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Abstract: Compared with hardware upgrading, pansharpening is a low-cost way to acquire high-
quality images, which usually combines multispectral images (MS) in low spatial resolution with
panchromatic images (PAN) in high spatial resolution. This paper proposes a pixel-dependent
spatial-detail injection network (PDSDNet). Based on a dynamic filter network, PDSDNet constructs
nonlinear mapping of the simulated panchromatic band from low-resolution multispectral bands
through filtering convolution regression. PDSDNet reduces the possibility of spectral distortion and
enriches spatial details by improving the similarity between the simulated panchromatic band and
the real panchromatic band. Moreover, PDSDNet assumes that if an ideal multispectral image that has
the same resolution with the panchromatic image exists, each band of it should have the same spatial
details as in the panchromatic image. Thus, the details we fill into each multispectral band are the same
and they can be extracted effectively in one pass. Experimental results demonstrate that PDSDNet can
generate high-quality fusion images with multispectral images and panchromatic images. Compared
with BDSD, MTF-GLP-HPM-PP, and PanNet, which are widely applied on IKONOS, QuickBird, and
WorldView-3 datasets, pansharpened images of the proposed method have rich spatial details and
present superior visual effects without noticeable spectral and spatial distortion.

Keywords: pansharpening; deep learning; dynamic filter network; pixel-dependent

1. Introduction

Remote sensing sensors generate images by capturing information of electromagnetic
waves reflected off the Earth’s surface. However, it is arduous to obtain images with both
high spatial resolution and high spectral resolution simultaneously. The energy received
by the sensor is double the integral of the electromagnetic wave in space and wavelength.
Generating images with higher spatial and spectral resolution means that the energy
is integrated at shorter wavelengths and in smaller areas. Consequently, the energy is
weaker, resulting in poorer image qualities. Only one can be enhanced at a time. Thus, it is
challenging to acquire high-quality images with high spectral and spatial resolution, limited
by the equipment on remote sensing platforms. Compared with hardware upgrading,
pansharpening is a low-cost way to sufficiently utilize data to obtain high spectral and
spatial resolution images. Pansharpening combines multispectral images (MS) with low
spatial resolution and panchromatic images (PAN) with high spatial resolution.

A promising pansharpening method should produce results that meet following
requirements:

• Spectral fidelity: The spatial information of fusion result should be as close as possible
to the spatial information of original MS. Chromatic aberration and spectral distortion
should be avoided.

• Exact spatial details: The spatial details of fusion result should be as close as possible
to details of original PAN. Blur, lack, and distortion of details should be avoided.
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Up to now, pansharpening methods fall into three main categories: the first one is
component substitution (CS), the second one is multi-resolution analysis (MRA), and the
third one is deep learning (DL). A quick review of these three main methods is described
as follows.

• The CS-based method is a class of methods that decompose MS into spectral informa-
tion and structural information, then substitute the structural information with PAN,
such as intensity–hue–saturation transform (IHS) [1–4], brovey transform (BT) [5],
Gram–Schmidt transform (GS) [6,7], principal component analysis (PCA) [8,9], band-
dependent spatial-detail (BDSD) [10], partial replacement adaptive component sub-
stitution (PRACS) [11], etc. Higher correlation between the PAN and the component
being replaced will reduce the distortion of the fused image.

• The MRA-based method is a class of methods that adopt a multi-resolution decom-
position on the PAN for low-frequency information, and then inject the details from
the differences between them into MS. The way of decomposition can be based on
wavelets [12], for instance, undecimated wavelet transform (UDWT) [13], decimated
wavelet transform (DWT) [14,15], “à trous” wavelet transform (ATWT) [16–18], or
not, such as Laplacian pyramid (LP) [19]. The key is to find a filter to acquire the low
frequency component and the most common being the modulation transfer function
(MTF) [20–22].

• The deep-learning-based method [23] is a rapidly developing pansharpening method
in recent years. Deep-learning-based methods commonly develop on the structure of
super-resolution methods [24], such as PNN [25], DRPNN [26], and MSDCNN [27].
Some methods combine component substitution and nonlinear mapping, for example,
PanNet [28], Target-PNN [29], cross-scale learning model based on Target-PNN [30],
RSIFNN [31], etc. These methods do not just regard the output of deep convolution
network as fusion result, but apply the deep network to learn the details MS lacked,
then attach the details to the upsampled MS to generate fusion image. In addition,
deep-learning-based methods have another branch based on generative adversarial
network (GAN) [32] that combines the theory of reinforcement learning (RL), for
instance, PSGAN [33], RED-cGAN [34], Pan-GAN [35], PanColorGAN [36], etc. With
a two-stream structure model, PSGAN [33] based on TFNet [37] accomplishes fusion
in feature domain. PanColorGAN [36] based on CS, regarding pansharpening as a
guided colorization task rather than a super-resolution task.

From the process of fulfilling pansharpening, the CS-based and MRA-based methods
are dedicated to solving the following sub-problems, i.e., details extraction and details
injection.

Regardless of details injection, as far as details extraction is concerned, both CS-based
and MRA-based methods assume that the details come from the differences between the
high spatial resolution PAN and the low spatial resolution PAN. The difference lies only
in how the low spatial resolution PAN is acquired. In most CS-based methods, the low
spatial resolution PAN is assumed to be a linear combination of low spatial resolution
multispectral bands. In contrast, in MRA-based methods, the low spatial resolution PAN is
assumed to be the low-frequency version of the high spatial resolution PAN.

The DL-based methods directly construct a convolution neural network (CNN) model
to represent the relationship between lower spatial resolution multispectral bands and
higher spatial resolution PAN by training down-sampled data, then directly apply the
CNN model to the higher spatial resolution PAN to obtain sharpened multispectral bands.
The relationship constructed by the CNN model is non-linear.

In this article, we propose a novel CS-based pansharpening method that employs
an adaptive filter model as the non-linear combination mapping between the low spatial
resolution PAN and the low spatial resolution multispectral bands. Further, we extract the
details in the same way as CS-based method by the difference between the high spatial
resolution PAN and the low spatial resolution PAN, then inject details back to the low
spatial resolution multispectral bands. The adaptive filter model is a pixel-dependent
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spatial-detail injection model. Our method combines multispectral bands to obtain a
low-resolution PAN through pixel-dependent local band adaptive filter convolution. The
adaptive filters of multispectral bands are generated based on a “dynamic filter network”
(DFN) [38]. The DFN adopts an encoder–decoder structure to learn the location-dependent
kernel and applies a separate subnet to predict the convolution filter weight at each pixel.
The network learns in a supervised way and has high flexibility due to its self-adaptability.

The proposed method presents superior visual effects due to the following aspects:

(1) Based on the dynamic filter network, the nonlinear mapping between the panchro-
matic band and the low-resolution multispectral bands through filter convolution
regression is constructed. Compared with other CS-based methods, the proposed
method is more reasonable. Figure 1 shows spectral response functions of panchro-
matic and multispectral imagery for QuickBird sensors. Spectral response functions
are similar to a normal distribution of a single peak function. Obviously, it is chal-
lenging to generalize the radiance between PAN and multispectral bands by linear
combination model. Traditional CS-based methods are not completely accurate.

(2) Assuming that if an ideal MS that has the same resolution with PAN exists, each
band of it should have the same spatial details as in PAN, spatial details are acquired
in the same way as CS-based method from the differences between the high spatial
resolution PAN and the low spatial resolution PAN, then inject the details back to the
low spatial resolution multispectral bands; therefore, the pansharpened images have
rich spatial details. Compared with PNN-based methods, the proposed method is
more explainable.

(3) Different from the general DL-based fusion method, no extra work is required to
make truth values at a small scale. In most image fusion methods, training datasets
and ground truth need to be made artificially at the downscale level to learn the
mapping between MS, PAN, and fusion images in reduced resolution then apply it
on a larger scale.

We have introduced an overview of traditional fusion methods and methods based on
deep learning. The rest of this paper is organized as follows: In Section 2, firstly, we focus
on the development of the injection model and propose the pixel-dependent spatial-detail
injection model (PDSDNet), then we introduce DFN and describe the adaptations that
were made for the application of DFN to remote sensing. Next, we describe datasets and
the process of our experiments in detail, and the results are shown in Section 3. The last
Section 4 draws our conclusion.

Figure 1. Spectral response of the QuickBird panchromatic and multispectral imagery.
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2. Pixel-Dependent Spatial-Detail Network and Dynamic Filter Network

Let MS represent original multispectral image (MS) and MSb denote the b-th band of
MS. B is the total number of MS bands, and b is from 1 to B. For example, MS1 represents
the first band of original MS. M̃Sb is the upsampled MSb. P is the original panchromatic
image (PAN) and PLP is the low-resolution PAN. The size of M̃Sb is the same as original
PAN. F is the fused image, Fb represents the b-th band of the fused image. L1 and L2 is
the width and height of the image of PAN. The resolution ratio of PAN and MS is R. For
IKONOS, QuickBird, and WorldView-3 images, the value of the scale ratio R is four.

For CS-based spatial-detail model, we recall that Andrea Garzelli presented two linear
injection models [10]. The first model is the single spatial-detail (SSD) image model, and the
model extracts a spatial-detail image from the PAN band by subtracting low-pass version
PAN, which can be obtained with convolution by an MTF-shaped filter with approximately
1/R cutoff frequency [20]. Alternatively, the low-pass version can be obtained by the linear
regression of overlapped multispectral bands; the second model is the band-dependent
spatial-detail (BDSD) model, which adopts different detail images extracted from the PAN
band to pansharpen MS depending on the particular MS band.

We present the third model, a pixel-dependent spatial-detail network (PDSDNet)
model, which extracts the details from the PAN and low-pass version PAN. The low-
resolution PAN is generated by filters particularly depending on the pixel of MS.

2.1. SSD Model & BDSD Model

In the SSD model, such as IHS transform as the representative of component sub-
stitution, the low-resolution panchromatic image is substantially regarded as a linear
combination of multiple bands from the multispectral image. Thus, approximate PAN with
weighted parameters is described as Equation (1).

Fb = M̃Sb + gb(P− PLP) (1)

where gb is a gain parameter of the b-th band that controls the injection of the extracted
details. PLP is the simulated panchromatic image, P− PLP is the spatial details MS lacked.
M̃Sb is the b-th band of the upsampled version of the low spatial resolution MS. In the com-
ponent substitution method, PLP is the intensity component of MS which is the weighted
combination of MS bands, as Equation (2). In the SSD model, the detail image is the same
for all MS bands.

PLP =
B

∑
b=1

wb M̃Sb (2)

wb is the weighting coefficient of the b-th MS band, B is the number of bands. Many
CS-based pansharpening algorithms rely upon Equation (1), just changing the ways to
estimate the injection coefficient gb and the weight wb. In IHS transform, wb = 1/B.

In the BDSD model, Equation (1) could be further rewritten in the following Equation (3):

Fb = M̃Sb + gb(P−
B

∑
k=1

wb,k M̃Sb) (3)

here detail image extracted from PAN is calculated for each MS band by evaluating a
band-dependent generalized intensity from the B MS bands.

2.2. PDSDNet Model

We propose a non-linear spatial-detail model in which the detail image is extracted
for each pixel from PAN. The detail image is calculated by evaluating a pixel-dependent
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generalized intensity from the B MS bands, as Equation (4). Only the MS bands overlapped
with the PAN band participate in calculating.

PLP,(x,y) =
B

∑
b=1

M̃Sb,(x,y) ∗ DFb,(x,y) (4)

where (x, y) denotes the position of the pixel in image, ∗means the convolution operator,
DFb,(x,y) denotes the adaptive convolution kernel or filter depending on MS band b and
pixel position, which is obtained by a dynamic filter network (DFN). For each band,
convolution will be achieved through a sliding window whose size is the same as the
convolution kernel.

According to the model of CS-based methods, the pansharpened image Fb is equal
to the sum of the upsampled MS band M̃Sb and the injected details P− PLP,(x,y). Here
we ignore the injection coefficients considering that the detail image is pixel-dependent
spatial-detail by adaptive filter network; therefore, the PDSDNet can be summarized as
Equation (5):

Fb = M̃Sb + (P− PLP,(x,y)) (5)

In low-resolution PAN PLP,(x,y), the parameters of adaptive filters DFb,(x,y) can be
learned from a large-scale training dataset by approximating PLP,(x,y) to P. Accordingly,
the loss function of network for simulating PAN is designed to measure the similarity of
ground truth P and the result of the network PLP,(x,y). The loss function is described as
Equation (6):

Loss =
1
N

N

∑
k=1

∥∥∥∥∥P{k} − {
B

∑
b=1

M̃Sb,(x,y) ∗ DFb,(x,y)}{k}

∥∥∥∥∥
2

F

(6)

where N represents the number of training examples, ‖ · ‖F is the Frobenius norm, and P{k}
is the k-th example PAN extracted from the ground truth image.

Minimize Loss to train the network for simulating PAN and the pansharpened image
can be calculated by Equation (5).

2.3. Dynamic Filter Network (DFN)

The adaptive filters {DFb,(x,y)} are obtained locally and dynamically depending on
the input images by the dynamic filter generation network [38]. In DFN, parameters consist
of model parameters and dynamically generated parameters. Model parameters, that is
the layer parameters, are initialized in advance and only updated during training. When
the train is finished, model parameters are fixed and are the same for all test samples.
Dynamically generated parameters do not need to be initialized and are sample-specifically
generated on the fly. Dynamically generated parameters denote dynamic filters in our
method. The filter generating network dynamically outputs generated parameters, while
its own parameters are part of the model parameters. Dynamic filters of our method
are implemented by generating two convolution kernels per pixel instead of sharing a
convolution kernel across the full image, thus enhancing the adaptability of the network.

The filter generation network is shown in Figure 2. The encoder–decoder block is
used as the main component, which includes four units: convolution, pooling, upsampling,
and subnetwork. The convolution unit is composed of three convolution layers and
activation layers alternately. The pooling unit is an average pooling layer. The upsampling
unit consists of upsampling layer, convolution layers and activation layer. The way of
upsampling is bilinear interpolation. The convolution unit and the upsampling unit
constitute the subnetwork unit. The network inputs B bands MS and outputs B groups of
filters for simulating PAN. MS is convolved with these filters to obtain the simulated PAN.
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Figure 2. The structure of PDSDNet, which inputs four bands MS and outputs filters for simulating
PAN.

For the inspiration of [39–41], our adaptive filters DFb,(x,y) have two separable single-
dimensional convolution kernels for each band b and each pixel: vertical kernel and
horizontal kernel. DFb,(x,y) is k × k patch in the center of x, y if the size of vertical kernel
and horizontal kernel is k.

2.4. Implementation Details

We chose three datasets from different satellites for experiments in Table 1. Before
the experiment, the data need to be preprocessed. Firstly, 256 × 256 MS is upsampled to
the same 1024 × 1024 size as PAN. Secondly, MS and PAN are normalized with Z-Score
normalization (zero-mean normalization), which makes the mean of images become 0 and
the standard deviation 1. Thirdly, the data are randomly divided into two parts, 90% for
the training stage and 10% for the testing stage. Further, the data for the training stage are
cropped into 128 × 128 patches in two ways. One is sequentially cropping in step size 64,
and the other is randomly cropping, which randomly selects 100 points on the graph as the
center point. So 325 patches in size of 128 × 128 are produced from each 1024× 1024 image.
The result is 20% of patches for validation and 80% for training in the training process.

The process is illustrated as Figure 3. The experiments were implemented by PyTorch,
a common deep learning framework. The input of the network is the upsampled and
normalized MS, which are four bands, and the output is the simulated PAN, the reference
of which is the normalized PAN. We set the batch as 20 and kernel size 5. The convolution
kernel of the convolution layer is 3× 3 with stride 1 and padding 1. The convolution kernel
of the average pooling layer is 2× 2 with stride 2 in the encoding process. Correspondingly,
the scale factor of the upsampling layer is 2 in the decoding process. The optimizer is an
Adam optimizer with an initial learning rate of 0.001. The loss function is mean-square
error (MSE) as Equation (6).
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Table 1. Details of datasets.

Satellite Sensor Spatial
Resolution

Spectral
Resolution Band Number & Band Size Data Volume

IKONOS Pan 1 m 1 band 1 Pan 1024 × 1024 200
MS 4 m 4 bands 1 Blue, 2 Green, 3 Red, 4 NIR 256 × 256 × 4 200

QuickBird Pan 0.61 m 1 band 1 Pan 1024 × 1024 500
MS 2.44 m 4 bands 1 Blue, 2 Green, 3 Red, 4 NIR 256 × 256 × 4 500

WorldView-3 Pan 0.31 m 1 band 1 Pan 1024 × 1024 160

MS 1.24 m 8 bands 1 Costal, 2 Blue, 3 Green, 4 Yellow,
5 Red, 6 Red Edge, 7 NIR, 8 NIR2

256 × 256 × 4 160

Test dataset

128×128 test MS

128×128 
test PAN

PDSDNet Kernels
input output

Simulate 
test PAN

Details Fusion image

convolution

subtract addition

input convolution

1024×1024 Train MS

loss

1024×1024 Train PAN

Simulate 
train PAN

Test Stage

Training Stage

reference

PDSDNet Kernels
output

Training dataset

Figure 3. The process of our fusion method.

3. Experiments and Results

To assess the performance of the proposed methods, we have implemented multiple
experiments with real-world multi-resolution images, exploring a wide range of situations.
Consider the typical case when training and test data are acquired with the same sensor but
come from different scenes, three state-of-the-art algorithms are employed for comparison,
which are BDSD [10], MTF-GLP-HPM-PP [22], and PanNet [28]. BDSD is one of the
usual methods of CS [42], which is an accurate linear injection model in the minimum
mean-square-error (MMSE) sense. BDSD extracts details by evaluating a band-dependent
generalized intensity from the MS bands. CS-based methods are inclined to generate
spectral distortion but usually have no obvious spatial distortion. MTF-GLP-HPM-PP is one
of the effective methods of MRA [42], which is based on a generalized Laplacian pyramid
(GLP) [43] with modulation transfer function (MTF)-matched filter [20], multiplicative
injection model [44] and post-processing (MTF-GLP-HPM-PP) [22]. MRA-based methods
are prone to spatial distortion but generally have little spectral distortion. PanNet is a fusion
method based on deep learning, which trains network parameters in the high-pass filtering
domain rather than the image domain. PanNet learns the details from high-frequency
information of MS and PAN, then adds upsampled MS to the network output. These
methods have a common pre-processing step, applying MTF to process the image. This
step is not performed in PDSDNet.
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3.1. Datasets for Experiments

The data of our experiments were selected from a special large-scale publicly available
benchmark dataset for pansharpening from [42]. HR PAN images are 1024 × 1024 and
LR MS images are 256 × 256. In addition, the geometrical registration of datasets has
been performed in [42]. These data contain a variety of features such as urban, green
vegetation, water scenario, and mixed features. Considering satellites, spatial resolution
and number of bands, we chose datasets of three satellites from [42]. The datasets consist
of 200 IKONOS, 500 QuickBird, and 160 WorldView-3 image patches in different spatial
resolutions. As Table 1 shows, the multispectral image (MS) of IKONOS and QuickBird
have four bands while WorldView-3 has eight. Table 2 shows the wavelength of bands of
different satellite sensors. “Pan” corresponds to the band range of panchromatic image,
and from “Coastal” to “NIR2” is the first to eighth band corresponding to the multispectral
image of WorldView-3. “Blue”, “Green”, “Red”, and “NIR” are the first to the fourth band
of the multispectral image of IKONOS and QuickBird.

Table 2. Band settings of different satellites.

Satellite Pan Coastal Blue Green Yellow Red Red Edge NIR NIR2

IKONOS 450–900 450–530 520–610 640–720 760–860
QuickBird 450–900 450–520 520–600 630–690 760–900

WorldView-3 450–800 400–450 450–510 510–580 585–625 630–690 705–745 770–895 860–1040

The four bands of IKONOS’s MS overlap with PAN, and they were all put into the
network for simulating PAN, so is QucikBird. It is important to note that our method
utilizes only six bands of WorldView-3 from Blue to NIR for simulating PAN because the
range of Coastal and NIR2 have no overlap with PAN; however, in other cases, the data of
WorldView-3 is processed with eight bands. Assuming that if an ideal MS that has the same
resolution with PAN exists, each band of it should have the same spatial details as in PAN,
the details obtained by simulated PAN and original PAN are added to eight bands, not six.

3.2. Evaluation Indexes

In addition to visual evaluation, we have chosen two types of five indexes for quality
assessment. One type is full-resolution assessment, which infers the quality of the pan-
sharpened image at the scale of the PAN image without resorting to a single no-reference
image [45]. The index of the quality with no reference (QNR) [46], the spectral distortion Dλ

and the spatial distortion DS are contained in this type. QNR measures spectral and spatial
consistencies by calculating mutual similarities between any couples of MS bands and each
MS band and PAN. The consistencies are assumed unchanged on average before and after
fusion. Another type is reduced-resolution assessment, which measures the similarity of
the fused product and an ideal reference, i.e., the original MS. The index of spectra mapper
angle (SAM) [47] and spatial correlation coefficient (sCC) [48] are chosen for this purpose.

QNR, SAM, and sCC are calculated as Table 3, where symbols used have the same
meaning as in Section 2. MS is the multispectral image (MS), P is the panchromatic image
(PAN) and PLP is the low-resolution PAN, F is the fused image, R is the reference image. B
is the total number of MS bands, Fi,b represents the value of position i in b-th band of the
fused image, b is an integer from 1 to B. When the correlation coefficient between PAN and
fusion image or MS is calculated, PAN with only one band will be replicated B times to
obtain B bands for convenience of calculation. Pi,b is the same when b takes any integer
value between 1 and B. ˆdenotes the image processed through high-pass filter. L1 and L2 is
the width and height of an image. σI represents the standard variance of image vector I
and σI J is the covariance of I and J. I denotes the mean value of I.

It is noted that QNR is the unique quality index combined two distortions of the
spectral distortion Dλ and the spatial distortion DS as Equation (7):
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QNR = (1− Dλ)
α(1− DS)

β (7)

where usually α = β = 1, and QNR ∈ [0, 1] with 1 being the best attainable value. The
spectral distortion Dλ and the spatial distortion DS both are calculated through universal
image quality index (UIQI) [49] defined as Equation (8):

UIQI(I, J) =
σI J

σIσJ
· 2I J

I2
+ J2 ·

2σIσJ

σ2
I + σ2

J
(8)

Obviously, UIQI is a comprehensive index calculating the similarity between two
images, which is a combination of three factors: loss of correlation, luminance distortion,
and contrast distortion. If the value of UIQI is 1, it means that the image has the best fidelity
for the reference image.

The description of each index in Table 3 is described as follows:

• Dλ represents the spectral distortion of the image. Dλ calculates the correlation of the
interband between the UIQI of the fused image and the reference image. Smaller Dλ

means smaller spectral distortion of the fused image, and so is SAM. If Dλ is 0, the
fused image has no spectral distortion.

• DS shows the spatial distortion of the image. DS measures the correlation of the
interband between the UIQI of fused image and PAN. Smaller DS represents smaller
spatial distortion. If DS is 0, the fusion image has no spatial distortion.

• QNR stands for no reference quality index and measures the quality of full-resolution
fused images. QNR is the combination of Dλ and DS. Bigger QNR denotes better
image quality. When both of Dλ and DS are 0, QNR will be 1, which means the fusion
image has effective quality.

• SAM measures spectral mapper angle between the fused image and the reference
image. Smaller spectral distortion corresponds to smaller SAM. It means perfect image
when SAM goes to 0. SAM is expressed in radians in our indexes.

• sCC calculates the spatial correlation coefficient between the fusion image and PAN.
The spatial details of PAN and fused image are obtained by high-pass filtering, such
as Sobel operator measuring horizontal edge. A greater relative relationship leads to
bigger sCC. The optimal value of sCC is 1.

Table 3. Quality indexes.

Index Equation Meaning

Dλ Dλ = 1
B(B−1) ∑B

b=1 ∑B
j=1,j 6=b

∣∣∣UIQI(Fb, Fj)−UIQI(MSb, MSj)
∣∣∣ the smaller the better

DS DS = 1
B ∑B

b=1|UIQI(Fb, P)−UIQI(MSb, PLP)| the smaller the better
QNR QNR = (1− Dλ)(1− DS) the bigger the better

SAM SAM = 1
L1 L2

∑L1 L2
i=1 arccos ∑B

b=1(Ri,b ·Fi,b)√
∑B

b=1 R2
i,b

√
∑B

b=1 F2
i,b

the smaller the better

sCC sCC = ∑B
b=1 ∑

L1 L2
i=1 (P̂i,b ·F̂i,b)√

∑B
b=1 ∑

L1 L2
i=1 P̂i,b

2
√

∑B
b=1 ∑

L1 L2
i=1 F̂i,b

2
the bigger the better

3.3. Results of IKONOS Dataset

For the original IKONOS, the data volume is 200, 20 pairs of test images in 1024 × 1024,
11,700 pairs of validation images in 128 × 128 and 46,800 pairs of training images in
128 × 128 are produced after pre-processing. The details of pre-processing are described
in Section Implementation Details. Figure 4 is the visualization of results of BDSD, MTF-
GLP-HPM-PP, PanNet, and our method. Figure 5 is its subsets to show local details.
Figures 4 and 5 show RGB image synthesized from red, green, and blue bands of results for
comparing visual effects conveniently; (a,b) are original PAN and MS; (c–f) are the fusion
result of BDSD, MTF-GLP-HPM-PP, PanNet, and our method.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Visualization of IKONOS test image: (a) PAN; (b) MS; (c) BDSD; (d) MTF-GLP-HPM-PP;
(e) PanNet; (f) PDSDNet.

(a) (b) (c) (d) (e) (f)

Figure 5. Visualization of local details of IKONOS test image: (a) PAN; (b) MS; (c) BDSD; (d) MTF-
GLP-HPM-PP; (e) PanNet; (f) PDSDNet.

Each image in Figure 4 is a partial region in size of 400 × 400 clipped from one of
the test images in size of 1024 × 1024, and patches in size of 50 × 50 in Figure 5 show
more details.

Figure 4 shows that our method achieves promising visual results both in spectral and
spatial dimension, which can reach equal effect with the MTF-GLP-HPM-PP method and
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PanNet. Results of MTF-GLP-HPM-PP, PanNet, and our method have no evident spectral
distortion, but some blur regions exist on results of BDSD and PanNet, especially in subsets
of the second and fourth rows of (c) and (e) in Figure 5. In comparison, our method and
MTF-GLP-HPM-PP show distinct spatial details, particularly details of the edges of bright
objects in the subsets.

Table 4 and Figure 6 are the values of quality indexes of results of different methods.
The average value of quality indexes of these images is shown in Table 4; the dispersion of
the values of quality indexes is shown by boxplot in Figure 6.

Table 4. Quality indexes of IKONOS test images.

Satellite Method Dλ DS QNR SAM sCC

IKONOS BDSD 0.025444 0.060288 0.915776 0.023733 0.586412
IKONOS MTF-GLP-HPM-PP 0.142897 0.206561 0.682524 0.020904 0.626434
IKONOS PanNet 0.109174 0.177450 0.735754 0.018246 0.899323
IKONOS PDSDNet 0.118761 0.175408 0.728854 0.032151 0.608364

Figure 6. Quality indexes of results of BDSD, MTF-GLP-HPM-PP, PanNet, and PDSDNet.

The boxplot represents the dispersion of the data through maximum, minimum,
median, upper and lower quartiles of quality indexes of test images. The length of the box
shows the interquartile range (IQR), and the smaller range means more concentrated data.
The line’s location in the box is the median, which represents the general state of the data.
Moreover, the ‘×’ is the position of mean value corresponds to the value in Table 4. The
upper and lower edge line means maximum and minimum.

For IKONOS datasets, the visual effect of MTF-GLP-HPM-PP and our method are
best; however, the conclusion becomes different when it comes to quantitative indicators.
On no-reference indexes, the results of BDSD have the best performance as the first row
shown in Figure 6. As Table 4 and Figure 6 show, the results of PanNet and our method
are similar, better than MTF-GLP-HPM-PP. As for referenced indexes, PanNet shows
better performance than other methods, while BDSD, MTF-GLP-HPM-PP and our method
perform similarly. The results demonstrate that there is a gap between visual evaluation
and quantitative evaluation.

3.4. Results of QuickBird Dataset

For the original QuickBird, the data volume is 500, 50 pairs of test images in 1024 × 1024,
29,250 pairs of validation images in 128 × 128 and 117,000 pairs of training images in
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128 × 128 are generated from pre-processing. Figures 7 and 8 are the visualization of
results of different methods on QuickBird test datasets. The third, the second, and the
first band were chosen as RGB channels for visualization from four bands of QuickBird
test results. The ranges of bands have been shown in Table 2. In Figures 7 and 8, (a,b) are
original PAN and MS, (c–f) are the fusion result of BDSD, MTF-GLP-HPM-PP, PanNet, and
our method. Every image of Figure 8 is a 400 × 400 path clipped from one of 1024 × 1024
QuickBird test images or results, and 50 × 50 patches in Figure 8 show more particulars.
From Figure 7, the results prove that our method also achieves superior visual results on
QuickBird test images. Our method’s results still have no apparent spectral distortion and
spatial distortion. Figure 8 shows that our method’s results have sharper outlines than
other methods, specifically on the samples in the first row and third row. The patches of
PanNet are somewhat ambiguous, and the zebra crossing on the samples in the fourth row
can not be distinguished easily.

Table 5 and Figure 9 are the values of quality indexes of different method results.
The average of quantitative indicators of all QuickBird test images is shown in Table 5.
Figure 9 gives the boxplot of values of quality indexes. Compared with the performance on
IKONOS, our method reach closer results on QuickBird with MTF-GLP-HPM-PP method.
BDSD and PanNet show similar performance on no-reference indexes. Although PanNet
achieves the best results on almost all indicators in Figure 9, its visual effects are no match
for MTF-GLP-HPM-PP and our method.

(a) (b) (c)

(d) (e) (f)

Figure 7. Visualization of QuickBird test images: (a) PAN; (b) MS; (c) BDSD; (d) MTF-GLP-HPM-PP;
(e) PanNet; (f) PDSDNet.
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(a) (b) (c) (d) (e) (f)

Figure 8. Visualization of local details of QuickBird test images: (a) PAN; (b) MS; (c) BDSD; (d) MTF-
GLP-HPM-PP; (e) PanNet; (f) PDSDNet.

Table 5. Quality indexes of QuickBird test images.

Satellite Method Dλ DS QNR SAM sCC

QuickBird BDSD 0.061218 0.071605 0.872024 0.011920 0.604250
QuickBird MTF-GLP-HPM-PP 0.110081 0.213027 0.707572 0.010014 0.625727
QuickBird PanNet 0.032097 0.085783 0.885333 0.008449 0.855061
QuickBird PDSDNet 0.124512 0.175785 0.730688 0.014147 0.602224

Figure 9. Quality indexes of results of BDSD, MTF-GLP-HPM-PP, PanNet, and PDSDNet.

3.5. Results of WorldView-3 Dataset

In pre-processing, 16 pairs of test images in 1024 × 1024, 9360 pairs of validation
images in 128 × 128, and 37,440 pairs of training images in 128 × 128 are produced from
160 original WorldView-3 images. Figures 10 and 11 are the visualization of results of dif-
ferent methods on WorldView-3 test datasets. For convenience to facilitate the comparison
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of the visual effects, the fifth, third, and second band of the eight bands of WorldView-3
were combined as RGB channels for display. Figure 10 shows a 400 × 400 area on one
of 1024 × 1024 WorldView-3 test images, and Figure 11 provides the local patches. As
shown in Figure 7, our method also achieves outstanding visual results on WorldView-3
test images. In line with the visual effects of IKONOS and QuickBird datasets above, our
method’s results have no evident spectral distortion and spatial distortion; however, the
spectral preservation ability of MTF-GLP-HPM-PP method decreases. The results of BDSD
suffers from severe spectral distortion, such as the architecture on BDSD result in (c) of
Figure 7. Many speckles and over-saturated points arise on the whole image (c). As shown
in Figure 11, BDSD method’s results have some slight mixed colors, for example, yellow or
gray, especially in the first row and the third row of (c).

Table 6 and Figure 12 are the values of quality indexes of different method results. The
value of quantitive indicators of 16 WorldView-3 test images can be observed in Figure 12.
The average of 16 images is shown in Table 6. Compared with the performance on IKONOS
and QuickBird, our method also reach close results on WorldView-3 with MTF-GLP-HPM-
PP, but the performance of our method becomes better on WorldView-3 than other two
datasets. Compared with IKONOS and QuickBird, WorldView-3 dataset has eight bands
rather than four. When the number of bands increases, quantitative indicators of PanNet’s
results are still ahead overall; however, the gap in the performance of PDSDNet and PanNet
decreases, while MTF-GLP-HPM-PP shows the opposite. The difference in the performance
of MTF-GLP-HPM-PP and PDSDNet increases. It means that whether all bands are utilized
for simulating low-resolution PAN will have an influence on fusion results when some
multispectral bands have no intersection with the panchromatic band in wavelength.

(a) (b) (c)

(d) (e) (f)

Figure 10. Visualization of WorldView-3 test images: (a) PAN; (b) MS; (c) BDSD; (d) MTF-GLP-HPM-
PP; (e) PanNet; (f) PDSDNet.
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(a) (b) (c) (d) (e) (f)

Figure 11. Visualization of local details of WorldView-3 test images: (a) PAN; (b) MS; (c) BDSD;
(d) MTF-GLP-HPM-PP; (e) PanNet; (f) PDSDNet.

Table 6. Quality indexes of WorldView-3 test images.

Satellite Method Dλ DS QNR SAM sCC

WorldView-3 BDSD 0.044381 0.206057 0.758531 0.115358 0.345156
WorldView-3 MTF-GLP-HPM-PP 0.101469 0.120643 0.795284 0.073263 0.597091
WorldView-3 PanNet 0.070647 0.107669 0.833849 0.064444 0.860472
WorldView-3 PDSDNet 0.075793 0.115544 0.821917 0.075176 0.593716

Figure 12. Quality indexes of results of BDSD, MTF-GLP-HPM-PP, PanNet, and PDSDNet.

For only six bands participating in learning the simulated PAN in PDSDNet, but with
the details being added to all bands, we select the eighth, third, and first band for false
color composite (FCC) to observe the effect in Figure 13. The eighth band and the first band
were not involved in simulating PAN. The details are shown in Figure 14, and the first row
from left to right is PAN, FCC of MS, and FCC of PDSDNet result, then the second and
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the third row is four groups of local details of the first row images. No obvious spectral or
spatial distortion appears in visualization, although the two bands have not participated in
the network of producing filters.

(a) (b) (c)

Figure 13. (a) PAN; (b,c) the eighth, the third, and the first band for false color composite; (b) MS;
(c) PDSDNet.

(a) (b) (c)

Figure 14. Local details: (a) PAN; (b,c) the eighth, the third, and the first band for false color
composite; (b) MS; (c) PDSDNet.

4. Discussion
4.1. Visualization of Filters

In order to validate whether it is necessary for the adaptive filter network to generate
a set of convolution kernels for each pixel instead of sharing the convolution kernels for
the full image, we select a test image and output its filter after the simulating network.
For convenience for the visualization, we multiply two single-dimensional filters together,
so each pixel corresponds to one 5 × 5 kernel, then tile kernels according to the pixel
location. The heat map of this matrix was drawn, and 250 × 250 area on the map is shown
in Figure 15 for observing, which corresponds to the 50 × 50 local test patch. The deeper
red represents the bigger value, and the greater yellow denotes the smaller value. When
the value is close to the middle of the 250 × 250 data distribution, the map shows white.
From Figure 15, it is clear that filters of different pixels have significant differences, which
are related to the edges of the object.
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Figure 15. The heat map of the PDSDNet filters corresponding to the first row test image in Figure 8.

4.2. Comparative Analysis of Methods

We have conducted experiments on IKONOS, QuickBird, and WorldView-3 datasets
with BDSD, MTF-GLP-HPM-PP, PanNet, and PDSDNet. Visualization and quantitative
evaluation of the results of four methods on three datasets with five indexes have been
shown. Figures 4, 7, and 10 demonstrate a whole effect of 400 × 400 areas where spectral
preservation can be observed. Figures 5, 8, and 11 focus on the local details of 50 × 50 areas.
Figures 6, 9, and 12 show the data distribution of the quantitative indicators of the re-
sults. Tables 4–6 show the average value of the quantitative indicators of the results.
Figures 13 and 14 show the performance of the proposed method on WorldView-3 dataset
in the Coastal and NIR2 band, which are not involved in simulating panchromatic image.
Figure 15 shows the visualization of filters corresponding to part of pixels of one band
generated by the proposed method in this paper.

From the above results of the three datasets, the visual effect of our method is promis-
ing with no conspicuous spectral distortion. The results of the proposed method indicate
that the spectral effect of simulating PAN obtained by the combination of MS bands is
relatively close to the real PAN. The proposed method in this paper assumes that if the
resolution of panchromatic and multispectral images are consistent, the panchromatic band
has the same details as each multispectral band; therefore, the spatial detail is identical for
each band when the details obtained from the real PAN and simulating PAN are infused
to the upsampled MS. The visualization of the two other bands in the eight-band dataset
presents as much detail as the others without spatial distortion. It is consistent with the
previous assumption. The results showed no evident spatial distortion in the local patches.
Compared with other methods, the visual effect of the proposed method demonstrates
more advantages.

In terms of quantitative indicators, the results of the proposed method are not the most
outstanding on the three datasets among the four methods, but no significant difference
exists between our method and the best or second-best method most of the time. The
quantitative performance may be related to the perspective of measurement. Although
the results of BDSD are block-fuzzy, BDSD performs well in the no-reference quantitative
indexes on IKONOS dataset and QuickBird dataset. The values of quantitative indicators
of PanNet’s results are positive, but detailed information is not abundant enough with
fuzzy edge in visual. It indicates that the performance of quantitative indexes could be
inconsistent with the visual effect. Whether the method is local optimal or global optimal,
and whether the index is calculated by averaging the values of the local areas or measured
in pixels, may affect the evaluation of the method in terms of the index.
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5. Conclusions

In this paper, a pixel-dependent spatial-detail injection network (PDSDNet) is pro-
posed. Based on the dynamic filter network, PDSDNet constructs the nonlinear mapping
of the simulated panchromatic band from the low-resolution multispectral band through
filter convolution regression. On the one hand, PDSDNet reduces the possibility of spec-
tral distortion and spatial distortion by improving the similarity between the simulated
panchromatic band and the real panchromatic band. On the other hand, the pansharpened
images have rich spatial details, assuming that the panchromatic band has the same spatial
details as each multispectral band.

The experimental results show that PDSDNet can generated high-quality fusion image
with multi-resolution images and panchromatic images. The comparison between the
proposed method and the widely utilized methods BDSD, MTF-GLP-HPM-PP, PanNet of
pansharpening on IKONOS, QuickBird, and WorldView-3 datasets demonstrates that the
proposed network presents superior visual effects without noticeable spectral distortion
and spatial distortion. The quality indexes show that the PDSDNet only obtain result in
approximate level similar to the MTF-GLP-HPM-PP’s results, not the best one.

Our experimental results demonstrate that quantitative indicators in the evaluation
do not match the expected visual evaluation outcomes. It is not a novel finding. Devising
new quantitative indicators that match the human perceptual assessment is still an open
research problem in image fusion.

Although the proposed method has superior fusion visual performance, quantita-
tive results are not outstanding enough. In fact, in this paper, quantitative indicators
were applied to evaluate fusion images, but the optimization in PDSDNet is to simulate
panchromatic band. In future work, we will explore establishing a pixel-dependent spatial-
detail injection model on dynamic filter networks to obtain both promising visual and
quantitative results.
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