference is very tiny. In addition, the STD and RMS of each
satellite are basically distributed on the diagonal with slope of 1. In general, the ED clock
of SHA1 and SHA2 are basically consistent both in mean, STD, and RMS. However, from a
calculation time-consuming point of view, adding the ZWD parameter will increase the
computation complexity. The corresponding time-consuming will increase. As shown in
Figure 9, the mean time-consuming of SHA1 is about 16.5 min, and that of SHA2 is about
23.5 min, based on Lenovo SR650 server (4*Inter (R) Xeon (R) Gold 6244 CPU @3.60GHz)
using OpenMP and Intel MKL. In case of poor data quality, the time-consuming of SHA1 is
about 20 to 23 min. In normal conditions, SHA1 takes less than 20 min.
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Figure 7. The difference between CODE final clock offsets and estimated ED clock offsets, in which
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As mentioned above, the time-consuming of POD and high-rate PCE must be less
than 1 h to achieve one-hourly updated orbits and clocks. Because the difference between
SHA1 and SHA2 is very tiny, and its difference is less than 0.35 ps in terms of mean, STD,
and RMS. As stated earlier, SHA1 can use the OpenMP for parallel processing of multiple
stations, multiple epochs, and multiple satellites, while SHA2 can only use the OpenMP
for parallel processing of multiple stations and multiple satellites. The computational
efficiency of SHA1 is significantly higher than that of SHA2. Considering the calculation
time and accuracy, SHA1 as the optimal strategy is applied to obtain one-hourly updated
ultra-rapid clock.
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Figure 8. The mean, STD, and RMS of each satellite for GPS, BDS-2, BDS-3, GLONASS, and Galileo
using two tropospheric processing strategies.

4.2. The Absolute Clock Offsets

The ED clock offsets calculated by the SHA1 strategy are restored to the absolute clock
offsets by using Equation (6). The double-difference (DD) method of selecting one satellite
to eliminate the clock datum [31] is used to assess the absolute clock. GPS PRN01 (G01),
BDS-2 PRN07 (C07), BDS-3 PRN19 (C19), GLONASS PRN24 (R24), and Galileo PRN01
(E01) are selected as the reference satellite to assess the clock of other GNSS satellites.
Figures 10 and 11 show the STD and RMS of high-rate and low-rate one-hourly updated
GNSS ultra-rapid clock for observation. In addition, the ultra-rapid products are more
targeted to real-time and near real-time users; we added the real-time stream products
CLK93 released by CNES to discuss the precision of estimated clock and CLK93. When
users use the low-rate clock, they need to use mathematical interpolation algorithm to
interpolate the low-rate clock, which causes the loss of clock accuracy [14]. In order to
reflect the actual applications of low-rate clock, the clock interpolated by the ninth order
Lagrange interpolation algorithm was also evaluated.
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Figure 9. The computation time for 1-day high-rate multi-GNSS PCE using 120 GNSS tracking
stations, in which Non, OMP, and MKL denote no acceleration method, OpenMP, and Intel MKL,
respectively.

It can be seen from Figure 10 that the STD of the estimated high-rate clock (SHA30s
(PCE)), low-rate clock (SHA300s), and clock offsets interpolated by mathematical interpola-
tion algorithm (SHA30s (Math)) for GPS, BDS-2 GEO, BDS-2 non-GEO, BDS-3, GLONASS,
and Galileo satellites are basically better than 0.2, 1.2, 0.3, 0.3, 0.4, and 0.2 ns, respectively.
From SHA30s (PCE), SHA300s, and SHA30s (Math), we can find that SHA30s (PCE) has a
certain improvement compared with SHA30s (Math), but the improvement is not obvious
compared with SHA300s. There are three reasons for the little increase in SHA30s (PCE)
compared with SHA300s. Firstly, the weight of the control points is higher than that of the
ED clock offsets when the ED clock offsets are restored to the absolute clock offsets by using
low-rate clock offsets as control points. Secondly, the accuracy of SHA300s is obtained by
evaluating the clock offsets on time node (300s intervals), and there is no precision loss
caused by the interpolation algorithm. Finally, the accuracy of SHA300s provide by SHAO
is already good.

It is worth mentioning that the STD of the estimated clock offsets is slightly better
than CLK93. There are two possible explanations: the clock offsets precision is inevitably
disturbed by the stability of real-time observation streams, more commonly, the available
observation data for real-time product solution are less than ultra-rapid solutions. In
other words, one-hourly updated ultra-rapid orbit and clock offsets products can ensure
better accuracy in the case of poor network environment. Whether it is used as backup
data or practical data, one-hourly updated ultra-rapid orbit and clock offsets products are
very reliable.
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Figure 10. The STD of multi-GNSS ultra-rapid estimated clock for observation session, in which
SHA30s (PCE), SHA300s, SHA30s (Math), and CLK93 depict the estimated high-rate clock, low-
rate clock, clock interpolated by mathematical interpolation algorithm, and CNES real-time clock,
respectively. The Ref.SATE means the reference satellite.

Note that RMS, the RMS of SHA30s (PCE), SHA300s, and SHA30s (Math) for GPS,
BDS-2, BDS-3, GLONASS, and Galileo satellites are basically better than 0.5, 3.0, 0.9, 1.2,
and 0.4 ns. The RMS of satellites such as G04, G14, G18, G23, C11, C12, and C14 are
especially large compared with other satellites. Because the different ACs adopt different
processing strategies such as the precise attitude model, the solar radiation pressure model,
and DCB corrections [11,30,32], these inconsistencies lead to the differences between SHAO
and GBM on some satellites. Moreover, the RMS of GLONASS satellites is worse than
other GNSSs, which is due to the possible bias caused by the float ambiguity solutions in
POD and frequency division multiple access (FDMA) signal transmit mechanism. From
the comparison between SHA30s (PCE) and CLK93, we can find that the RMS of SHA30s
(PCE) is better than that of CLK93. As commented earlier, the main reasons are as follows:
on the one hand, different ACs have differences in data processing strategies, on the other
hand, the available observation data for real-time product solution is not as stable as that
of ultra-rapid solutions.
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Figure 11. The RMS of high-rate and low-rate one-hourly updated GNSS ultra-rapid clock for
observation session, in which SHA30s (PCE), SHA300s, SHA30s (Math), and CLK93 depict the
estimated high-rate clock, low-rate clock, clock interpolated by mathematical interpolation algorithm,
and CNES real-time clock, respectively.

Now, pay attention to the mean STD and RMS for the observation session and pre-
diction session. Combined with Figures 10–12, we can obtain four key findings. In terms
of the precision of the estimated high-rate clock offsets and SHAO low-rate clock offsets,
GPS and Galileo are the best, BDS-3 is the second, and GLONASS and BDS-2 are relatively
worse. Secondly, SHA30s (PCE) is optimal in both the observation and prediction session.
The absolute clock of the prediction and observation sessions has been modified by the
improvement of the time resolution. The STD and RMS are improved by (0.97 to 9.09%
and 0.12 to 5.56%) in the observation session, (2.82 to 23.08% and 0.95 to 9.09%) in the first
hour of the prediction session, and (0 to 3.85% and 0.12 to 4.19%) in the second hour of the
prediction session, respectively. Thirdly, the precision of SHA30 (PCE) is slightly better
than CLK93 in the observation section and basically the same as CLK93 in the prediction
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section. Finally, there are some differences between SHAO, GFZ, and CNES in the data
processing strategy, and the clock offsets of different ACs show differences in RMS.
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4.3. Real-Time PPP Validation

The RT-PPP experiments will be carried out to verify the practicability and reliability
of the estimated clocks. The PPP solutions using GBM products (30 s interval) is taken
as the reference. Figure 13 depicts the PPP convergence at HUEG for GPS-only, BDS-
only, GLONASS-only, Galileo-only, and multi-GNSS (GPS + BDS + GLONASS + Galileo).
To show the PPP convergence clearly, only the first 2 h are shown in Figure 13. From
Figure 13, we can see that the convergence time for SHA30s (PCE) is obviously improved,
and its performance is basically same as that of GBM products. Figure 14 shows the
average convergence time. During the observation session, SHA30s (PCE) can improve
the convergence time by (48.16, 31.55, 37.06%) for GPS-only PPP, (32.88, 21.96, 22.60%) for
BDS-only PPP, (40.78, 31.15, 35.05%) for GLONASS-only PPP, (40.49, 23.49, 25.57%) for
Galileo-only PPP, and (64.75, 60.28, 55.07%) for multi-GNSS PPP, compared with SHA300s
in north, east, and up directions, respectively. In the first hour of the prediction session,
SHA30s (PCE) can improve the convergence time by (49.84, 32.47, 37.63%) for GPS-only
PPP, (33.62, 24.53, 28.12%) for BDS-only PPP, (44.16, 27.69, 28.69%) for GLONASS-only
PPP, (44.82, 25.03, 23.95%) for Galileo-only PPP, and (65.75, 60.98, 56.21%) for multi-GNSS
PPP, respectively. In the second hour of the prediction session, SHA30s (PCE) can improve
the convergence time by (57.27, 34.85, 36.03%) for GPS-only PPP, (39.76, 27.80, 31.31%)
for BDS-only PPP, (43.99, 28.29, 26.30%) for GLONASS-only PPP, (45.74, 26.30, 28.29%)
for Galileo-only PPP, and (62.12, 55.51, 57.14%) for multi-GNSS PPP, respectively. The
estimated high-rate one-hourly ultra-rapid clock greatly shortens the PPP convergence
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time, which is basically the same as GBM and slightly better than CLK93 in the observation
session. In the prediction session, SHA30s (PCE) performs good, and the convergence time
of SHA30s (PCE) is at the same level as CLK93.
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Figure 13. PPP convergence at HUEG for GPS-only, BDS-only, GLONASS-only, Galileo-only, and
multi-GNSS (GPS + BDS + GLONASS + Galileo) from 0:00 to 2:00 on DOY 121, 2021.

As for positioning accuracy, the final convergence accuracy of SHA30s (PCE) and
SHA300s is basically the same in the observation section. However, the positioning accuracy
of SHA300s decreases slightly in the prediction session, while the performance of SHA30s
(PCE) is still good. From the Figures 15 and 16, it is obvious that the positioning accuracy
will decrease with the increase in prediction time. However, using high-rate clock offsets
can appropriately avoid the decrease in positioning accuracy. The positioning accuracy of
SHA30s (PCE) for GPS-only, BDS-only, GLONASS-only, Galileo-only, and multi-GNSS PPP
is improved by 14.90, 21.68, 13.38, 9.06, and 25.74% in the observation session, 12.34, 1.52,
13.37, 8.66, and 12.99% in the first hour of the prediction session, and 7.97, 9.86, 7.76, 22.45,
and 11.65% in the second hour of the prediction session, respectively. Similarly, SHA30s
(PCE) improves the PPP positioning accuracy, which is slightly better than CLK93 in the
observation session. In the prediction session, the positioning accuracy of SHA30s (PCE) is
at the same level as CLK93. Even in the case of poor network environment, the estimated
high-rate one-hourly ultra-rapid clock can ensure the better PPP performance.
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In summary, the estimated high-rate one-hourly ultra-rapid clock can improve the
PPP performance in terms of positioning accuracy and convergence time and can be well
applied to real-time PPP applications.

5. Conclusions

This contribution focused on the high-rate one-hourly updated ultra-rapid PCE and
its application in RT-PPP. We modified the ED PCE model by investigating the influence
of tropospheric delays on ED PCE and proposed a new framework to obtain high-rate
one-hourly updated ultra-rapid clock. The OpenMP and Intel MKL are used to construct a
parallel processing system to improve computation efficiency. Through the analysis and
discussion, we can draw the following conclusions.

As for the influence of tropospheric delays on ED PCE, the difference between SHA1
and SHA2 is very tiny, ranging from 0 to 0.35 ps in terms of the statistics of mean, STD, and
RMS for multi-GNSS satellites, which can be ignored. From a calculation time-consuming
point of view, adding the ZWD parameter will increase the computation complexity. The
corresponding time-consuming will increase. The time-consuming of SHA1 is about
16.5 min, and that of SHA2 is about 23.5 min based on the Lenovo SR650 server (4*Inter
(R) Xeon (R) Gold 6244 CPU @3.60GHz). Therefore, SHA1 as the optimal strategy with
low time-consuming and high accuracy is recommended to obtain one-hourly updated
ultra-rapid clock offsets. From the precision of the clock offsets point of view, improving
the time resolution can improve the precision of the absolute clock offsets in both prediction
and observation sessions. The STD and RMS are improved by (0.97 to 9.09% and 0.12 to
5.56%) in the observation session, (2.82 to 23.08% and 0.95 to 9.09%) in the first hour of
the prediction session, and (0.11 to 3.85% and 0.12 to 4.19%) in the second hour of the
prediction session, respectively.

Similarly, the estimated clock offsets perform well in RT-PPP. The estimated clock
offsets improve the PPP positioning accuracy and greatly shorten the convergence time.
The positioning accuracy can be improved by 9.06~25.74% in the observation session,
1.52~13.37% in the first hour of the prediction session, and 7.76~22.45% in the second hour
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of the prediction session, respectively. The convergence time can be significantly improved
by 21.96~64.75, 23.95~65.75, and 26.30~62.12% for the observation session, the first hour
of the prediction session, and the second hour of the prediction session compared with
low-rate products, respectively. The RT-PPP performance of SHA30s (PCE) is basically the
same as GFZ rapid products and slightly better than CLK93. Whether in the prediction
session or in the observation session, the estimated clock shows good performance. The
estimated high-rate one-hourly ultra-rapid clock can ensure the better PPP performance in
the case of poor network environment.

Synthesizing the analysis and discussion above, the estimated high-rate one-hourly
updated ultra-rapid precise clock offsets (URL: ftp://igsdepot.ign.fr/pub/igs/products/
mgex/, accessed on 1 March 2022) have excellent performance, which can be well applied
to real-time or near real-time applications and research.
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