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Abstract: Mapping surface water extent is important for managing water supply for agriculture and
the environment. Remote sensing technologies, such as Landsat, provide an affordable means of
capturing surface water extent with reasonable spatial and temporal coverage suited to this purpose.
Many methods are available for mapping surface water including the modified Normalised Difference
Water Index (mNDWI), Fisher’s water index (FWI), Water Observations from Space (WOfS), and the
Tasseled Cap Wetness index (TCW). While these methods can discriminate water, they have their
strengths and weaknesses, and perform at their best in different environments, and with different
threshold values. This study combines the strengths of these indices by developing rules that applies
an index to the environment where they perform best. It compares these indices across the Murray-
Darling Basin (MDB) in southeast Australia, to assess performance and compile a heuristic rule
set for accurate application across the MDB. The results found that all single indices perform well
with the Kappa statistic showing strong agreement, ranging from 0.78 for WOfS to 0.84 for TCW
(with threshold −0.035), with improvement in the overall output when the index best suited for an
environment was selected. mNDWI (using a threshold of −0.3) works well within river channels,
while TCW (with threshold −0.035) is best for wetlands and flooded vegetation. FWI and mNDWI
(with threshold 0.63 and 0, respectively) work well for remaining areas. Selecting the appropriate
index for an environment increases the overall Kappa statistic to 0.88 with a water pixel accuracy of
90.5% and a dry pixel accuracy of 94.8%. An independent assessment illustrates the benefit of using
the multi-index approach, making it suitable for regional-scale multi-temporal analysis.

Keywords: surface water; water indices; Landsat

1. Introduction

Surface water is vital for human consumption, agricultural use, as well as maintaining
the environmental health of wetlands and rivers [1]. Mapping surface water extent is an
important step in estimating water volume, and monitoring these changes is necessary as
a growing population and changing climate are leading to increased pressure on water
supply [2]. This reduction in water leads to stress on water environments, such as wetlands,
floodplains and billabongs, and their connectivity to the river systems [3], meaning accurate
information on available water is vital. This is particularly true in much of Australia, which
is becoming hotter and dryer in recent times [4]. In addition, mapping surface water extent
is essential for identifying flood-affected areas to support flood risk assessment, emergency
response service, property valuation, insurance cost estimation, sediment/contaminant
transport, infrastructure planning, hydraulic engineering, and so on [5–7].

Ground observations of surface water extent can provide valuable information, but
are not always available, especially during flood events when field instruments may be
destroyed, and sampling can be dangerous. It is also hard to obtain large scale synopsis
of current and historical water extent through gauging stations and high-water marks;
furthermore, rating curves are not always reliable [8,9]. Remote sensing technologies
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provide an affordable means of capturing surface water extent with reasonable spatial and
temporal coverage suited to the purpose of water monitoring [10]. The spatial resolution of
the Landsat satellite series (30 m) [11] makes it suitable for capturing much of the fine hydro
morphological features of a large river basin, at a temporal scale of 8–16 days (depending
on the number of operating sensors and effects of cloud cover). It also has a rich archive
of data dating back to 1987 for the thematic mapper series [11]. The European Space
Agency’s Sentinel-2 sensors provide a finer spatial resolution (10–20 m), and more frequent
observations (5–10 days); however, the data only became available from 2015, with more
regular coverage after the second sensor (Sentinel-2b) was launched in 2017 [12]. Sentinel-2
also has applications in mapping surface water [13–15].

There are many methods available for mapping surface water using surface reflectance
from remote sensing data [16–18] including the Landsat series [19–22]. Some of the more
complex methods use machine learning or other classification techniques [23–27]. Spectral
indices are typically used for mapping surface water due to their simplicity and ease of
application [28–32]. Some of the more commonly used, validated, and available methods
within Australia are the modified Normalised Difference Water Index (mNDWI) [29],
Geoscience Australia’s Water Observations from Space (WOfS; [7]), and a water index by
Fisher et al. (2016) [31]. The mNDWI uses the green and shortwave infrared (SWIR-1)
surface reflectance bands [29], while Fisher et al. [31] developed a new index suitable for
mapping surface water with Landsat data across eastern Australia that uses the green, red,
near infrared (NIR), SWIR-1, and SWIR-2 surface reflectance bands. The WOfS dataset
is generated by Geoscience Australia and available through Digital Earth Australia [7].
WOfS uses a decision tree approach based on a selection of Landsat spectral bands and
indices, as well as ancillary products (including topography and hydrology layers) to
constrain water extent to likely areas. Individual WOfS images of surface water extent,
along with summary statistics, are available for Australia for the whole Landsat archive
(since 1987). These methods are designed to map open surface water, leaving flooded
vegetation underestimated. To help overcome this gap, Geoscience Australia has invested
time and effort into incorporating the Tasseled Cap Wetness index (TCW) [33] into a
wetland mapping tool [34]. The TCW index uses the blue, green, red, NIR, SWIR-1, and
SWIR-2 surface reflectance bands [33].

These indices have their strengths and weaknesses, as well as preferred thresholds
for different applications depending on vegetation cover, soil colour, soil moisture, and
water colour [31]. Variable thresholds of water indices have been adopted to help over-
come this challenge [35–38]. While there is no single index or threshold that works for
all applications [22], the mNDWI is often the preferred index in comparisons [36]. For
mNDWI [29], pixels with values greater than zero are water, which also agrees with the
work of Fisher et al. (2016) [31]. However, Sims et al. (2014) [39] found a threshold value of
−0.3 for water was more successful at capturing water extent at a range of sites along the
Murrumbidgee River in southeast Australia. This threshold (−0.3) has been subsequently
used for mapping flooding and persistent waterholes in Northern Australia [40], as well
as flood events in the Fitzroy River in Western Australia [41] and the northern Murray
Darling Basin (MDB; [42]). However, it has been found to overestimate surface water
extent along the dark floodplains in central Australia (the Cooper basin), and a threshold
of zero was found to be more suitable [43]. A threshold value of −0.5 has been used to
identify inundated vegetation [44], but constraints were required to reduce commission
errors outside of these areas. Zhai et al. (2015) [45] found a positive threshold (0.2 to 0.31)
worked best in an urban environment.

The WOfS data were designed to provide a conservative estimate of surface water
extent, making it a robust product, but it is more likely to underestimate, rather than over-
estimate water extent [40]. Ticehurst et al. (2017) [46] found an mNDWI of −0.3 performed
better than WOfS for a selection of flood events in the MDB. Geoscience Australia has
utilised the Tasseled Cap Wetness index to map flooded vegetation as part of their Wetland
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Insite Tool [34] based on a TCW index threshold of −0.035, which can detect more water
under flooded vegetation compared to other indices.

Fisher et al. (2016) [31] compared seven water index methods (including mNDWI and
TCW), as well as their new water index, for a range of water and non-water plots. Their
results showed that most indices performed well. Fisher’s water index (now referred to
as FWI) performed best at correctly identifying pure water pixels with a threshold of 0.63,
while for TCW the threshold was −0.01. While the investigation of Fisher et al. (2016) [31]
was extensive in comparing Landsat-derived water indices over eastern Australia, it did
not include WOfS data, or some of the thresholds mentioned earlier.

The aim of this study was to evaluate different methods of inundation mapping and
identify the index that produces best results within different environments across the MDB.
In particular, the goal is to develop a rule set to apply different indices in the environment
where they perform best across the whole of the MDB for achieving the best estimate of
surface water. This multi-index method needs to be relatively simple and fast to process
across the whole basin. Another aim was to maximise the capture of small water bodies
where possible, without compromising commission errors for water pixels. The MDB study
sites, followed by an explanation of each index, as well as the data used for validating
results across the MDB are described in Section 2. The results of the evaluation are provided
in Section 3, including the new decision rule set to provide the most suitable water index
across each environment. Section 4 discusses some of the issues and advantages in using
the new multi-index method followed by the conclusion.

2. Materials and Methods
2.1. Study Site

The MDB, located in southeastern Australia (Figure 1), covers an area more than
one million square kilometres, and contains a total of approximately 440,000 km of rivers,
with 40,000 km of major rivers [47]. The MDB contains over 30,000 wetlands, with 16
of those being internationally significant (according to the Ramsar Convention [48]). It
also produces around 40% of Australia’s agricultural output [49]. Land within the basin
is used mainly for forestry, livestock grazing, dryland, and irrigated cropping [47] and
is home to more than two million people [49]. The two major rivers in the MDB are the
Darling River and the Murray River (shown as green and red respectively in Figure 1). The
northern section of the MDB consists of mostly unregulated ephemeral rivers and streams,
although major water storages exist along some of the rivers, while the southern section
contains mostly regulated rivers with major water storages in many of them [47,50]. Water
use in the basin has increased over time, which when combined with periods of drought,
has led to the degradation of rivers and wetlands [51]. This means water monitoring and
management within the basin is of particular importance.

2.2. Remote Sensing Data

All Landsat data were sourced from Digital Earth Australia (DEA; [52–54]) as analysis-
ready Landsat surface reflectance from the Landsat 5 (Thematic Mapper), Landsat 7 (En-
hanced Thematic Mapper), and Landsat 8 (Operational Land Imager) sensors. The MDB
covers 62 individual Landsat path/row scenes; however, only the areas of interest used
for testing and validation were required from DEA. WOfS water maps were also sourced
through DEA for the same areas of interest and dates. Extraction of the data was performed
using python code in Jupyter Notebooks (which is a web-based interactive computing
platform), with a virtual desktop instance on the Australian National Computational
Infrastructure (NCI) [55].
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Figure 1. Location of the Murray Darling Basin within Australia. Location of major rivers, wetlands, 
large waterbodies, and Landsat image extent containing validation sites (from Section 2.4) within 
the Murray Darling Basin. The Darling River is shown in dark green and Murray River in bright 
red. Direction of flow is shown by the dark red arrows. 
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The ANAE classification framework consists of a rule-based approach to surface and 
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Figure 1. Location of the Murray Darling Basin within Australia. Location of major rivers, wetlands,
large waterbodies, and Landsat image extent containing validation sites (from Section 2.4) within the
Murray Darling Basin. The Darling River is shown in dark green and Murray River in bright red.
Direction of flow is shown by the dark red arrows.

2.3. GIS Data

The Australia Hydrological Geospatial Fabric (Geofabric) and the Australian National
Aquatic Ecosystem (ANAE) datasets were used for defining different water environments
across the MDB.

The Geofabric (version 3) is a collection of hydrological spatial layers across Aus-
tralia [56]. It was originally built to meet the Australian Bureau of Meteorology’s re-
quirements for water accounting and assessment. The input data consist of topologically
connected surface water hydrology, a Digital Elevation Model, streamlines, and catchment
boundaries [56,57]. The data are provided at 1:100,000 scale.

The ANAE classification framework consists of a rule-based approach to surface and
subterranean aquatic ecosystems [58]. This interim framework (version 2.0) was used to
classify freshwater and estuarine aquatic ecosystems in the MDB. It used available data
of the highest spatial resolution that best represented the aquatic ecosystems within the
MDB [58,59]. The ANAE wetlands layer consists of Palustrine and Lacustrine systems of
wetlands within the MDB, with artificial systems (such as dams and irrigation channels)
removed where possible.

2.4. Validation Data

An extensive validation dataset is available from Fisher et al. (2016) [31] for eastern
Australia. In total, 440 plots, of 300 m × 300 m in size, were used that fell within the MDB
and where DEA Landsat data were available. These validation plots had been manually
digitised from high-resolution airborne imagery as well as a small selection of Google Earth
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imagery [31]. The high-resolution airborne imagery was a three-band (blue, green, and
red) Leica Airborne Digital Sensor at a 0.5 m spatial resolution, as well as some three-band
(red, green, and NIR) imagery acquired during flood events to improve the identification
of turbid water. The Google Earth images were true-colour images from Quickbird-2 at
a 0.6 m spatial resolution. Water within each validation plot was classified by manually
digitised polygons around each water body [31]. All validation plots and dates were
matched to Landsat acquisitions, and captured all four seasons of the year. These sites
included flood events, large storage dams and small water bodies, in-channel waterholes,
as well as plots without water (steep topography, cloud shadow, quarries, and urban sites),
making it a valuable dataset for validation. While these validation plots were collected
at times that used different Landsat sensors, a comparison analysis on the influence of
Landsat sensor (Landsat 5, 7, and 8) on index showed minimal difference [31]. The dates of
image acquisition used to extract the validation plots coinciding with the Landsat sensors
range from 2007 to 2013 (using both Landsat 5 and Landsat 7 images), and their extents can
be seen in Figure 1.

Hydrodynamic (HD) modelling output along the Murray River was also used as
validation of a flood event in September 2011, which coincided with a cloud-free Landsat
scene [60]. The accuracy of the HD model output is estimated to be good in this area (zone
5) with comparison of simulated and observed water levels ranging from 0.94 to 0.98 R2 [60].
This HD model output also overlapped with some ANAE wetland sites, including flooded
vegetation. Twenty plots of same size as Fisher et al. (2016) [31] were generated from this
scene, with 10 covering the river channel, and 10 including ANAE wetlands. In addition to
this, an extra 11 plots of urban areas were included to further test for commission errors in
the indices. These urban plots are the same size as the other validation plots and are located
within the Landsat scenes of the Fisher et al. (2016) [31] validation sites (i.e., locations of
the Landsat images and dates that contain the validation plots; Figure 1). This resulted in a
total of 461 validation plots (or approximately 46,100 Landsat pixels), scattered throughout
the MDB and included a variety of surface water characteristics.

2.5. Water Indices

In order to identify which water indices perform best across the different environments,
the mNDWI, FWI, WOfS, and TCW were produced from the Landsat images for the validation
sites and compared across the MDB for a range of large permanent water bodies, waterholes,
river channels, wetlands, and floodplains. Based on past research [7,29,31,34,39], different
thresholds were selected for the same index where appropriate, resulting in a total of six
indices to test (Table 1).

Table 1. Indices used for assessing mapping of surface water extent within the MDB. ‘Name’ is the name
used to identify the index/threshold in remainder of this study. Bands correspond to Landsat satellites.

Water Index Algorithm Threshold Name References

modified Normalised Difference
Water Index (mNDWI)

green−SWIR1
green+SWIR1

0.0 mNDWI0 [29,31]
−0.3 mNDWInp3 [39]

Fisher’s Water Index (FWI) 1.7204 + 171× green + 3× red− 70× NIR −
45 × SWIR1− 71× SWIR2 0.63 FWI [31]

Water Observations from Space
(WOfS) (see footnote 1) NA WOfS [7]

Tasseled Cap Wetness index (TCW) 0.0315× blue + 0.2021× green + 0.3102× red +
0.1594× NIR− 0.6806× SWIR1− 0.6109× SWIR2

−0.01 TCWnp01 [31]
−0.035 TCWnp035 [34]

1 WOfS uses a decision tree approach based on a selection of Landsat spectral bands and indices, and includes
ancillary products [7].

As reported in Fisher et al. (2016) [31], FWI and mNDWI (with a threshold of 0)
perform better for different coloured water bodies. Hence, these indices were combined
(i.e., maximum water extent of FWI and mNDWI) to maximise the chances of capturing
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surface water in smaller water bodies, accounting for the variation of water colour within
the MDB. This maximum of FWI and mNDWI (referred to as Maxfwi_ndwi) is defined as:

Maxfwi_ndwi = (mNDWI > 0.0) ∨ (FWI > 0.63) (1)

For Maxfwi_ndwi, a pixel is inundated if Equation (1) is true. Maxfwi_ndwi was also
compared to the other indices. The estimated surface water area within each validation
plot was also plotted against true surface water area to identify which indices performed
best, including with respect to the smaller water bodies.

2.6. Topology of the Murray Darling Basin

As mentioned in Section 1, different indices and thresholds perform better depending
on the vegetation cover, soil colour, soil moisture, and water colour. The MDB was separated
into four basic environments, as they relate to water:

• Major Perennial Rivers (as defined within the Geofabric; [56]) with a 100 m buffer
along the streamline;

• Australian National Aquatic Ecosystem (ANAE) Wetlands [58,59,61]. This includes all
natural perennial and temporary lakes, billabongs, and floodplains, as well as many
of the minor river channels;

• Large Water Storage (as defined within the Geofabric; [56]). Although it is defined as
large water storage, this layer includes both small (~5 ha) and large artificial water
reservoirs;

• Remaining area. This includes the remaining rivers and streams (those that are not
already defined as major perennial rivers in the Geofabric, or within the ANAE
Wetlands layer), small dams, agriculture and farming areas, native and plantation
forests, areas with steep topography, and urban and other built-up areas.

These three main water environments (Major Perennial Rivers, Wetlands, and Large
Water Storage) were selected, as they covered the entire MDB, were compatible with the level
of detail at the Landsat spatial resolution, and they covered a large proportion of surface
water visible in the Landsat imagery (Figure 1). These layers were later used in the accuracy
assessment of water indices for the validation plots for: (i) all plots (which does not consider
individual layers), (ii) major perennial rivers, (iii) wetlands, (iv) large water storage, (v)
remaining area containing water, and (vi) remaining area without surface water.

2.7. Validation and Assessment

The producer’s accuracy [62] of water pixels (Equation (2)), dry pixels (Equation (3)),
and the Kappa statistic (K) [63,64] (Equations (4) and (5)) was calculated for all the vali-
dation plots combined, as well as broken down into the four environment types (major
perennial rivers, wetlands, large water storage, and remaining area with and without
surface water):

PA_water = 100 ∗ number correctly classified water pixels
total validation water pixels

(2)

PA_dry = 100 ∗ number correctly classified dry pixels
total validation dry pixels

(3)

Kappa (K) estimates the agreement between two rasters, while also accounting for
agreement occurring by chance. It is considered to be a robust but conservative measure
of agreement:

K = (s/n− Pc)/(1− Pc) (4)

where s is the total number of correct pixels, n is the total number of pixels, and Pc is
defined as follows:

Pc = (a1× b1 + a0× b0)/(n× n) (5)
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where a1 and b1 are the number of water pixels and a0 and b0 are the number of dry
pixels in the Landsat and validation plots, respectively. Kappa was included for assessing
accuracy as to avoid bias towards plots which were majority water or land. K values > 0.80
represent strong agreement, values between 0.60 and 0.80 represent substantial agreement,
values between 0.40 and 0.60 represent moderate agreement, and values < 0.40 represent
poor agreement between the classification and ground truth [63,64].

Information from the accuracy assessment of the four environment types for each
water index was used to develop a set of rules for mapping surface water within the MDB
(described in Section 3). This multi-index method was then used to classify the Landsat
scenes, and a Kappa statistic generated for the sum of all plots.

To further assess how well the multi-index method performs across the basin, and
the functionality in generating composited basin-wide mosaics, an image of maximum
water extent was created for the January–February 2019 period using the Landsat DEA
data. Compositing over a two-month period increased the chance of obtaining a cloud-free
observation across the whole MDB, so the output from the multi-index method could be
inspected across the whole basin. All available Landsat data for the two-month period
were extracted, with a maximum cloud cover of no more than 20% within each scene (to
help maximise image quality and minimise the chance of unmasked cloud/cloud shadow
being extracted as water). This was inspected across the MDB as well as at the boundaries
of the water environments.

An additional 40 validation plots were collected (also of 300 m × 300 m, similar to the
validation plots of Fisher et al. (2016) [31]) to allow for an independent assessment of the
multi-index method, and was compared to the existing indices (in Table 1 and Equation (1)).
The validation plots were manually digitised from high-resolution Google Earth imagery (at
the same high spatial resolution as the plots of Fisher et al. (2016) [31]) that was coincident
with two Landsat 8 scenes. One was from 16 December 2018 and covers the more arid
western landscape of the MDB, including the Darling River. The other scene was from 24
October 2015 and covers the southern area of the MDB including the Murray River. These
validation plots include major rivers, wetlands, irrigation channels, small dams, as well as
non-water plots, including dryland and irrigated agriculture, and the dark soils of the arid
floodplains. The Kappa statistic was compared for all indices from these validation plots.

3. Results

Surface water maps for every index were compared for all the validation plots. The
producer’s accuracy for water and non-water, as well as K, is shown in Table 2 for all water
indices. This is done for: ‘All plots’ (all validation plots irrespective of water environment
type), ‘Major Perennial Rivers’, ‘Wetlands’, ‘Large Water Storage’, ‘Remaining plots with
water’, and ‘Remaining plots without water’ (such as topographic shadow and urban plots).
The highest K statistic for each water environment type is shown in bold in Table 2.

As can be seen in Table 2, all indices show substantial to strong agreement according
to K from all plots combined, with TCWnp035, Maxfwi_ndwi, and mNDWI0 performing best.
The mNDWInp3 has the highest accuracy for correctly mapping water pixels, but the lowest
accuracy for dry pixels. This is because of its low threshold value, resulting in low omission
errors for water pixels, and high commission errors for dry pixels. TCWnp035 has the
highest K based on ‘All plots’ (0.837) followed closely by Maxfwi_ndwi (0.835).

For the ‘Major Perennial Rivers’ plots, mNDWInp3 has the highest K value and was
best at mapping water pixels (91.6%). Although it has the lowest accuracy for dry pixels
(94.9%), this value is still high. For ‘Wetlands’ plots, TCWnp035 has the highest K value
(0.837), as well as the second highest water accuracy of 95.9% (behind mNDWInp3 with
97.7%). It is also used by Geoscience Australia for mapping wetlands through their Wetland
Insight Tool [34]. mNDWInp3 has the next highest K value (0.824), but it has a lower dry
pixel accuracy (81.5%, compared to TCWnp035 with 87.5%).
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Table 2. Producer’s accuracy (%) for water and non-water (dry) pixels, as well as the Kappa statistic
(K) for each water index (refer to Table 1 and Equation (1) for definition of indices). The highest K for
each water environment is shown in bold.

Index Water (%) Dry (%) K Index Water (%) Dry (%) K

All Plots Large Water Storage
FWI 84.03 97.88 0.821 FWI 93.02 98.10 0.837

mNDWI0 85.27 97.40 0.828 mNDWI0 92.48 98.21 0.827
mNDWInp3 93.84 86.59 0.804 mNDWInp3 91.99 89.97 0.813
TCWnp035 90.15 93.51 0.837 TCWnp035 86.29 94.41 0.814
TCWnp01 83.21 97.30 0.806 TCWnp01 79.26 96.57 0.776

WOfS 74.59 97.66 0.775 WOfS 89.27 97.40 0.768
Maxfwi_ndwi 86.08 97.33 0.835 Maxfwi_ndwi 93.39 97.82 0.843

Major Perennial Rivers Remaining plots with water
FWI 69.42 97.54 0.548 FWI 85.32 97.76 0.843

mNDWI0 72.28 96.95 0.716 mNDWI0 87.65 97.28 0.859
mNDWInp3 91.61 94.88 0.867 mNDWInp3 93.57 88.34 0.822
TCWnp035 87.46 96.96 0.854 TCWnp035 89.80 94.21 0.831
TCWnp01 78.82 99.17 0.801 TCWnp01 82.11 97.21 0.770

WOfS 67.52 96.86 0.673 WOfS 83.98 98.33 0.852
Maxfwi_ndwi 73.63 96.91 0.728 Maxfwi_ndwi 88.05 97.25 0.862

Wetlands Remaining plots without water
FWI 82.08 95.86 0.587 FWI nil 99.81

mNDWI0 82.64 94.56 0.711 mNDWI0 nil 99.68
mNDWInp3 97.73 81.51 0.824 mNDWInp3 nil 68.76
TCWnp035 95.94 87.51 0.837 TCWnp035 nil 88.38
TCWnp01 92.34 91.44 0.804 TCWnp01 nil 97.93

WOfS 44.44 96.64 0.314 WOfS nil 96.48
Maxfwi_ndwi 83.50 94.42 0.721 Maxfwi_ndwi nil 99.64

For ‘Large Water Storage’ plots, Maxfwi_ndwi has the highest K value (0.843), and the
highest water pixel accuracy of 93.39%. FWI and mNDWI0 have the next highest K values
(0.837 and 0.827, respectively). For the ‘Remaining plots with water’, Maxfwi_ndwi also has
the highest K value (0.862), followed by mNDWI0, WOfS, and FWI. Maxfwi_ndwi has the
third highest water pixel accuracy for the ‘Remaining plots with water’, behind mNDWInp3
and TCWnp035. However, mNDWInp3 and TCWnp035 also have the lowest accuracy for
dry pixels (88.3% and 94.2%, respectively). For the ‘Remaining plots without water’,
mNDWInp3 and TCWnp035 also have the lowest accuracy, indicating higher commission
errors for topographic and cloud shadow, quarries, and urban plots. FWI, mNDWI0, and
Maxfwi_ndwi all perform well for the dry pixel accuracy in the non-water plots (‘Remaining
plots without water’), with accuracies above 99%.

Figure 2 shows the true area of water compared to the estimated area of water from all
validation plots. It shows mNDWInp3 has one of the closest 1:1 relationships to true water
area with a slight overestimation (Figure 2c; R2 = 0.93 and bias = −0.1 Ha), and TCWnp035

also has a close relationship, with a slight underestimation (Figure 2d; R2 = 0.96 and bias = 0.2
Ha). Maxfwi_ndwi has the next closest 1:1 relationship with a small underestimation (Figure 2g;
R2 = 0.93 and bias=0.45 Ha). A scatterplot of Root Mean Square Error (RMSE) and Bias
(Figure 2h) shows that mNDWInp3 and TCWnp035 stand apart from their RMSE and bias. The
RMSE for mNDWInp3 and TCWnp035 is 0.8 Ha and 0.6 Ha, respectively. Maxfwi_ndwi has the
next lowest RMSE with 0.93 Ha.
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and 1:1 line (orange) for (a) Fisher’s Water Index (FWI), (b) modified Normalised Difference Water
Index (mNDWI) with zero threshold, (c) mNDWI with −0.3 threshold, (d) Tasseled Cap Wetness
(TCW) index with −0.035 threshold, (e) TCW index with −0.01 threshold, (f) Water Observations
from Space (WOfS), (g) maximum water from FWI and MNDWI0, and (h) Root Mean Square Error
and Bias for all indices (refer to Table 1 for a definition of indices).
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Using the water index with the best K for the different water environments (i.e., ‘Major
Perennial Rivers’, ‘Wetlands’, ‘Large Water Storage’, and ‘Remaining plots with water’)
within the MDB (Table 2), a multi-index method was developed for mapping surface water
across the basin (Figure 3, with the Landsat bands needed from DEA are the red, green,
blue, near infrared, the two shortwave infrared bands, and the cloud mask band-fmask).
This multi-index method uses the following set of rules:

• Major perennial rivers use mNDWInp3 (i.e., index with highest K from ‘Major Perennial
Rivers’ in Table 2);

• Wetlands use TCWnp035 (i.e., index with highest K from ‘Wetlands’ in Table 2);
• Large water storage dams use Maxfwi_ndwi (i.e., index with highest K from ‘Large

Water Storage’ in Table 2);
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(SWIR1 and SWIR2 = shortwave infrared bands, fmask = Landsat cloud mask, mNDWI = modified
Normalised Difference Vegetation Index, TCW = Tasseled Cap Wetness index).

Remaining area (which includes a mixture of smaller water bodies, minor streams,
irrigation channels, as well as forest, agriculture, and urban environments) also uses
Maxfwi_ndwi (i.e., index with highest K from ‘Remaining plots with water’ in Table 2).

The remaining area uses Maxfwi_ndwi because it had the best K statistic for the ‘Re-
maining plots with water’ (in Table 2), and still had a high accuracy for dry pixels in the
‘Remaining plots without water’ (where it was slightly behind the individual indices: FWI
and mNDWI0). These three indices used in the multi-index method (mNDWInp3, TCWnp035,
and Maxfwi_ndwi) are also the ones that perform strongest when compared to the sizes of
water bodies in the individual plots (Figure 2). While mNDWInp3 and TCWnp035 perform
better than Maxfwi_ndwi for these water bodies, they also have a significantly lower dry
pixel accuracy, leading to higher commission errors when mapping water in all but the
river and wetland environments.

Using all the validation plots, this multi-index method has a K of 0.88, with a water
pixel accuracy of 90.5% and a dry pixel accuracy of 94.8%. This K represents strong
agreement and is higher than those from the individual indices for ‘All plots’ (Table 2). To
gain an understanding of the sensitivity and range of the K values, for the multi-index
method, there are a total of ~44,500 Landsat pixels (~21,700 pixels correctly classified as
water and ~22,800 pixels correctly classified as dry). TCWnp035 has the next highest K value
(0.837) for all validation plots combined, equating to ~1200 less pixels (or 2.7%) that are
correctly classified. The K value of Maxfwi_ndwi is the next highest value (0.835), which has
~1000 fewer pixels (or 2.2%) that are correctly classified. The multi-index method also has
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the highest water pixel accuracy except for mNDWInp3 (93.8%), equating to a difference
of ~300 pixels. Its dry pixel accuracy is less accurate than FWI (97.9%), WOfS (97.7%),
mNDWI0 (97.4%), TCWnp01 (97.3%), and Maxfwi_ndwi (97.3%) by ~500 to 600 pixels, but
it has a much higher water pixel accuracy than those indices. This new method creates
a reasonable balance between identifying as much water as possible, while minimising
commission and omission errors across the basin.

3.1. Visual Assessment

The multi-index two-monthly image for January–February 2019 was inspected across
the whole MDB, and checked for any issues across boundaries of the water environments as
used in the final rule set for mapping surface water across the MDB: major perennial rivers,
wetlands, and the remaining area. Much of the MDB areas showed a seamless transition
across boundaries, except for the dark soil floodplain in the west of the MDB. Figure 4a shows
a major perennial river (Darling River) along this western section where the river can be at
least 35 m wide in sections, as well as the over-mapping of this stream channel based on using
mNDWInp3 within a 100 m buffer along the stream centre (Figure 4b). This can be remedied
by reducing the buffer zone to 25 m for mNDWInp3, and inserting a transition zone from 25 m
to 50 m from the centre of the stream channel with mNDWI > −0.15 (i.e., a threshold halfway
between−0.3 and 0) (Figure 4c). The width of the river in Figure 4c is now 1–2 pixels, which is
a better match to its true width. Apart from scattered pixels at the river bends, the other water
indices do not detect this river during this period. Furthermore, despite the Darling River
being classified as a major perennial river in the Geofabric, in recent years, parts of it can cease
to flow during dry periods [65], as seen here. In the southern section of the MDB, along the
Murray River (Figure 4d), the river is almost 100 m wide in sections. The multi-index method
here shows that mNDWInp3 falls within the buffer zone and is 3–4 pixels wide. However, any
areas where the geofabric streams do not align properly with the river channel in the Landsat
imagery will affect the accuracy of the final product as mNDWInp3 may over-map water in
these areas of mismatch.

3.2. Assessment from Independent Validation Data

The multi-index method was developed using the validation plots mostly from Fisher
et al. (2016) [31]. An additional 40 validation plots were used to provide an independent
assessment of the multi-index method and a further comparison with the other indices
from Table 1. Approximately 12,000 Landsat pixels were assessed from these independent
validation plots with a summary shown in Table 3. K is notably higher for the multi-index
method (0.79), followed by Maxfwi_ndwi (0.72) and FWI (0.70). Water pixel accuracy for the
multi-index method is 79.1%, which is second to mNDWInp3 (90.3%). Dry pixel accuracy
for the multi-index method is 98.5%, which is lower than FWI, mNDWI0, WOfS, and
Maxfwi_ndwi, but still high.

These additional validation plots were extracted from two areas in the MDB located in
different environments (Figure 5). The Darling River site is a more arid zone compared to
the Murray River site, which is located in an agricultural region with vegetated wetlands.
The wet pixel accuracy (Figure 5a), dry pixel accuracy (Figure 5b), and Kappa statistics
(Figure 5c) are shown for each site as well as the combined results. As has been seen in
the previous results, mNDWInp3 is best at identifying water pixels for both sites, but this
leads to commission errors, as seen by the low dry pixel accuracy. All indices have a lower
accuracy for water pixels for the Darling River site compared to the Murray River site. This
is because it is a dry arid site with only small and/or narrow water bodies. The dry pixel
accuracy for TCWnp035 is the lowest for the Murray River site due to irrigated crops being
misclassified as inundated. This low accuracy leads to a low K value for the combined sites
and, hence, a poor agreement (0.30). The multi-index method performs consistently well
for both the wet pixel (Figure 5a) and dry pixel (Figure 5b) accuracy for both sites, resulting
in a high K for the combined sites (Figure 5c).
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Figure 4. Examples of the multi-index method within the Murray Darling Basin at the buffer for
major perennial rivers. The green and blue boxes show a section of the Darling River and Murray
River, respectively. (a) Landsat true colour subset of Darling River, (b) multi-index surface water
image for (a) using 100 m buffer zone, (c) multi-index surface water image for (a) using 25 m to 50 m
transition zone, (d) Landsat true colour subset of Murray River, (e) multi-index surface water image
for (d). The extent of flooding is depicted in white.

Table 3. Producer’s accuracy (%) for water and non-water (dry) pixels, as well as the Kappa statistic
(K) for each water index from the independent validation plots (refer to Table 1 and Equation (1) for
definition of indices). MIM = multi-index method.

Index Water (%) Dry (%) K

FWI 57.66 99.73 0.699
mNDWI0 54.40 99.78 0.674

mNDWInp3 90.30 82.09 0.393
TCWnp035 62.65 84.43 0.294
TCWnp01 41.61 97.23 0.445

WOfS 48.41 99.82 0.623
Maxfwi_ndwi 60.04 99.69 0.716

MIM 79.06 98.50 0.791
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For a more detailed assessment, three subsets covering the independent validation
sites (one from the Darling River site and two from the Murray River site) were extracted
and water maps from the multi-index method are compared to the other indices (Figure 6).
The Kappa statistic was also calculated from these subsets and are shown in Figure 6. The
validation sites used to calculate K for each subset are shown in the true colour images as
red squares. Figure 6a shows the Darling River meandering through the middle of an arid
region (outlined in magenta). The high-resolution validation image did show the Darling
River to be flowing for this area and date. The dark floodplain soils show as a grey colour
compared to the surrounding red soil. The multi-index method has a notably higher K
statistic (0.82) compared to the other indices. This is because it is able to detect the full
length of the Darling River, since mNDWInp3 is used within the river buffer. However, as
can be seen in the water map image for mNDWInp3, inundation is incorrectly identified
through much of the floodplain using this index alone. Maxfwi_ndwi is used to map water for
the remaining areas of this subset in the multi-index water map, which correctly identifies
all pixels as dry. TCWnp01 does not have a K value, since no water was detected in the
validation plots containing water.

Figure 6b shows an agricultural region (including irrigation channels and crops) in the
Murray River site. Since this subset does not contain major perennial rivers or wetlands,
Maxfwi_ndwi was used to identify all water in the multi-index method water map. Hence,
K (0.71) for Maxfwi_ndwi and the multi-index water map are the same. The next highest K
for this subset is from FWI (0.68). mNDWInp3 is best at identifying the irrigation channel
traversing the top of this subset; however, it is also misclassifying some of the crops as
inundated. The Tasseled Cap Wetness indices are showing the lowest K values, as they are
also identifying some crops as inundated.
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Figure 6. Comparison of the new multi-index method and the individual indices for three sites across
the Murray Darling Basin. (a) Darling River site, (b) agricultural region in Murray River site, and
(c) wetland area in Murray River site (refer to Table 1 and Equation (1) for definition of indices).
Major perennial streamlines are shown in magenta, ANAE wetlands are outlined in orange, and
validation plots used to calculate Kappa (labelled in the inundation images) are outlined in red in the
RGB images. The extent of inundation for each index is depicted in white.

Figure 6c shows the Murray River passing through the centre of this subset (high-
lighted in magenta) as well as an ANAE wetland to the southeast of the river (highlighted
in orange). The multi-index method clearly shows the Murray River (this is because
mNDWInp3 is being used for major rivers). TCWnp035 is detecting the most water in the
ANAE wetland area to the south of the Murray River compared to the other indices. The
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use of TCWnp035 for wetlands in the multi-index method means it is also seen in the multi-
index water map for this area. Similar to the other subsets, K for the multi-index method is
highest compared to the other indices (0.85).

Overall, the results show that most indices are capable of mapping surface water
with a reasonable degree of accuracy. However, there are situations where mapping is
challenging and some indices are more suitable. For example, flooded vegetation is difficult
to detect for most water indices; however, TCWnp035 can detect more than the other indices.
The challenge is finding validation data identifying flooding extent. One example is for
the Barmah-Millewa Forest (whose extent can be seen in Figure 7a) located in the southern
section of the MDB, and which is listed as a Ramsar wetland site. This floodplain area
consists of open canopy forest (~70%) and woodlands (~29%) [25]. Figure 7b, c, and d
show the multi-index method, TCWnp035, and mNDWInp3 from a Landsat image acquired
in December 2010 during a flooding period. The magenta line shows the major river, and
orange shows the extent of ANAE wetlands. mNDWInp3 (Figure 7d) shows much less
flood extent within this forested wetland area compared to TCWnp035 (Figure 7c). While
the exact extent of flooding during this period is unknown, according to Parks Victoria
(2018) [66], 90% of the floodplain was flooded during the 2010–11 hydrologic year (May to
the following April). The extent of flooding for the multi-index image (Figure 7b) agrees
well with the extent shown in Tulbure et al. (2016) [25] for the flood event for the ANAE
wetland area, making the extent shown in the multi-index method within the wetland area
plausible. However, less water is identified using the multi-index method in the northern
section of the floodplain (Figure 7b) compared to Tulbure et al. (2016) [25], and TCWnp035
(Figure 7c) compares much better. Parks Victoria (2018) [66] also identify this northern
section as subject to inundation during large flooding events. Improvements to the wetland
layer used to identify wetland extent in the multi-index method is recommended, so it can
include these vegetated floodplains.
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Figure 7. (a) Landsat RGB of the Barmah-Millewa Forest in the MDB, (b) water extent from the
multi-index method, (c) Tasseled Cap Wetness index (threshold−0.035), and (d) modified Normalised
Difference Water Index (threshold −0.3) from December 2010. The magenta lines show the major
streams, and orange shows the extent of ANAE wetlands, while the extent of flooding for each index
is depicted in white.
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4. Discussion

While this method has focused on the MDB, it should be applicable to other regions
and environments, provided they have the necessary spatial layers (i.e., major rivers and
wetlands). This is because the MDB covers a range of environments from arid deserts
to alpine forests, and includes a mixture of crops, pastures, native vegetation, and urban
areas. Apart from snow cover (which is not addressed here), the multi-index method
has been applied to a range of environments. The Geofabric data are available Australia-
wide at the same level of spatial detail, which provides the streamline layer necessary for
extracting major perennial rivers. The ANAE wetlands layer was only available for the
MDB; however, the Directory of Important Wetlands layer [67] is available Australia-wide,
which could be applied. Globally, there are a range of layers which could be used to
define major streamlines and wetlands: global river networks include MERIT Hydro [68],
HydroSHEDS [69], and the global river networks dataset of Yan et al. [70]; the Global
Wetlands Map has a selection of wetland layers for the tropics and subtropics [71], while
a global wetland layer is also available [72]. Even so, the method described here is to
demonstrate the application of targeting commonly used water indices to the environments
where they perform best, to help achieve improved results in detecting inundation while
minimising the misclassification of dry areas as water.

The multi-index method has not been applied to other regions outside of the MDB;
however, previous experience has shown that mNDWInp3 works well for identifying
persistent waterholes within major river channels throughout a number of catchments in
northern Australia [40]. mNDWInp3 was constrained to major river channels due to over-
mapping of water in surrounding areas. Comparisons with WOfS found mNDWInp3 better
matched the validation data extracted from high-resolution Google Earth imagery [40].
Previous experience has also found mNDWInp3 also had difficulty in identifying water
within flooded vegetation for areas in northern Australia. However, the example shown in
Figure 7 shows TCWnp035 can identify more water in flooded vegetated wetlands; hence,
the multi-index approach may potentially improve on this early work. Recent work in
central Australia found that mNDWInp3 was significantly over-mapping water in this arid
zone, so mNDWI0 was applied instead [43]. These previous results provide evidence that
different indices work better in different water environments, and further work is required
to test the multi-index method in these other regions.

There are limitations in using Landsat imagery to map surface water due to the spatial
resolution (30 m) and temporal frequency (8–16 days at best). Water bodies that are smaller
than 3 ha will be difficult to identify as surface water in Landsat imagery in complex
environments [73]. Inclusion of Sentinel-2 optical imagery in detecting surface water
would help due to its relatively high spatial (particularly the visible bands) and temporal
resolution compared to Landsat [65]. This is only applicable since the launch of Sentinel-2
(2015), but its archive will grow to become a valuable dataset for future analysis, and it has
shown potential, alongside Landsat, for wetland mapping [14].

Cloud cover is always a major problem, particularly when trying to detect surface
water before and during the peak of a flood event [74,75]. Furthermore, remnant cloud
cover and particularly cloud shadow that is not automatically masked in Landsat imagery
is often identified as open water using the water indices [30]. While its extent is not large
in Australia, snow can also be mapped as surface water and needs to be masked during
the winter months. Dense overhead vegetation will also create a challenge to identifying
underlying surface water in optical remote sensing imagery. Synthetic Aperture Radar has
already shown to identify flooded vegetation [76] and may be useful to consider when
mapping surface water in a complex environment.

5. Conclusions

A good selection of robust indices is already available for mapping surface water using
Landsat surface reflectance data. However, targeting the indices to be used in the water
environment areas where they perform best can help improve the ability to identify surface
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water extent. This is the method applied in this study for the MDB. All single indices
perform well for mapping surface water extent in the Murray Darling Basin with Kappa
statistics ranging from 0.78 (substantial agreement) for WOfS to 0.84 (strong agreement)
for TCWnp035 based on all the validation plots combined. However, results improve when
indices are used in the environment where they perform best. mNDWInp3 is good at
identifying water along major river channels, but has high commission errors outside
these areas. TCWnp035 is best at mapping wetlands, particularly in flooded vegetation,
but has high commission errors in cropping regions. FWI and mNDWI0 (and combined
to form Maxfwi_ndwi) work well at identifying water in the remaining areas of the MDB
basin, with the highest Kappa statistic, and a high accuracy for dry areas (meaning less
false identification of water). When these indices are applied to the environments where
they perform best, the overall Kappa statistic becomes 0.88, with a water pixel accuracy
of 90.5% and a dry pixel accuracy of 94.8%. When applied to an independent validation
dataset, the multi-index method still has the highest Kappa statistic of 0.78 (substantial
agreement) compared to the other indices. It also performs well in both an arid and
agricultural environment. Once a wetlands and major rivers layer is established, this
multi-index method is simple to apply, and fast to run across a large area, making it suitable
for regional-scale multi-temporal analysis. It was designed to utilise the advantages, as well
as minimise the disadvantages, of existing surface water indices commonly used within an
Australian environment. However, this method could be applied to any catchment where
major streamlines and wetlands (including vegetated floodplain) layers are available or
can be created.
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