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Abstract: Due to the inconsistent spatiotemporal spectral scales, a remote sensing dataset over a large-
scale area and over long-term time series will have large variations and large statistical distribution
features, which will lead to a performance drop of the deep learning model that is only trained on the
source domain. For building an extraction task, deep learning methods perform weak generalization
from the source domain to the other domain. To solve the problem, we propose a Capsule–Encoder–
Decoder model. We use a vector named capsule to store the characteristics of the building and its
parts. In our work, the encoder extracts capsules from remote sensing images. Capsules contain the
information of the buildings’ parts. Additionally, the decoder calculates the relationship between the
target building and its parts. The decoder corrects the buildings’ distribution and up-samples them to
extract target buildings. Using remote sensing images in the lower Yellow River as the source dataset,
building extraction experiments were trained on both our method and the mainstream methods.
Compared with the mainstream methods on the source dataset, our method achieves convergence
faster, and our method shows higher accuracy. Significantly, without fine tuning, our method can
reduce the error rates of building extraction results on an almost unfamiliar dataset. The building
parts’ distribution in capsules has high-level semantic information, and capsules can describe the
characteristics of buildings more comprehensively, which are more explanatory. The results prove
that our method can not only effectively extract buildings but also perform great generalization from
the source remote sensing dataset to another.

Keywords: remote sensing images; building extraction; capsule–encoder–decoder; explainability;
generalization

1. Introduction

Building extraction from remote sensing images is a spatially intensive task, which
refers to the automatic process of identifying building and non-building pixels in remote
sensing images [1]. Building extraction plays an important role in many applications, such
as urban planning, population estimation, economic distribution, disaster reporting [2–5],
and so forth. In recent years, with the explosive growth of remote sensing image data,
deep learning methods have become a research hotspot. Although the recent advancement
of deep learning methods has greatly promoted the research in this area [6–9], there
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are still many challenges. Due to the different acquisition conditions, a remote sensing
dataset over a large-scale area and over a long-term time series will have large variations
and large statistical distribution features, which will lead to a performance drop of the
deep learning model that is only trained on the source domain. In other words, deep
learning methods lack generalizability [10]. Specifically, on the remote sensing images
with inconsistent spatiotemporal spectral scales, the deep convolutional neural network-
based target extraction models perform weak generalization with high error rates of target
extraction; most of the current deep learning methods are only well coupled with the
remote sensing images on the same spatiotemporal spectral scales [3].

The convolutional neural network (CNN) output results can only reflect the probabil-
ity of the existence of features in the local area, lacking a more detailed description of the
features. When local features are transformed by translation, rotation, and scaling, a convo-
lutional neural network can not easily perceive local features [11]. In remote sensing images,
the complexity and diversity of statistical features further increase the difficulty of using a
convolutional neural network to detect characteristics in images [12]. Therefore, the diverse
and complex statistical features between different remote sensing images will limit the
generalization performance of a convolutional neural network. Specifically, Lunga et al.
trained the mainstream convolutional neural network models on different datasets and
found that the model can only achieve good performance on the corresponding dataset [13].
Due to the widely different statistical features and pixel distributions of remote sensing
images in different geographic regions, it is difficult for convolutional neural network
models to generalize from source domain datasets to other datasets. In recent related
work, Sheng et al. additionally added a high-level semantic template defined by experts
to improve the generalization of the model in vegetation extraction [14]. However, this
approach introduces the subjectivity of experts and is not convenient to combine with deep
learning models. Yang et al. propose a novel deep network with adaptive graph structure
integration, whcih can dynamically enhance robust representations of graphs [15]. The goal
of this model is to learn the topological information of the target objects. Therefore, we
should describe the features in more detail and deal with the spatial relationship between
the features, which can improve the generalization of the model.

In this study, we use a vector named capsule to store richer information, and we
use capsules to describe local features. The output of the convolutional neural network
is just a response value at each pixel, representing the probability that the feature exists.
In other words, convolutional neural networks can not perceive spatial associations between
different features. When we use capsules to represent each feature in an image, a vector
data structure can store information about the feature itself and its associations with
other features. The extra information in the capsule can improve the accuracy of the
feature representation compared to the single-valued response at each pixel output by
the convolutional neural network. Therefore, the capsule can accurately represent the
complex features in the image and can describe the transformation of the features through
the extra information stored in it. We can improve the generalization of building extraction
through capsules.

1.1. CNN-Based Method for Building Extraction

In recent years, with the development of deep learning, AlexNet [16] has obtained
good results of RGB image classification on ImageNet [17], which indicates that the convo-
lutional neural network has become an effective feature automatic extraction tool. In 2015,
Long et al. proposed a fully convolutional network (FCN) that implemented an end-to-end
deep learning architecture for semantic segmentation [18]. Fu and Qu used FCN for the
semantic segmentation of remote sensing images and used matrix expansion technology to
optimize the convolution operation. The experimental results show that the fully trained
and fine-tuned FCN can effectively perform automatic semantic segmentation of high-
resolution remote sensing images, and the segmentation accuracy is higher than 85%, which
improves the convolution operation efficiency [19]. Based on the full convolutional network



Remote Sens. 2022, 14, 1235 3 of 23

architecture, convolutional network models for semantic segmentation have continuously
emerged. Ronneberger et al. proposed UNet, and the U-shaped structure of UNet can fuse
different information scales [20]. Badrinarayanan et al. proposed SegNet, which records
down-sampling locations and uses them as up-sampling indices, which to some extent
weakens the loss of spatial contextual information [21]. Zheng and Chen applied UNet
to remote sensing image segmentation and realized the end-to-end pixel-level semantic
segmentation of remote sensing images. Through the training and learning of GaoFen-
2 remote sensing images, the results showed that the proposed method achieved high
segmentation accuracy and generalization ability [22]. Ye et al. proposed RFA-UNet that
adopts attention based on re-weighting to extract buildings from aerial imagery [23]. RFA-
UNet achieves improved performance for building extraction. Zuo et al. fused deformable
convolution [24] extraction features based on SegNet, used a conditional random field [25]
to repair segmentation results, and obtained the best semantic segmentation results on
the ISPRS dataset [26]. Additional improvements have been made by fusing multiscale
features and enlarging the receptive field. Yu et al. proposed an improved PSPNet [27]
by incorporating network building blocks [28] for building extraction. Lin et al. proposed
a method based on Deeplab-v3 [29] for road extraction. It incorporates the squeeze-and-
excitation module to apply weights to different feature channels and performs multiscale
up-sampling to preserve and fuse shallow and deep information [30].

These methods have made significant advancements in terms of building extraction.
However, the challenge lies in the sufficient generalization of the methods from the source
domain to the other domain. Although recent CNN-based methods can obtain abstract
representations of features by deepening the model, their output single-valued responses
can not reflect the spatial associations between different features.The diverse and complex
statistical features between different remote sensing images will limit the generalization
performance of these CNN-based methods. Therefore, recent CNN-based methods only fit
in the source domain. To make the model generalizable to other domains about building
extraction, we introduce additional information to describe the features, including the
features themselves and the spatial relationship between different features. Our solution
aims to reduce the error rates of building extraction results on an almost unfamiliar dataset.

1.2. Capsule Networks for Building Extraction

Sabour et al. proposed a vector capsule network that stores the feature description
information in a vector called the vector capsule. The capsule network fuses the low-level
capsule information by dynamic routing and obtains a capsule with high-level semantic
information [31]. Hinton et al. proposed a matrix capsule [32], which was improved based
on a vector capsule network. A matrix capsule was used to replace the vector capsule,
and the matrix capsule enhanced the pose recognition ability of the model. The routing
mechanism in capsule networks limits the speed of forward computations. Kosiorek et al.
proposed stacked capsule autoencoders (SCAEs) [33], which are a new capsule network
architecture. SCAEs use the set transformer [34] instead of the routing mechanism to
learn the relationship between low-level and high-level capsules, and the set transformer
significantly improves the inferencing speed.

In recent years, due to the advantages of capsules in feature representation, researchers
began to add capsule modules to the solution of building extraction. Yu et al. proposed a
capsule feature pyramid network (CapFPN) for building footprint extraction from aerial
images [35]. Taking advantage of the properties of capsules and fusing different levels
of capsule features, the CapFPN can extract high-resolution, intrinsic, and semantically
strong features, which perform effectively in improving the pixel-wise building footprint
extraction accuracy. Yu et al. proposed a high-resolution capsule network (HR-CapsNet)
to conduct building extraction [36]. First, designed with an HR-CapsNet architecture
assisted by multiresolution feature propagation and fusion, the HR-CapsNet can provide
semantically strong and spatially accurate feature representations to promote the pixel-
wise building extraction accuracy. In addition, integrated with an efficient capsule feature
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attention module, the HR-CapsNet can attend to channel-wise informative and class-
specific spatial features to boost the feature encoding quality.

CapFPN and HR-CapsNet successfully applied the capsule network to the building
extraction, and the effect was improved compared with the CNN-based methods, but the
performance of the two methods was still limited to the source dataset, and they lacked gen-
eralization. We need to design an explainable model based on capsules. We utilize capsules
to make the model to automatically construct explainable building parts’ information.

1.3. Research Objectives

This paper attempts to propose a a novel building extraction method, which can not
only effectively extract buildings but also perform great generalization from the source re-
mote sensing dataset to another. The objectives of this paper can be summarized as follows:

• We propose a novel building extraction method: Capsule–Encoder–Decoder. The en-
coder extracts capsules from remote sensing images. Capsules contain the information
of buildings’ parts. Additionally, the decoder calculates the relationship between the
target building and its parts. The decoder corrects the buildings’ distribution and
up-samples them to extract target buildings.

• Compared with the mainstream deep learning methods on the source dataset, our
method will achieve convergence faster and show higher accuracy.

• Capsules in our method have high-level semantic information, which are
more explanatory.

• Without fine tuning, our method will reduce the error rates of building extraction
results on an almost unfamiliar dataset.

2. Materials and Methods

In this section, we introduce the proposed Capsule–Encoder–Decoder in detail. We
first introduce the overall network architecture in Section 2.1. Secondly, we introduce the
encoder in Section 2.2. Thirdly, we introduce the decoder in Section 2.3. Then, the loss
function and training strategy are presented in Section 2.4. Finally, we describe the datasets
used in this paper in Section 2.5.

2.1. An Overview of Capsule–Encoder–Decoder

In our work, capsules are used to store feature information, and a Capsule–Encoder–
Decoder architecture is proposed for the building extraction of remote sensing images. The
Capsule–Encoder–Decoder includes two main structures: an encoder and a decoder. The
encoder extracts the building part capsules and then uses the set transformer to fuse the
building part capsules to obtain the capsule of the target buildings. The decoder calculates
the relationship between the building part capsules and the target building’s capsule. Then,
the decoder fuses the relationship information into the building parts’ feature distribution
to obtain the posterior building parts’ feature distribution. The deconvolution operation
is used to up-sample the posterior building parts’ feature distribution. Finally, we extract
the target buildings from remote sensing images. The overall framework of our method is
shown in Figure 1.

A capsule is a vector that stores detailed descriptions of features. For the feature
representation vector output by the neural network, the value in the vector represents
the activation degree of the feature, and only one vector contains the information of all
features, which causes the feature representation vector to lose rich descriptive information.
We use a certain number of capsules to represent the features (parts) of the target object,
respectively. Each feature (part) can be described in detail by the corresponding capsule,
including the activation degree, posture, color, and texture of the feature (part). The feature
representation vector only stores the activation information of target objects’ feature (part)
and lacks explainability, while the capsule allows the model to perceive explainable features,
thereby improving the generalization.
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Figure 1. The overall framework of our method.

We design a general loss function for the Capsule–Encoder–Decoder. This loss func-
tion guides the model to implicitly learn to perceive explainable building parts’ features.
In our method, the posterior building parts’ feature distributions by the decoder is feature
maps with explainable semantic information. Then, we can use these explainable feature
maps to achieve information aggregation. Current semantic segmentation models usually
up-sample low-resolution feature maps and then restore detailed information through
convolutional network operation. This process is also called deconvolution network op-
eration. CNN-based methods, CapFPN, and HR-CapsNet are not considered to achieve
explainable low-resolution feature maps. In fact, explainable feature maps are important
for the generalization of building extraction. From a human perspective, we are able to
recognize buildings from images because we can pinpoint the various parts of the building,
such as the central area of the building, the edge areas of the building, and some objects
around it. Although the building in the image changes due to factors such as shooting
angle and brightness, humans are already familiar with the various parts of the building,
so humans can still recognize it. From the perspective of computer vision, the feature maps
output by the model actually represent the various parts of the building, but the feature
maps obtained by the past methods are not explainable, which leads to the transformation
of the image and causes the intermediate feature maps to be extremely complex. So, it is
easy to get wrong perception results. All in all, Capsule–Encoder–Decoder can perceive
explainable feature maps and improve the generalization of the model on different datasets
without fine tuning.

2.2. Architecture of Our Encoder

The encoder extracts building part capsules from shallow feature maps and uses the
set transformer to fuse building part capsules. The architecture of encoder is shown in
Figure 2. For an original remote sensing image, the encoder first uses a convolutional
neural network to extract shallow feature maps that contain textures and other details.
The parallel convolutional neural networks module is used to extract building parts’ feature
maps from shallow feature maps. We use the backbone of UPerNet [37] to initialize the
encoder; the first layer of modules is used to extract common features, and the remaining
three layers of modules are arranged in parallel to extract information such as pose and
texture. The feature map of the building part capsule m is divided into three objects:

• Posture information posemap
m , which stores posture information such as rotation, trans-

lation, scaling, and shearing.
• Texture details cmap

m , which reflects the color and texture properties of the
building parts.

• Attention distribution Attnmap
m , which reflects the possible position distribution of the

building parts in the original image.
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Attention pooling is used to compress feature maps of building parts into building part
capsules. For building part capsule m, the corresponding capsule vector is um. Assuming
that the size of the parallel convolutional neural network output is he × we, attention
pooling is:

um =
he

∑
i

we

∑
j

concat(posemap
m , cmap

m )i,j · sigmoid((Attnmap
m )i,j) (1)

where concat(·) is concatenate operation.
We use the building part capsules’ set U as the set transformer input to output the

target capsule set V. Here, U = {um|m = 1, 2, . . . , M}. Since the semantic segmentation
objects of the task in this paper are only buildings, the target capsule set is denoted as
V = {v}. The building capsule is calculated as:

V = SetTrans f ormer(U) (2)

where U is the set of the most representative building part capsules in the image. V is the
building capsule composed of these parts. SetTrans f ormer(·)is the set transformer [34],
which is an improved version of Transformer [38].

Figure 2. The architecture of our encoder.

The parallel convolutional network module of the encoder can be used to extract
different parts in the building. For the output of the ith convolution branch, the part’s
attention distribution in the feature maps represents the distribution information of the
ith building part in the remote sensing image, and the rest of the feature maps represent
the pose and color texture information of the building part, where i = 1, . . . , M. We
take the part’s attention distribution as the prior distribution for this part of building.
We use attention pooling operation to compress the output of each convolutional branch
into capsules. Intuitively, the capsule is actually the most representative building part
in the remote sensing image. There are too many buildings in the image, and all the
buildings in the same image will change synchronously with the change of shooting angle
and brightness. Therefore, we can use the most representative ith building part capsule
to represent the pose and other information of the ith part of all buildings in the image.
We use a vector capsule to represent a certain part of all buildings, which can reduce the
computational storage cost and add additional descriptive information to the representation
of features.

2.3. Architecture of Our Decoder

The decoder used in this paper reflects the idea of a prototype network [39]. In this
paper, a linear network is used to transform the residual between the building capsule
and the building part capsule to obtain the connection probability between the building
and the building part, namely, the degree of membership. The decoder uses the degree
of membership to correct the part attention distribution, and we can obtain the semantic
segmentation results by up-sampling this posterior attention distribution. The decoder
is shown in Figure 3. In the degree of membership calculation, two linear modules are
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established. One module denoted as NN is used to transform the expression of the part
capsules. Another module denoted as FN is used to process the residual information
between part capsules and the building capsule. The degree of membership λi between
part i and the building is calculated as:

λi = FN(NN(ui)− v) (3)

where i ∈ {1, 2, . . . , M}.

Figure 3. The architecture of our decoder.

The decoder fuses the degree of membership with the prior part attention distribution
to obtain a more accurate posterior part attention distribution. For convolutional networks,
each channel represents a feature. From the perspective of high-level semantics, these fea-
tures correspond to building parts. Therefore, we can concatenate posterior part attention
distributions to obtain a more explanatory feature map partmap. The above process can be
described as:

partmap = concat[(λ1 · Attnmap
1 ), ..., (λM · Attnmap

M )] (4)

partmaptakes advantage of capsule information and considers the potential spatial
relationships between parts and building, which can more accurately reflect the extent to
which parts are activated. In addition, because the channel of partmap corresponds to the
individual part, it has stronger explainability. We use deconvolution operation to decode
the feature maps to obtain semantic segmentation results object.

Attnmap is the encoder’s rough judgment on the distribution of building parts, and we
call it parts prior distribution. We can not have high confidence that parts prior distribution
is representative of building parts distribution in space. Therefore, we refer to the idea of
the prototype network [39]: the representation of the whole object is obtained according
to the fusion of parts, and then the similarity λ between the whole object and parts is
calculated. λ is used to correct parts prior distribution (the more similar the part is to the
whole object, the better the part is likely to belong to this object), which results in a more
accurate parts posterior distribution.
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2.4. Loss Function

The loss function of this method includes two items:

• The cross entropy between the semantic segmentation results and ground truth.
• The cross entropy between the posterior part distribution accumulation results and

the ground truth.

For the first item of the loss function, the goal is to make the model learn intuitively
and make the semantic segmentation results close to the ground truth. For a single sample,
assuming the number of pixels is N, for pixel i, the probability of its classification as
buildings is objecti. If the pixel is building, the pixel is labeled yi = 1; otherwise, the pixel
is labeled yi = 0. The first item of the loss function is defined as:

loss1 =
N

∑
i=1

yilog(objecti) (5)

For the second item of the loss function, we accumulate the posterior part distributions,
directly classify the results after up-sampling, and then calculate the cross-entropy loss
pixel by pixel with the ground truth. The second part of the loss can force the model to
learn to perceive building parts, thereby strengthening the explainability of the model so
that the parts extracted by the encoder are a part of a building. The second item of the loss
function is defined as:

loss2 =
N

∑
i=1

yilog(upsample(
M

∑
m=1

λm · Attnmap
m )i) (6)

Loss function is:
loss = a · loss1 + b · loss2 (7)

where a and b are two weights of the loss.

2.5. Data

In this study, we test our method on three building extraction datasets, Yellow River,
Massachusetts [40] and WHU dataset [3]. Yellower River is the dataset manually annotated
by ourselves, and the following is a description of Yellow River.

The dataset consists of 23 scenes from the GF-2 satellite multitemporal remote sensing
images in the lower reaches of the Yellow River. The closed polygon labeling method is used
to visually interpret the target buildings, and the labeling objects are the buildings located
along the Yellow River bank. The dataset preprocessing includes the following steps:

• Extract the ground truth from the labeled information, which is a binary gray image.
• Cut the high-resolution remote sensing image from size of 3000 × 3000 to the slices

with size of 256 × 256.
• Randomly flip and shift the slice images.
• Standardize images along RGB channels.

3. Results

This section includes the experimental setup and results. We analyze the internal
modules of the model through ablation experiments. We compare this method with the
recent excellent methods to verify the effectiveness of this method on building extraction.
Then, we performed an analysis of the explainability of the model output feature maps.
For the last and most important goal of this paper, we use unfamiliar datasets to verify the
generalization of each method without fine tuning. The results prove that our method can
not only effectively extract buildings but also perform great generalization from the source
remote sensing dataset to another.
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3.1. Experimental Setup
3.1.1. Evaluation Metrics

The metric of this paper is the IoU (Intersection over Union). The calculation of the
IoU is as follows:

IoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(8)

where k is the number of categories, pij represents the number of pixels whose real category
is i and the predicted category is j.

In addition, we also use the PA (Pixel Accuracy) as the metric. The PA refers to the
proportion of pixels with correct classification in the total number of pixels. The calculation
of the PA is defined as:

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(9)

We just set the number of categories equal to 1, and we denote the performance on the
source dataset as IoU and PA, and denote the performance on another dataset as IoU’ and
PA’. Therefore, we use δIoU and δPA as the metrics of generalizability. δIoU and δPA are
defined as:

δIoU = IoU − IoU′, δPA = PA− PA′ (10)

3.1.2. Experimental Details

In the ablation study, we set the number of building parts equal to an integer; that is,
parallel convolution consists of five convolution branches, and each convolution branch is
set to a network module with the same structure. We set the integer from 2 to 6. For each
integer, we compare the results of using parts posterior distribution and using parts prior
distribution as partmap, respectively. In addition, we set different loss weights, including
{3:7, 5:5, 7:3, 8:2, 9:1, and 10:0}. In these different situations, we train our model and analyze
the results.

To compare our method, we reimplement seven mainstream CNN-based models: FCN-
8s, SegNet, SegNet+DeformableConv, UNet, RFA-UNet, PSPNet, and Deeplab-v3, and two
capsule-based models: CapFPN and HR-CapsNet. The loss function of the mainstream
convolutional network uses binary cross entropy loss. The same optimization method,
Adam [41], is used in training our method, the seven mainstream convolutional networks,
and two capsule-based methods. The learning rate of Adam is set to 0.0001, and the beta
parameters are set to (0.5, 0.99). The other parameters are the default values of Adam.
To divide the dataset, we shuffle the slice samples in the dataset. According to the rules
of dataset division [42], 70% of the samples are taken from the dataset as the training set,
and the remaining 30% of the samples are taken as the test set. Finally, we set the number
of epochs to 100 and the batch size to 4.

We use Yellow River as the source dataset and test the generalization of building
extraction on Massachusetts. Specifically, we train our method, CNN-based methods, and
capsule-based methods on the training set of Yellow River, and we use the test set of Yellow
River to compare the performance of each method. We will not use the Massachusetts
dataset to train either method, we directly make all methods inference on the Massachusetts
dataset to compare the generalization of all methods.

To further confirm the generalization of our method, we report more results on the
WHU dataset. We train methods on the Yellow River training set and test on the WHU test
set. We train methods on the WHU training set, test on the WHU test set, and test on the
Yellow River test set.

3.2. Ablation Study

The setting of the number of building parts will have a greater impact on the perfor-
mance of the model. To verify this point, we set the number of building parts from 2 to
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6. We train these models and record the IoU and the PA of each model on the test dataset
and the number of iterations required for each model to converge.

It can be seen from Table 1 that as the number of building parts increases, the model
will perform better. When the number of building parts reaches a certain value, the changes
in the IoU and the PA will no longer be obvious. If the number of building parts is small,
the model’s ability to perceive features will decrease, resulting in a decrease in the IoU
and the PA. If the number of building parts is large, the model will have stronger feature
perception, but it will also prolong the learning process.

Table 1. Performance of different number of building parts on the test set.

Building Parts Posterior 2 3 4 5 6

IoU(%) X 61.1 62.1 64.5 65.2 65.3
PA(%) X 79.2 82.6 83.4 84.2 84.7

IoU(%) × 54.3 55.8 57.6 56.2 56.9
PA(%) × 69.4 72.0 76.9 74.9 75.1

Iterations X 2995 2708 2317 2106 2212

In Table 1, we can find that the test performance of the model drops significantly if
we use parts prior distribution as partmap. This phenomenon shows that the correction of
parts prior distribution by the decoder has a positive effect. Likewise, the results in Table 1
demonstrate that it is necessary to compute parts posterior distributions.

We set the number of building parts equal to 5. Such a setting can ensure that the
model maintains a good performance on the test set, and the model can converge in a small
number of iterations.

Additionally, we set different loss weights a and b, including {3:7, 5:5, 7:3, 8:2, 9:1,
and 10:0}. In these different situations, we train our model and analyze the results. We
record the IoU and the PA of each model on the test dataset.

Table 2 shows that if we set the loss weights to 8:2, the model will perform well. When
the weights are 3:7, the learning process of the model will pay more attention to the second
item of the loss function while weakening the contribution of the first item of the loss
function. The first item is used to optimize the pixel classification task of the model, and the
second item can give the building part capsule the ability to express high-level semantic
information. If the contribution of the first item is excessively weakened, the semantic
segmentation performance of the model will be significantly reduced, and the effect of the
model in achieving building extraction will inevitably be reduced. When we overly weaken
the contribution of the second item, the ability of the building part capsule to perceive
high-level semantic features will decrease, which will affect the performance of the model
when the building is extracted.

Table 2. Performance of different loss weights on the test set.

Loss Weights 3:7 5:5 7:3 8:2 9:1 10:0

IoU(%) 40.4 55.1 62.8 65.2 63.1 60.4
PA(%) 59.6 72.3 82.1 84.2 82.7 79.8

We can also find a balance of loss weights. When we set the loss weights to 8:2,
Capsule–Encoder–Decoder can perceive high-level semantic features in the capsules while
maintaining the good performance of building extraction.

Through the ablation study, we can set up Capsule–Encoder–Decoder more clearly
(Figure 4). We set the number of building parts from equal to 5. In addition, we set the loss
weights to 8:2.
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Figure 4. Ablation study of Capsule–Encoder–Decoder. (a) Ablation study about different numbers
of building parts, (b) Ablation study about different loss weights.

3.3. Compared with CNN-Based Methods and Capsule-Based Methods

We reimplement seven mainstream CNN-based models: FCN-8s, SegNet, SegNet
with DeformableConv (SegNet+DeConv), UNet, RFA-UNet, PSPNet, and Deeplab-v3,
and two capsule-based models. We compared the performance between our method and
CNN-based, capsule-based models, as shown in Table 3. In Table 3, we record the IoU
and the PA of the ten methods on our test dataset. In addition, we denote the number of
iterations that the model trains to converge as iterations.

Table 3. Performance of different building extraction methods on the test set.

Method Capsule-Based IoU(%) PA(%) Iterations

CapFPN [35] X 65.0 84.1 3015
HR-CapsNet [36] X 65.1 84.1 2914

FCN-8s [18] × 46.9 76.8 4369
SegNet [21] × 61.6 81.7 3647

SegNet+DeConv [26] × 63.4 82.1 5219
UNet [20] × 64.7 83.6 3985

RFA-UNet [23] × 64.9 83.5 4011
PSPNet [27] × 64.9 84.1 4285

Deeplab-v3 [29] × 65.1 84.2 6013

Ours (parts = 5) X 65.2 84.2 2106
Ours (parts = 6) X 65.3 84.7 2212

Table 3 shows that FCN-8s performs far worse than the other methods, and our method
performs the best. We also compared the number of iterations for convergence, and it
is obvious that our method converges earlier than other models, which shows that our
method requires fewer iterations in training. In other words, our method achieves a state
of convergence fastest.

The original image of a slice is randomly sampled, and the building extraction results
of these methods are visualized, as shown in Figure 5. In Figure 5, the FCN-8s uses a stacked
full convolution architecture model. Multiscale information fusion is completed by the sum
of tensors, which makes the feature expression ability of the model weak along the channel
direction, thus limiting the perception ability of the model for semantically segmented
objects. Therefore, the segmentation results are relatively rough, and the IoU and the PA are
also low. Based on FCN, UNet splices the encoder and each layer feature in the decoder and
presents a symmetrical U structure, which helps the model consider the multiscale context
information more fully. The model can perceive different scales of semantic segmentation
objects, so the UNet segmentation results are much more refined than those of FCN-8s.
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SegNet also inherits the full convolution architecture, but it improves in the decoder pooling
operation. SegNet records the location index of the pooling operation in the encoder down-
sampling process and restores it to the decoder up-sampling results according to these
indices. SegNet weakens the loss of spatial information without increasing the number
of calculations.

As a result of the fixed convolution kernel geometry, standard convolution neural
networks have been limited in the ability to simulate geometric transformations. Therefore,
the deformable convolution is introduced to enhance the adaptability of convolutional
networks to spatial transformation. SegNet+DeConv uses the deformable convolution
instead of standard convolution. The performance of SegNet+DeConv is improved com-
pared to SegNet. RFA-UNet considers the semantic gap between features from different
stages and leverage the attention mechanism to bridge the gap prior to the fusion of fea-
tures. The inferred attention weights along spatial and channel-wise dimensions make the
low-level feature maps adaptive to high-level feature maps in a target-oriented manner.
Therefore, the performance of RFA-UNet is improved compared to UNet. Based on the
spatial pyramid pooling [43], PSPNet exploits the capability of global context information
by different-region-based context aggregation. It can be seen from Table 3 that PSPNet
outperforms RFA-UNet. Deeplab-v3 proposes to augment the Atrous Spatial Pyramid
Pooling module, which probes convolutional features at multiple scales, with image-level
features encoding global context and further boosting performance. The atrous convolu-
tion [44] used in Deeplab-v3 helps the model increase the receptive field and obtain more
contextual information.

For capsule-based methods, both CapFPN and HR-CapsNet achieve performance
over CNN-based methods on the test dataset. Both methods use capsules to store feature
information. Taking advantage of the properties of capsules and fusing different levels of
capsule features, the CapFPN can extract high-resolution, intrinsic, and semantically strong
features, which perform effectively in improving the pixel-wise building footprint extrac-
tion accuracy. The HR-CapsNet can provide semantically strong and spatially accurate
feature representations to promote the pixel-wise building extraction accuracy. In addi-
tion, integrated with an efficient capsule feature attention module, the HR-CapsNet can
attend to channel-wise informative and class-specific spatial features to boost the feature
encoding quality.

Figure 5. Comparison of different building extraction methods on source dataset. (a) is the original im-
age, (b) is the ground truth, (f,k,l) are capsule-based methods, and the rest are CNN-based methods.

In this study, the encoder is used to capture the parts of the target building, and the
building parts are expressed by the vector capsules. The set transformer fuses the building
parts’ capsules and obtains the capsule of the target buildings. The decoder reconsiders the
correlation from the target buildings to the parts and integrates the correlation information
with the parts’ distribution to correct the parts’ distribution in space. We connect the
posterior parts’ distribution to obtain the more explainable feature maps. We up-sample
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these low-resolution feature maps to obtain the segmentation results of the target buildings.
In Figure 5f, most of the target buildings are detected by our method. The performance of
our method on the test dataset is best, which proves the feasibility of our method.

For some samples, our method extracts some non-buildings. Most of these areas are
gaps between closely spaced groups of buildings. These areas have a small proportion of all
pixels. Therefore, these non-buildings do not seriously affect the experimental results. This
phenomenon occurs because our method’s ability to segment edges is not strong enough.
Our goal is to improve generalization, and we should focus on detecting the main features
of the building as much as possible. If the model pays too much attention to edge details,
the model will get stuck in the distribution of the source domain, making it difficult to
generalize to other domains.

In this paper, three slice images are randomly selected, and the segmentation results
are shown in Figure 6. The first column is the three original images, and the second
column is the ground truth. Each of the remaining columns is the building extraction result
of a method.

Figure 6. More visual results of different building extraction methods on the source dataset.

In addition, we record the number of iterations required for each model to converge.
Deeplab-v3 and PSPNet have good performance on the test dataset, but the two models are
more complicated and require long-term training to achieve convergence. FCN-8s, SegNet,
and UNet have a simple structure, but they cannot effectively perceive the characteristics
of the target object. Although the three models can converge under short-term training,
the performance is not the best. For the attention mechanism of RFA-UNet and the de-
formable convolution of SegNet+DeformableConv, they need to learn repeatedly to achieve
good results. In our method, capsules can effectively perceive the characteristics of the
target object, help the model achieve convergence after short-term training, and achieve
good performance on the validation dataset. As can be seen from Table 3, the capsule-based
methods all share the same characteristic: they can reach a convergence state with fewer
iterations. However, the structure of stacked capsules in CapFPN and HR-CapsNet can
realize the role of layer-by-layer abstract features, but it also increases the complexity of
the learning process. Our method uses a set transformer to abstract low-level capsules to
high-level capsules, reducing the complexity in computation. Therefore, for capsule-based
methods, our method can converge faster in training.

3.4. Explainability

Using sliced small-scale remote sensing images, the posterior building part distribu-
tions obtained by our method are up-sampled by bilinear interpolation and superimposed
on the original image and visualized, as shown in Figure 7. Figure 7a–e denote the prob-
ability distribution of the existence of each building part in space. The color represents
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the probability of the existence of the building part. The brighter the color of a region,
the greater the activation degree of the building part in that region, that is, the more
likely the building part exists. The parts of the target building can be clearly observed in
Figure 7b–d. Figure 7b reflects that in the second channel, the parts of the target building
near the edge and center are more easily detected. Figure 7c reflects that in the third
channel, the edge parts of the target building are more easily detected. Similarly, Figure 7d
corresponds to the detection of the central parts of the target building. Figure 7g denotes
the feature distribution of CNN-based methods, the first row, the second row, and the third
row correspond to FCN, SegNet, and UNet in turn. We randomly select three channels
from the feature maps output by the convolutional network for visualization, and we can
find that these feature distributions are not explainable.

Figure 7. Visualization of the posterior building parts distribution.

In Figure 7a,e, the results show that the target object is detected as a whole, which
can be considered a larger-scale building part detection result. A further comparison of
Figure 7a,e shows that Figure 7a is not only activated in the area of the target building but
also activated in some local areas of the river, and this result appears reasonable. The target
we detect includes buildings along the river shoreline. Therefore, the river can also be
broadly considered a part of such buildings. The above results prove the rationality of our
method in remote sensing images feature detection.

3.5. Generalization

To verify the generalization performance of our method, we directly apply CNN-based
and capsule-based methods to an unfamiliar dataset for inferencing. The performances
of these methods are shown in Table 4. In addition, we randomly sample slice images
from this unfamiliar dataset and visualize the building extraction results of these methods,
as shown in Figure 8.

The performance of the CNN-based models on the unfamiliar dataset significantly
decreases. For the unfamiliar dataset, the information distribution in images varies greatly,
which makes it difficult for convolutional network templates to correctly detect parts of the
target object. For Figure 8c–f, the segmentation results of the mainstream convolutional
network models for target buildings are poor. Especially, FCN-8s can hardly detect the
existence of buildings.
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Table 4. Performance of different building extraction methods on the unfamiliar dataset.

Method IoU’ (%) PA’ (%) δ IoU (%) δ PA (%)

CapFPN 31.3 50.6 33.7 33.4
HR-CapsNet 33.9 54.2 31.2 29.9

FCN-8s 13.2 34.1 33.7 42.7
SegNet 29.5 48.8 32.1 32.9

SegNet+DeConv 47.7 67.3 16.3 14.8
UNet 26.9 44.2 37.8 39.4

RFA-UNet 47.2 67.4 17.8 16.1
PSPNet 35.5 54.2 29.4 29.9

Deeplab-v3 46.9 65.8 19.2 18.4

Ours (parts = 5) 50.7 70.4 14.5 13.8
Ours (parts = 6) 50.9 70.8 14.4 13.9

Figure 8. Comparison of the building extraction of different methods on unfamiliar data.

For Deeplab-v3, multiscale atrous convolution helps the model to obtain more context
information. Therefore, Deeplab-v3 can better perceive the target object. The attention mech-
anism helps RFA-UNet capture the distributions of target objects in remote sensing images,
but the performance is not as good as Deeplab-v3. In addition, SegNet+DeformableConv
uses deformable convolution, which can adapt to the spatial transformation of target ob-
jects’ parts. Therefore, SegNet+DeformableConv performs better than other mainstream
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convolutional network models. It can be seen from Table 4 that the δIoU and δPA of
SegNet+DeformableConv are relatively small.

Compared to other mainstream convolutional network models, our method can detect
the approximate areas of buildings. The above results show that our method has a good
generalization ability.

For capsule-based methods, both CapFPN and HR-CapsNet show a significant drop
in performance. Although CapFPN and HR-CapsNet both introduce capsule models, both
methods only use capsules to store features. Although CapFPN and HR-CapsNet increase
the descriptive information of features, these features are not explainable. When we use
these methods to reason on unfamiliar datasets, the different statistical distributions cause
the process of feature abstraction to deviate from the explainable route; in other words,
the final features extracted are completely wrong. Our approach adds out explainability
constraints to the capsule model, which allows the model to infer features that are consistent
with human visual behavior. Therefore, our method can achieve better generalization.

Furthermore, when we set up a larger number of building parts, our method can
better perceive the potential feature information of the target object. Since the capsule can
also perceive the spatial relationship of the parts, when we obtain more part features, our
method can effectively combine the part features and their spatial relationship to inference
about the target object. It can be seen from Table 4 that when we set the number of parts to
6, the the δIoU and δPA will be further reduced.

Finally, we tested the testing speed of different methods, and the efficiency compar-
ison of different methods is shown in Figure 9. The results show that our method can
achieve good generalization performance with less testing time. The smaller the network
size, the faster the testing speed, but the corresponding generalization performance will
be reduced.

Figure 9. The efficiency comparison of different methods.

3.6. Further Experimental Support

To further confirm the generalization of our method, we report the results on the WHU
dataset. We experiment with two settings separately. We train methods on the Yellow River
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training set and test on the WHU test set. In addition, we train methods on the WHU
training set, test on the WHU test set, and test on the Yellow River test set.

For the first setting, we treat the WHU dataset as an unfamiliar dataset. We apply
three CNN-based methods, two capsule-based methods, and our method to WHU for
inferencing. The test performance of various methods is shown in Table 5. In addition, we
randomly sample slice images from the WHU dataset and visualize the building extraction
results of these methods, as shown in Figure 10.

Table 5. Performance of different building extraction methods on the WHU dataset (Yellow River
dataset as source domain).

Method IoU’ (%) PA’ (%) δIoU (%) δ PA (%)

CapFPN 26.4 44.7 38.6 39.3
HR-CapsNet 22.5 41.3 42.1 42.8

SegNet+DeConv 38.1 57.8 25.3 24.3
RFA-UNet 24.6 43.9 40.1 39.6
Deeplab-v3 31.9 50.4 33.2 33.8

Ours 51.9 70.9 13.5 13.7

Figure 10. Comparison of the building extraction of different methods on the WHU dataset (Yellow
River dataset as source domain).

For the second setting, we take the WHU dataset as the source domain. We train one
CNN-based method (SegNet+DeConv), two capsule-based methods, and our method on
the WHU dataset. We apply these methods to the WHU dataset for inferencing. The test
performance of various methods is shown in Table 6. In addition, we randomly sample
slice images from the WHU dataset and visualize the building extraction results of these
methods, as shown in Figure 11.

For generalization of the second setting, we apply these methods to the Yellow River
dataset for inferencing. The test performance of various methods is shown in Table 6.
In addition, we randomly sample slice images from the Yellow River dataset and visualize
the building extraction results of these methods, as shown in Figure 12. In our work,
extensive experiments show that our method has good generalization.
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Table 6. Performance of different building extraction methods on the WHU dataset and Yellow River
dataset (WHU dataset as source domain).

Method IoU (%) PA (%) IoU’ (%) PA’ (%) δIoU (%) δ PA (%)

CapFPN 67.8 85.9 36.9 55.7 30.9 30.2
HR-CapsNet 68.4 86.6 37.3 53.2 31.1 33.4

SegNet+ DeConv 63.6 81.4 40.6 54.9 23.0 26.5

Ours 68.1 86.2 59.2 76.1 8.9 10.1

Figure 11. Comparison of the building extraction of different methods on the WHU dataset (WHU
dataset as the source domain).

Figure 12. Comparison of the building extraction of different methods on the Yellow River dataset
(WHU dataset as the source domain).
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4. Discussion

In this section, we first discuss the explainability of our method; then, we discuss the
reasons for the generalizability of the method and analyze the generalization performance.
Additionally, we analyze the limitations of our method and future work.

4.1. Discussion of Explainability

Regarding the reason why we can get the explainable posterior distribution of building
parts, before extracting capsules, we already have some explainable feature description
information, such as posemap

m and cmap
m . In our method, the convolution branch is used to

extract the posture and texture of different building parts. In order to uniformly observe
the posture and texture features corresponding to buildings, we sum the feature maps
output by all branches and select the feature distribution in some channels to visualize. We
visualize the feature distributions. For each layer feature distribution, we set: when the
response value of each pixel is greater than the average value of the layer, we activate the
pixel, and highlight the pixel; for color and texture information, we set a different color to
represent activation among different layers. The visualization is shown in Figure 13.

Figure 13. Visualization of posture and texture information.

As can be seen from Figure 13, the model can perceive different postures of build-
ings from explainable perspectives, such as the horizontal direction, vertical direction,
and tilting direction. For color and texture, we found that similar colors and texture are
marked with the same color, indicating that the model is indeed able to detect posture and
texture information.

It should be noted that posture and texture information belong to low-level features,
and what we ultimately need is explainable building parts feature distribution, that is, parts
posterior distribution. We get the feature distributions in the parallel convolution modules,
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which we call parts prior distribution. It is rough to directly use the parts prior distribution
as parts distribution, because parts prior distribution lacks description information such
as posture and texture. We should compress posture and texture information into part
capsules, fuse part capsules to get the buildings capsule; then, we calculate the relationship
between parts and buildings, correct parts prior distribution, and obtain more accurate
parts posterior distribution. In other words, parts posterior distribution can accurately
represent the spatial distribution of building parts.

4.2. Discussion of Generalization

The convolutional network can only match a building part according to a fixed tem-
plate, namely, a local feature, which is the reason why the convolutional network model
cannot express the correlation of building parts in space. Regarding the generalization
ability of the model, it is important to learn the expression of building parts more accurately
because parts are the common characteristics of buildings. Learning building parts can
easily make a model better perceive a target object in different fields of vision.

A convolutional network loses the spatial pose information of a part. For example,
for the same object, when we transform the angle to observe it, the part will also be subject
to the corresponding affine transformation, and the convolutional network does not have
the template under this perspective. Therefore, the model cannot detect the part. However,
if we use capsules to express parts, the model can correctly perceive parts with different
postures. Therefore, the generalization of the model is improved.

For recent capsule-based methods, they still lack generalizability. Recent capsule-
based methods only use the capsule model to abstract features. They do not focus on how
to use capsules to learn explainable feature representations. In fact, not only do we need
capsules to store additional descriptive information, we also need the representation of
features to be explainable. Looking at images from a human perspective, we can accurately
describe the target object in images in different scenarios, because the features we obtain are
not totally based on statistical distribution, and we can abstract the target object through its
parts. This explainable way allows us to achieve generalization, so we let our model learn
explainable part features and then further abstract to get the target object, which is a method
that imitates human vision, and experiments show that our method has generalizability.

Regarding explainability, we randomly selected three slice images to visualize the
results, as shown in Figure 14. We randomly selected three slice images from the unfamiliar
dataset, and the building extraction results are shown in Figure 15.

Figure 14. More visualization results about explainability.
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Figure 15. More visualization results about generalization.

4.3. Limitations and Future Work

Our method uses parallel convolutional neural network modules, and we use the
set transformer to aggregate the capsule information. When we increase the number of
building parts, the number of parameters of the model will increase significantly, which
will cause a relatively large burden on the computational cost. In addition, in our method,
the process of obtaining the target object capsule by using building part capsule fusion is
relatively simple, and the number of target object capsules in our method is only one.

From the limitations mentioned above, in future work, we plan to try to use knowledge
distillation to compress the model to reduce the burden of computational overhead. We are
ready to consider new capsule fusion methods instead of set transformers. In addition, we
intend to explore a simple and effective way to scale the number of part capsules easily.

5. Conclusions

In this study, the proposed Capsule–Encoder–Decoder method contains a capsule,
encoder, and decoder. The encoder captures the capsule of the parts of each target building
and then obtains the capsule of the target object based on set transformer fusion. The de-
coder learns the relationship between the target object and its parts, modifies the spatial
distribution of the parts, and then obtains the building extraction results of the target object
using the full convolution decoding method.

Compared with the CNN-based and capsule-based methods, our method can achieve
the best results for building extraction, and convergence is faster in training, which proves
the feasibility of our method in the task of building extraction from remote sensing im-
ages. Moreover, our method can capture the building parts’ distribution with high-level
semantic information, such as the edge and center of buildings. Taking the detection of
buildings along the river as the background, our method can also sense the parts related
to the segmentation task, such as the river bank, which shows that the method has good
explainability. Additionally, our method, the CNN-based method, and the capsule-based
method were applied to an unfamiliar dataset for inferencing. The results show that our
method performs significantly better than the CNN-based and capsule-based methods,
which proves that our method performs potential good generalization performance from
one source remote sensing dataset to another.
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