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Abstract: The current limited spaceborne hardware resources and the diversity of ship target scales in
SAR images have led to the requirement of on-orbit real-time detection of ship targets in spaceborne
synthetic aperture radar (SAR) images. In this paper, we propose a lightweight ship detection
network based on the YOLOv4-LITE model. In order to facilitate the network migration to the
satellite, the method uses MobileNetv2 as the backbone feature extraction network of the model. To
solve the problem of ship target scale diversity in SAR images, an improved receptive field block
(RFB) structure is introduced, enhancing the feature extraction ability of the network, and improving
the accuracy of multi-scale ship target detection. A sliding window block method is designed to
detect the whole SAR image, which can solve the problem of image input. Experiments on the SAR
ship dataset SSDD show that the detection speed of the improved lightweight network could reach
up to 47.16 FPS, with the mean average precision (mAP) of 95.03%, and the model size is only 49.34 M,
which demonstrates that the proposed network can accurately and quickly detect ship targets. The
proposed network model can provide a reference for constructing a spaceborne real-time lightweight
ship detection network, which can balance the detection accuracy and speed of the network.

Keywords: real-time ship detection; SAR images; YOLO; lightweight network

1. Introduction

Synthetic aperture radar (SAR), an essential aerospace remote sensor, is characterized
by its ability to achieve all-weather observation of the ground [1]. Based on this advantage,
SAR technology has developed rapidly [2–4], and has a wide range of applications in target
detection [5], disaster detection, military operations [6], and resource exploration [7].

SAR is an essential tool for maritime surveillance [8]. As the maritime trade and
transportation carrier is an important military object, it is of great significance to realize
the real-time detection of ship targets in spaceborne SAR images [9]. Due to the satellite’s
limited computing and storage resources, the accuracy, detection speed, and model size of
the target detection algorithm are required simultaneously [10]. At present, the methods
of ship target detection [11] in SAR images are mainly divided into two types: traditional
detection methods, and target detection methods based on deep learning [12].

Traditional ship detection algorithms in SAR images generally detect ship targets
by manually selectively extracting features such as gray level, contrast ratio, texture, ge-
ometric size, scattering characteristics, histogram of oriented gradient (HOG) [13], and
scale-invariant feature transform (SIFT) [14]. Generally, they can achieve better detec-
tion performance in simple scenes with less interference. The constant false alarm rate
(CFAR) [15–17] detection algorithm is widely used as a contrast-based target detection algo-
rithm for SAR ship detection. However, each pixel point in the CFAR detection algorithm
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is involved in the calculation of distribution parameter estimation multiple times, and the
calculation of background clutter distribution is extensive. The detection speed cannot
meet the demand of real-time.

In recent years, deep learning technology has developed rapidly natural image recog-
nition. R-CNN [18] introduced convolutional neural networks (CNN) into the field of target
detection, which has brought new research ideas to target detection, and its application in
SAR images has an ample exploration space. Currently, the algorithms based on convo-
lutional neural networks mainly used in ship detection in SAR images include two-stage
detection methods represented by R-CNN, Fast R-CNN [19], and Faster R-CNN [20]. This
kind of algorithm takes a series of candidate regions as the candidate boxes of samples, and
then produces secondary corrections based on the candidate regions to obtain the detection
results, so that they have high detection accuracy. However, their network structures are
complex, there are many parameters, and the recognition speed is slow, which cannot meet
the real-time requirements of ship detection tasks. Furthermore, SSD [21] and YOLO [22–24]
series algorithms based on single-stage regard the target detection problem as a regression
analysis problem of target location and category information. They directly output the
detection results through a neural network model, with high speed and accuracy, and are
more suitable for ship detection tasks with near real-time detection requirements [25].

Although the above algorithms have good detection performance, applying them
directly to ship detection in SAR images is difficult. In addition, there are still some
challenges in the deep learning-based ship detection method in SAR images [26,27]: (1) Due
to the unique imaging technology of SAR, there are more scattering noise and sea clutter in
SAR images, and the phenomenon of side flap is also severe, which will cause the contrast
between the ship and the sea to decrease. This leads to a decline in detection accuracy.
Furthermore, the interference from the land, islands, and other natural factors increases
the false alarm rate. (2) Ships have arbitrary directionality and multi-scale in SAR images.
Various ships are of different sizes and scales, reflected in SAR images as different numbers
of pixels, especially for small-scale ships. Fewer pixels are easily confused with SAR image
speckle noise, and there is little information for position refinement and classification
compared to large ships. Meanwhile, the orientation of ship targets in satellite images
taken from the air vary greatly, and can change between 0◦ and 360◦, which improves the
detection difficulty and leads to poor detection and recognition accuracy. (3) SAR images
cannot be directly input to the network for detection if the scene is enormous. It is assumed
that the SAR image of the large scene is now input into the network. In this case, the ship
target will be resampled to a few or even just one pixel, seriously affecting the detection
accuracy.

To solve the above problems, Kang et al. [28] added context features to the correspond-
ing region of interest to make the background information help to eliminate false alarms.
In order to better obtain the salient features in the image and suppress clutter, some studies
use the attention mechanism. Du et al. [29] introduced important information into the
network, so that the detector could focus more on the target area. Zhao et al. [30] proposed
an extended attention block to enhance the feature extraction ability of the detector. Unlike
the horizontal bounding box method, An et al. [31] and Chen et al. [32] adopt a directional
bounding box, which is better for densely arranged objects. Cui et al. [33] proposed a
multiscale ship detection method based on a dense attention pyramid network (DAPN) in
SAR images. Wang et al. [34] improved the performance of detecting multiscale ships by
enhancing the ability of feature extraction and the nonlinear relationship between different
features. Wu et al. [35] proposed a new ship detection network, called case segmentation
assisted ship detection network (ISASDet), which uses case segmentation to promote ship
detection. Shi et al. [36] proposed an adaptive sliding window algorithm to extract the
connected water region, and proposed the ship’s suspicious target region.

The above improvements are based on specific hardware and storage resources. Al-
though these methods improve the detection performance of the model to a certain extent,
it is still difficult to meet the development needs of real-time mission planning on satel-
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lites [37]. However, the hardware resources on the satellite are limited, thus reducing
the network parameters and compressing the network model on the premise of ensuring
the network performance has also become a challenge in the target detection task on the
satellite [38]. Chollet et al. [39] constructed deep separable convolution by combining the
branching structure of inception, and reduced the computation of convolution operation
on the premise of ensuring the model’s accuracy through the BottleNeck method. Zhang
et al. [40] proposed a high-speed SAR ship detection method based on depth separable
convolutional neural network (DS-CNN) using a combination of multi-scale detection
mechanism, cascade system, and anchor box mechanism.

According to the above analysis, considering the sea observation, the situation of ship
detection, and the resource space of the satellite system, we propose a lightweight detection
method for multi-scale ships in satellite SAR images. A real-time ship detection model on
satellites robust enough to multi-scale objects, complex backgrounds, and large scene SAR
images under the platform of limited computing resources is implemented. Aiming at the
diversity of ship target scales in ship detection in spaceborne SAR images, the input of
large scene images, and the limited resources on board, the single-stage target detection
method is improved, respectively. The main contributions of our work are as follows:

• In order to make the model meet the development needs of real-time mission planning
on satellites, we use the improved MobileNetv2 as the backbone feature extraction
network of the YOLOv4-LITE model. In the Path Aggregation Network (PANet) struc-
ture, the depthwise separable convolution is used to replace the standard convolution,
which ensures the lightness and detection speed of the network, and enables the
constructed network model to meet the requirements of limited computing resources
on the satellite;

• In order to solve the problem of ship target scale diversity, the RFB structure is
introduced and improved to enhance the learning characteristics of the lightweight
model, obtain more effective information by increasing the receptive field of the
network model, and improve the accuracy of multi-scale ship detection, especially the
detection accuracy of small target ships. This makes full use of fewer parameters to
extract features effectively, and builds a real-time ship detection model on satellite to
meet the development needs of real-time mission planning on satellite;

The K-means algorithm is used to cluster the data set, and a sliding window blocking
method is designed to solve the problem of image input. At the same time, based on the
sliding window blocking method, a quadratic non-maximum suppression (NMS) operation
is added to the output of the network, and the CIoU (Complete Intersection over Union)-
NMS combination method is used to suppress the repeated frame selection of a ship caused
by the sliding window blocking method. The organizational structure of this paper is as
follows. In Section 2, we will introduce two detection methods, respectively, and describe
the detailed process of our proposed method. Section 3 describes the sliding window
blocking method and the quadratic non maximum suppression operation. The detailed
experimental process is shown in Section 4. See Section 5 for conclusions.

2. MobileNet-YOLOv4-LITE Algorithm Principles and Improvements
2.1. MobileNetv2 Network

MobileNet is a new lightweight network proposed by the Google team in 2017 [41],
which has fewer network parameters and lower operation costs. The MobileNetv2 [42]
network inherits the advantages of the MobileNet v1 network, and introduces the inverted
residuals structure and bottleneck structure. Unlike the traditional residual structure, the
inverted residual first increases and then decreases the dimension of the network. The
number of channels in the network increases by introducing 1 × 1 convolution, and then
the standard convolution is replaced by depth separable convolution. Compared with the
standard convolution of the backbone feature extraction network of YOLOv4, the amount
of calculation of deep separable convolution is reduced by approximately nine times, and
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the amount of parameters is reduced accordingly, which further improves the network
performance.

The MobileNetv2 network includes standard convolution, depth-wise separable con-
volution of reverse residual structure, and avgpool. The network structure is shown in
Figure 1.
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Figure 1. The MobileNetv2 network structure.

In order to use the MobileNetv2 network as the backbone feature extraction network
of the YOLOv4-LITE detection framework, the network input and output image sizes need
to be changed. Firstly, the input image size is adjusted to meet the input requirements of the
MobileNetv2 network; secondly, the number of network parameters and operation costs
are fully considered to ensure the accuracy of the training network, and the subsequent
layer of the output channel number increase from 320 to 1280 in Figure 1 is removed;
finally, the modification to meet the dimensional articulation requirements is carried out.
The modified network structure and its parameter settings are shown in Table 1, where
input is the input feature map size; t denotes the expansion coefficient of the intermediate
convolution channel; c denotes the number of output channels; n denotes how many times
the layer is repeated; and s denotes the stride of convolution.

Table 1. Modified MobileNetv2 network structure by layer.

Layer Input Operator t c n s

1 416 × 416 × 3 Conv2d - 32 1 2
2 208 × 208 × 32 Bottleneck 1 16 1 1
3 208 × 208 × 16 Bottleneck 6 24 2 2
4 104 × 104 × 24 Bottleneck 6 32 3 2
5 52 × 52 × 32 Bottleneck 6 64 4 2
6 26 × 26 × 64 Bottleneck 6 96 3 1
7 26 × 26 × 96 Bottleneck 6 160 3 2
8 13 × 13 × 160 Bottleneck 6 320 1 1

2.2. MobileNet-YOLOv4-LITE Algorithm and Improvements

YOLOv4 is an algorithm introduced by Bochkovskiy et al. through a series of im-
provements to YOLOv3, which pushes the accuracy and speed of the YOLO family of
algorithms to a new level [43]. Compared with YOLOv3, the YOLOv4 network structure
has been improved in many ways. The improvements are mainly reflected in the following
three aspects: first, the CSPnet architecture is incorporated into DarkNet53 to generate
the CSPDarkNet53 backbone feature extraction network, which significantly reduces the
number of network parameters while enhancing the extraction capability of the backbone
feature extraction network; second, the neck feature enhancement network adopts the com-
bination of path aggregation network (PANnet) and spatial pyramid pooling (SPP) module
to enhance the extraction ability of different feature layers of the network and enable more
efficient feature fusion; third, the LeakyReLU activation function in the backbone feature
extraction network is modified into the Mish activation function, which can effectively
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improve the generalization ability of the model and the optimization ability of the results
and improve the quality of the results. Equation (1) is as follows:

f (x) = x× tanh(log(1 + ex)), (1)

MobileNet-YOLOv4-LITE is a detection model based on the YOLOv4 algorithm frame-
work, using the MobileNet series network as the backbone feature extraction network of
the YOLOv4 detection framework, and the structure of the model is shown in Figure 2,
where MobileNetv2 is the Backbone part, SPP and PAnet are the Neck part, and Head is
the output part.

The bottleneck structure is the core part of the MobileNetv2 network. Each bottle-
neck comprises two standard convolutions and one deep separation convolution (Dwise).
Among them, Relu 6 is used as the activation function. Relu 6 is obtained by limiting
the maximum output value of the Relu activation function to six, ensuring better numeri-
cal resolution in floating-point operation when the equipment calculation conditions are
limited. If the activation range of Relu is not limited, the output range is 0 to positive
infinity. Suppose the activation value is tremendous and distributed in an extensive range.
In that case, it is impossible to accurately describe such an extensive range of values in
floating-point operation and how to bring accuracy loss. The calculation method is shown
in Equation (2):

Relu6 = min(6, max(0, x)), (2)

In addition, compared with the Mish activation function, Relu6 can make the model
learn sparse features earlier, prevent numerical explosion, and avoid the loss of accuracy
caused by numerical distribution in an extensive range. The amount of calculation is
smaller, which is more suitable for the needs of target detection on satellites.
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Various ships are of different sizes and scales, which are reflected in the SAR images as
objects with different pixels. Ship detection becomes a challenging task for SAR images due
to its multi-scale feature. Especially for small-scale ships, fewer pixels are easily confused
with SAR image speckle noise. Compared with large ships, existing ship detection methods
are not sensitive to small ships, resulting in poor accuracy. Thus, the critical issue to
improve the detection accuracy of multi-scale ships is how to make full use of the features
of different scales to obtain more information.
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The RFB structure starts from simulating human vision’s receptive field and eccen-
tricity. It draws on the Inception network and the idea of dilated convolution, which can
effectively increase the receptive field, extract multi-scale features, and enhance the ability
of lightweight convolutional neural networks to learn in-depth features [44]. By adding a
small amount of calculation, the detection accuracy of the model is effectively improved.
At the same time, in feature extraction, the area containing the ship target in the image
plays the leading role as the effective area. However, due to the significant difference in
the size of ship targets in SAR images, small target ships are easily confused with speckle
noise, resulting in the inability to extract ship features during feature extraction effectively.
Unlike the max pooling operation of the SPP structure, the dilated convolution and residual
connection in the RFB structure can enhance the receptive field of the effective region
without changing the scale features, and maximize the preservation of small ship objects in
the feature map.

RFB structure extracts features using standard convolution and dilated convolution
on branches of different scales. The standard convolution simulates the receptive fields of
different scales in the receptive field group. The dilated convolution increases the receptive
fields, while keeping the size of the characteristic map unchanged. The original RFB
structure is a three-branch structure composed of 1 × 1, 3 × 3, and 5 × 5 convolution cores,
and the dilated convolution of dilation rate = 1, dilation rate = 3, and dilation rate = 5 is
introduced into each branch to increase the receptive field. Finally, the output and input
ports of the three branches are connected by residuals to achieve the purpose of fusing
different characteristics.

In order to better improve the detection accuracy of the network model for multi-scale
ship targets in SAR images, we improved the original RFB structure. We add a dilated
convolution with a dilation rate = 7, based on the original three branches. By connecting the
output and input of the four branches with residuals, features which are more recognizable
to multi-scale ship targets in SAR images are generated. Meanwhile, to consider the model
parameters, we replace the 7 × 7 convolutions with 1 × 7 and 7 × 1 convolutions. At the
same time, the convolution size of 3× 3 in the second branch is replaced by the convolution
of 1 × 3 and 3 × 1. The convolution of 1 × 5 and 5 × 1 replaces the convolution of 5 × 5
in the third branch, generating a lightweight receptive field enhancement structure that
is more suitable for multi-scale ship detection in SAR images. Experiments verify the
performance of the improved RFB structure. The improved RFB structure is shown in
Figure 3.
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The parameters calculated by the model are mainly concentrated in the PAnet structure
and 3 × 3 convolution. In order to further reduce the number of parameters, the depth
separable convolution is used to replace the 3 × 3 convolution of PAnet in MobileNet-
YOLOv4-LITE.

At the same time, the effective receptive field [45] plays a vital role in the feature map.
The ship in the SAR image accounts for a small proportion of the original image, thus
the effective receptive field area is easily lost in the feature extraction process. Compared
with the maximum pooling operation of the SPP module, the hollow convolution and
residual connection of the RFB module can enhance the receptive field of the effective area
without changing the scale feature, and retain the small-sized ship target in the feature map
to the greatest extent. Therefore, the SPP part of the network model is replaced with an
improved RFB module, and the improved RFB module is added to the output ends of the
feature enhancement network 32 and 96 scales. The improved YOLOv4-LITE-MR network
structure is shown in Figure 4.
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3. Sliding Window Partition Method

All target detection methods based on deep learning have strict restrictions on image
input, and all input images will be adjusted to fixed pixel size. The imaging scene of the
SAR image is enormous, therefore the image needs to be divided into blocks to avoid the
size of the ship target from being resampled to a few or even only one pixel, which affects
the detection performance.

It was inspired by the idea of the CFAR algorithm to detect images through sliding
window technology. A sliding window detection method is designed and used, as shown
in Figure 5. The square area with side length L is used to traverse the whole image in both
horizontal and vertical directions, set an overlap of the sub-image with a length of S to
avoid damage to the ship by the block, and complete the sliding window block process of
the entire image.

The subgraph size is L × L, and the length of the overlapping part is S (Figure 5).
Among them, L is set at 1650 pixels. The size of S should be larger than the number of
pixels along ship’s length in the image. It is set to 320 pixels, according to the ship size and
image resolution. The above parameters can be changed adaptively based on the image’s
resolution.
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However, in practical applications, it is found that the sliding window detection
method will bring a large number of false alarms, mainly due to repeated frame selection
of a ship. In order to solve this problem, we added a non-maximum suppression (NMS)
operation in the output part of the network to exclude the detection box where the inter-
section over union (IoU) [46] is less than the threshold, and to suppress the ships selected
repeatedly.

At the same time, it is found that different IoU strategies used in the sliding window
blocking method have different inhibitory effects on the repeated frame selection of ship
targets. In order to determine the best combination of the IoU method and NMS, the
experiments of IoU, DIoU [47], and CIoU [48] methods are carried out, respectively. Finally,
it is determined to add the combination of CIoU loss and NMS to the output port of the
prediction network. CIoU is set to 0.3, eliminating the detection frames more minor than the
threshold, suppressing repeated false positives, and selecting targets in multiple frames.

IoU loss function is needed in the detection frame regression in the target detection
task. The prediction box is defined as B, and the actual box is BGT , the IoU loss function
Equation (3) as follows:

IoU =
|B ∩ BGT |
|B ∪ BGT |

, (3)

LIoU = 1− |B ∩ BGT |
|B ∪ BGT |

, (4)

However, as shown in Figure 6, the IoU loss function has two problems: first, when
the prediction box and the target box do not intersect, IoU is 0. Then, the loss function is
not differentiable, and the gradient direction is lost. In the IoU loss function, it is impossible
to optimize the disjoint case of two boxes. Second, when the size of the two prediction
boxes are the same, the two IOUs are also equal, and the IoU loss cannot distinguish the
difference in the intersection of the two.
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Compared to the IoU loss function, the DIoU loss function is more consistent with the
mechanism of target box regression and converges faster without the risk of divergence.
The DIoU loss is defined as:

LDIoU = 1− IoU +
ρ2(b, bGT)

c2 , (5)

Among them, b and bGT are the center points of B and BGT, respectively. ρ represents
the Euclidean distance between the two centers; and c is the diagonal length of the minimum
enclosing box that can enclose B and BGT , as shown in Figure 7.
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DIoU has two distinct advantages: (1) When B and BGT do not intersect, it can guide
the direction movement of B and directly minimize the distance B between and BGT,
convergence speed is fast; (2) it can be applied to non-maximum suppression (NMS) to
make NMS more reasonable.

However, when the center points of the two frames coincide, that is, the values of c
and d remain unchanged, DIoU cannot accurately determine the position of the anchor
frame, which brings a loss of accuracy. Therefore, it is necessary to introduce the aspect
ratio of the anchor frame at this time. CIoU can effectively solve this problem and make the
prediction frame more consistent with the actual frame. The calculation formula is shown
in Equation (6):

CIoU =
ρ2(b, bGT)

c2 + αv, (6)

where α is the weight function, and v is used to measure the consistency of the aspect ratio.

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

, (7)
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α =
v

(1− IoU) + v
, (8)

The CIoU loss is defined as:

LCIoU = 1− IoU +
ρ2(b, bGT)

c2 + αv, (9)

4. Experiment
4.1. Experimental Environment and Data Introduction

The experimental software and hardware configuration are shown in Table 2. In the
experiment, all comparison methods were run on the same platform.

Table 2. Experimental software and hardware configuration.

Configuration Parameter

CPU Intel(R) Core (TM) i9-10980XE
RAM 128G
GPU NVIDIA GeForce RTX2080Ti

Operating system Windows10
Development tools PyTorch, python3.6, CUDA10

The experiment uses the SSDD [49] dataset, which is commonly used in SAR ship
target detection. The SSDD dataset has 1160 images and 2456 ship targets, with an average
of 2.12 ships per image, and contains ships of different sizes, from small target ships of
7 × 7 pixels to large target ships of 211 × 298 pixels. The images in this dataset have
multiple polarization patterns, different resolutions, and far and near sea scenes, which can
better verify the algorithm’s effectiveness.

GF-3 image, as shown in Figure 8. In order to verify the detection effect of the proposed
model in the whole image, three scenes of high-resolution SAR data are used to test the
ship detection performance of the proposed method. The data are from the GF3 satellite,
the shooting area is Malacca Strait, and some parameters are shown in Table 3.
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Table 3. Test data parameters.

Date Imaging Time Pixel Size Product
Type

Resolving
Power/m

Polarization
Mode

data1 11 January 2020 15,770 × 13,926 SLC 0.56 × 0.33 HH
data2 21 October 2018 15,344 × 13,586 SLC 0.56 × 0.34 HH
data3 28 October 2018 16,208 × 13,798 SLC 0.56 × 0.31 HH
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The three images have apparent speckle noise, sea clutter, and sidelobe phenomenon
from the imaging situation. Figure 9 shows the ships under the background of different
interference factors. The number of ships in a single scene image is between 80 and 110.
The scale span is large, the largest ship is 300 m, the smallest is about 20 m, and it is mainly
distributed in the open sea. It can be seen that the test data used in this time include multi-
scale, high-density, and high sea state scenes, which is very challenging and meaningful in
the ship detection task and can effectively verify the effectiveness of the proposed method.
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Figure 9. Graphical representation of different interference factors in images.

To ensure the reliability of the experimental data, the SSDD dataset was randomly
divided into a training set, a validation set, and a test set according to the ratio of 7:2:1
during training. In the training process, the mosaic data enhancement method was used,
the training epoch was set to 100, the training batch size was taken as 8, the initial learning
rate was 0.001, and then the learning rate was adjusted to 0.0001 after 50 rounds of training.
Cosine annealing learning rate was used for training weights, the momentum factor was
0.9, and the image input size was 416 × 416.

4.2. Cluster Analysis of Datasets

A rectangular border is usually used to represent the detected target in target detection.
An anchor box is a predefined set of boxes whose width and height are selected to match the
width and height of the target in the dataset. Instead of using a predefined combination of
aspect ratio and scale, the anchor box in the YOLO algorithm adopts a K-means clustering
approach to learn from the training set. The different anchors are obtained from the training
set.

Compared with the PASCAL VOC dataset classification in the original network model,
ship detection is a two-class classification problem, which only targets one type of ship
data. In addition, the multi-scale nature of ships in the ship dataset is also different from
other datasets. If the anchor calculated from the VOC dataset continues to be used, the
training speed and accuracy of the model will be affected. Meanwhile, Euclidean distance
is used in the traditional K-means clustering [50] method to calculate the distance between
each sample and the selected cluster center point. For multi-scale ship data, the size of the
label box is too large, which leads to errors.

The IoU method can avoid this problem, thus the 1− IoU method is used instead of
the Euclidean distance to calculate the distance between the sample and the cluster centroid.
The smaller Dis, the higher the degree of similarity, and the distance Equation (10) follows:

Dis = 1− IoU, (10)

Since the algorithm performs detection, each detection layer allocates three anchor
boxes, thus nine cluster centers are selected. After multiple calculations, the optimal anchor
box size is shown in Table 4.



Remote Sens. 2022, 14, 1149 12 of 20

Table 4. Optimized anchor box.

Feature Layer Anchor Box

(52, 52, 256) (9, 11), (18, 11), (10, 21)
(26, 26, 512) (13, 25), (30, 16), (18, 42)

(13, 13, 1024) (29, 48), (93, 33), (45, 93)

4.3. Evaluation Indicators

The IoU threshold between the prediction frame and the actual frame of the target is set
to 0.5, and the target’s location is correctly predicted when the IoU value is more significant
than 0.5. The accuracy, precision, recall, and mean accuracy (mAP), and frames per second
(FPS), which are commonly used for target detection, are selected as the evaluation metrics
for the algorithm’s detection accuracy and detection speed, respectively. In addition, the
parameter quantity of the added position of the RFB structure and the figure of merit (FOM)
of the ship detection effect in the whole SAR image are compared. The parameter quantity
directly affects the size of the network model, which also an essential factor in the target
detection task. The calculation Equations (11)–(16) is as follows:

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

Fom =
TP

TP + FN + FP
, (13)

AP =
∫ 1

0
P(R)dR, (14)

mAP =
1
N ∑N

i=1 AP, (15)

FPS =
FrameNum

ElapsedTime
, (16)

In the equations mentioned above, TP is the number of positive samples predicted
to be positive, FP is the number of negative samples predicted to be positive, and FN is
the number of positive samples predicted to be negative. The larger the final calculated
value, the higher the accuracy. Framenum represents the number of images processed, and
ElapsedTime represents the time taken to process the image. FPS is the number of pictures
that the model in one second can detect. The larger the FPS value, the faster the detection
speed of the model.

4.4. Experimental Results and Analysis

In order to verify the effect of the improved network in ship target detection, three
experiments are designed. (1) The MobileNet-YOLOv4 model is used to carry out the
improved RFB module, and the feature fusion experiments are carried out on the modules
with different positions. The effect of the improved RFB module and the influence of
the added positions on the model accuracy are discussed. (2) Under the same software
and hardware environment and dataset, the applicability of the improved network in
the task of satellite-borne ship target detection is verified according to comparing the
detection performance of YOLOv3, SSD, YOLOv4, MobileNet-YOLOv4, and the improved
MobileNet-YOLOv4 network. (3) The improved network is used to detect the entire GF-3
image, and the network model and sliding window block method are used to verify the
detection performance of ships with significant scale differences in complex scenes.

According to the above experimental results, the additional position of the RFB struc-
ture is determined, and the YOLOv4-LITE-MR model shown in Figure 4 is obtained.
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4.4.1. Improved RFB Module and Module Adding Location Experiment

In order to verify the effect of adding RFB module and improving RFB module on
the accuracy of the algorithm and the optimization of depth-separable convolution on
the number of parameters, a set of comparison experiments were set up based on the
MobileNet-YOLOv4-LITE network to compare and analyze the effect of replacing only the
backbone feature extraction network model, the depth-separable convolution replacement
model, the original RFB structure, and the improved RFB structure trained with SSDD
dataset under the same experimental conditions on the algorithm accuracy, the specific
experimental results of which are shown in Table 5, where Params is the total number of
parameters, GFLOPs is the number of floating-point operations to measure the complexity
of the model, RFB scale is the maximum perceptual field scale of the RFB structure, and
mAP is the average accuracy mean of the model.

Table 5. Accuracy comparison of RFB structure improvement.

Method Params/106 GFlops RFB Scale mAP/%

Replace backbone network 38.64 13.36 0 93.45
Depth separable

convolution replacement 10.38 3.82 0 93.32

Add RFB structure 10.79 4.27 5 94.06
Add improved RFB structure 10.78 4.26 7 94.59

It can be seen from Table 5 that the number of parameters required to train the
MobileNetv2 network model before convolutional replacement is 38.64 × 106. The number
of parameters of the network model after replacement with depth-separable convolution is
10.38 × 106, which only accounts for 26.86% of the size of the replaced backbone network
model. The final computational volume of the improved network is 4.26 GFLops, which is
68.11% less than the GFLOPs of the original network, and the improved RFB structure has
a specific improvement in model size and accuracy over the original RFB model. It can be
seen that the improved RFB structure has a larger perceptual field scale and most minor
parameters, which shows the characteristics of lightweight and high accuracy.

In introducing the RFB structure, which enhances the network’s ability to extract
features at different scales, the backbone network outputs 52 × 52, 26 × 26, and 13 × 13
feature maps, respectively. The improved RFB structure for features extracts the 13 × 13
feature maps. Comparative experiments were carried out to verify the effect of the RFB
structure added in the network on the accuracy of the model. The experimental results are
shown in Table 6.

Table 6. Comparison of model accuracy for adding RFB additions at different locations.

Location Params/106 GFlops mAP/%

26 × 26 10.69 4.04 93.96
52 × 52 10.44 4.04 94.35

26 × 26 + 52 × 52 10.77 4.26 95.03

The results in Table 6 show that the richer the detailed information of shallow fea-
tures in two different locations, the higher the accuracy improved by RFB structure. The
improved RFB structure is added in front of the two input feature maps of PANet due to its
performance.

4.4.2. Experiments on the Detection Performance of Different Detection Networks on
SSDD Dataset

In order to verify the detection performance of the improved model for ship targets,
Faster-CNN, SSD, YOLOv3 algorithm, YOLOv4 algorithm, MobileNet-YOLOv4-LITE
algorithm, and YOLOv4-LITE-MR are compared in the same hardware and software
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environment. The detection performance of the proposed network models is evaluated by
comparing different evaluation metrics, including mAP, detection speed FPS, and model
size. The experimental results are shown in Table 7.

Table 7. Comparison of performance of different models.

Model Input mAP/% Precision/% Recall/% FPS Model Size/MB

Faster-CNN 416 × 416 74.98 50.98 84.89 18.66 108.12
SSD 300 × 300 85.17 93.73 43.86 83.32 90.60

YOLOv3 416 × 416 93.58 92.99 92.67 46.08 234.98
YOLOv4 416 × 416 94.59 94.88 93.43 38.57 244.30

MobileNet-YOLOv4-LITE 416 × 416 93.32 91.23 92.67 59.88 46.45
YOLOv4-LITE-MR 416 × 416 95.03 94.04 92.56 47.16 49.34

As can be seen from Table 7, compared with the MobileNet-YOLOv4-LITE algorithm,
the YOLOv4-LITE-MR algorithm improves the mAP and accuracy of the model by 2.29%
and 2.91%, respectively, and the improvement of the model recall is smaller. Compared
with the YOLOv4 model, the map of the YOLOv4-LITE-MR model increased by 0.44%. The
final improved model has a significant improvement in the above indexes, and has a great
improvement in the model size and FPS, Compared to the YOLOv4 network model, the
size is reduced by 197.96 M, and the FPS is increased by 22.27%. The above comparison
results indicate that the proposed YOLOv4-LITE-MR algorithm is more suitable for ship
detection tasks on the SSDD dataset.

4.4.3. Experiments on the Detection Effect of Sliding Window Chunking Method in the
Whole SAR Image

In order to verify the effectiveness of the improved algorithm and the sliding window
chunking method for ship detection on the whole SAR image, the GF-3 image of the
Malacca Strait region was selected for the experiment. The detection results are shown in
Figure 10.
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Figure 10. Sliding window chunking method effect schematic.

Different NMS strategies correspond to different inhibitory effects on ship target frame
selection. Through comparative experiments, it is found that the loss of CIoU and the
inhibition effect of NMS are the best, which mainly benefits from the fact that the loss
function of CIoU fully considers the distance between the prediction frame of the central
point and the entire frame, and introduces the aspect ratio of the anchor frame so that the
prediction frame will be more in line with the actual frame. The experimental results are
shown in Figure 11.
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Figures 12–14 show the detection results of data1, data2, and data3 SAR images using
MobileNet-YOLOv4-LITE and YOLOv4-LITE-MR, respectively. As can be seen from the
enlarged part in Figures 12–14, the improved network reduces the generation of false alarm
targets. At the same time, it shows that the multi-scale ship target detection has a good
detection effect, the detection effect of near-shore ships has also been improved, and it has
a better ability to distinguish ships and side lobes.
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Figures 12–14 and Table 8 respectively show the comparison of YOLOv4-LITE-MR
and MobileNet-YOLOv4-LITE and the detection accuracy combined with AIS data. The
results show that the method proposed in this paper has advantages in detection accuracy
and detection effect for ship detection in the whole SAR image. For data1, the accuracy and
FOM reached 92.68% and 0.835, respectively, increased by 10.91% and 0.078, respectively;
for data2, 88.04% and 0.757, 14.13% and 0.084 respectively; and for data3, 86.24% and 0.839,
8.26% and 0.214 respectively. To some extent, it solves the problems of large-scale SAR
image input, a large number of calculations, and many false alarm targets in ship target
detection. It can achieve good detection performance in complex scenes, such as high sea
conditions, large ship density, and serious sidelobe phenomenon., effectively improving
the detection effect of small target ships and inhibiting the repeated frame selection of ship
targets.
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Table 8. Comparison of detection accuracy of whole SAR images.

Data Model Total
Number

Correct
Detection

Missing
Target

False Alarm
Target Accuracy/% FOM

data1
YOLOv4-LITE-MR 82 76 6 9 92.68 0.835

MobileNet-YOLOv4-LITE 82 64 18 12 81.71 0.681

data2
YOLOv4-LITE-MR 92 81 8 15 88.04 0.757

MobileNet-YOLOv4-LITE 92 68 24 9 73.91 0.673

data3
YOLOv4-LITE-MR 109 94 15 13 86.24 0.839

MobileNet-YOLOv4-LITE 109 85 24 27 77.98 0.625

As a lightweight network for real-time ship target detection on board, the proposed im-
proved model is better than YOLOv4 in terms of detection speed and accuracy. Compared
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to MobileNet-YOLOv4-LITE, it brings 2.29% and 2.91% improvement in the model’s mean
accuracy (mAP) and accuracy, with only a 2.89M increase in model size. It can balance the
detection accuracy and detection speed of the network. However, during the experiments,
it was found that there is a large area of sea area without ship targets in the sub-blocks of
the SAR image of the actual scene acquired by the sliding window method. Moreover, if
the target detection is also performed for these scenes, many computational resources will
be wasted, and the detection speed will be reduced. It is believed that solving the above
problem can significantly improve the detection speed of the actual scene SAR images and
meet the demand of real-time ship target detection.

5. Conclusions

Existing SAR ship detection methods can not meet real-time satellite detection, while
limited hardware resources require ship detection algorithms with lightweight and high
accuracy. Based on the lightweight network, improvements are made based on the YOLOv4-
LITE model. The MobileNetv2 network is used as the backbone feature extraction network.
The deep separable convolution is replaced to reduce the computational overhead during
network training and ensure the lightweight characteristic of the network. By adding
and improving the RFB module, which can strengthen the deep features learned by the
lightweight CNN model, the feature fusion effect of the model and the detection accuracy
of small-scale ship targets are enhanced. The sliding window block method is designed
to solve the input problem of the whole SAR image. The SAR image experiments show
that the designed sliding window block method can detect small-scale ship targets and
reduce the generation of false alarm targets. At the same time, it improves the detection
effect of coastal ships to a certain extent. Compared with other mainstream algorithms, the
improved algorithm achieves higher detection accuracy and realizes the rapid and accurate
detection of ship targets. It provides a reference for building a spaceborne ship detection
network that combines the actual needs, balances the detection accuracy and speed of the
network, and pursues a lightweight network.

While achieving the above results, there are also shortcomings: the detection effect
of ship targets in densely docked near coast areas needs to be improved, the detection of
sea areas without ship targets in the sub-map will cause a waste of computing resources,
and the size of the model needs to be further compressed. In future work, we will expand
the research work in this area and optimize the detection method by using semantic
segmentation and network pruning methods.
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