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Abstract: Ground-Penetrating Radar (GPR) is a popular non-destructive technique for evaluating
RC bridge elements as it can identify major subsurface defects within a short span of time. The data
interpretation of the GPR profiles based on existing amplitude-based approaches is not completely
reliable when compared to the actual condition of concrete with destructive measures. An alternative
image-based analysis considers GPR as an imaging tool wherein an experienced analyst marks attenu-
ated areas and generates deterioration maps with greater accuracy. However, this approach is prone
to human errors and is highly subjective. The proposed model aims to improve it through automated
detection of hyperbolas in GPR profiles and classification based on mathematical modeling. Firstly,
GPR profiles are pre-processed, and hyperbolic reflections were detected in them based on a trained
classifier using the Viola–Jones Algorithm. The false positives are eliminated, and missing regions
are identified automatically across the top/bottom layer of reinforcement based on user-interactive
regional comparison and statistical analysis. Subsequently, entropy, a textural factor, is evaluated
to differentiate the detected regions closely equivalent to the human visual system. These detected
regions are finally clustered based on entropy values using the K-means algorithm and a deterioration
map is generated which is robust, reliable, and corresponds to the in situ state of concrete. A case
study of a parking lot demonstrated good correspondence of deterioration maps generated by the
developed model when compared with both amplitude- and image-based analysis. These maps can
facilitate structural inspectors to locally identify deteriorated zones within structural elements that
require immediate attention for repair and rehabilitation.

Keywords: Ground-Penetrating Radar (GPR); non-destructive evaluation (NDE); bridge inspection;
Viola–Jones Algorithm; entropy; K-means clustering; deterioration map; automated analysis

1. Introduction

Reliable condition assessment of reinforced concrete elements of a bridge or any
structure is crucial for its regular repair, rehabilitation, and overall sustainability. The oldest
yet most widely popular approach for inspecting bridge elements involves an experienced
analyst visually identifying and rating the surface defects based on their condition [1].
However, such a visual inspection method does not detect subsurface defects such as
corrosion, voids, and delamination. Therefore, the use of non-destructive techniques
(NDTs) is being increasingly adopted by transportation authorities for rigorous health
evaluation of a bridge element. Although there are various NDTs such as impact echo,
infrared thermography (IR), Ground-Penetrating Radar (GPR), Ultrasonic Surface Waves
(USW) among others, GPR is the most recommended and highest-rated NDT among all
as it can identify major subsurface defects (delamination, corrosion, vertical cracks, and
concrete degradation) within a short span of time [2].

In essence, the GPR technique involves emitting electromagnetic radar signals through
scanning a bridge element and analyzing the recorded signals [3]. The data interpretation
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of these recorded signals or GPR profiles is typically based on analyzing amplitude values
at various medium interfaces such as asphalt–concrete or concrete–rebars to determine
rebar corrosion, cover depth, and other factors. ASTM D6087 has a standardized procedure
to evaluate asphalt-covered bridge decks based on such amplitude values [4]. However, the
deterioration maps developed based on such amplitude values are not totally reliable when
compared with the actual condition of concrete using destructive techniques such as core
sampling [5]. To overcome the limitations of the amplitude-based analysis, a visual image-
based analysis (IBA) method was proposed by Tarussov et al., 2013 [5]. In this approach, an
experienced analyst manually marks the attenuated areas in GPR profiles while considering
various anomalies to generate deterioration maps with a fair degree of accuracy.

The IBA method, however, suffers from the following limitations: it is subjective, time-
consuming, and prone to human error as the analysis is performed manually [6]. This study
aims to reduce the subjectivity of this method through automation and scientific analysis
of GPR profiles. It is achieved through these steps: (a) firstly, the hyperbolic variations are
detected in GPR profiles using the Viola–Jones Algorithm and statistical analysis [7], (b) a
texture-based factor is evaluated for the detected objects, and (c) a K-means algorithm is
utilized to cluster the evaluated factors into three or four regions corresponding to concrete
deterioration levels ranging from good to bad. The condition assessment maps generated
based on this developed model are robust, reliable, and correspond to the real in situ state
of concrete. It would facilitate bridge inspectors in making informed decisions with regard
to repair, rehabilitation, or replacement of bridge elements.

2. Objectives of Research

The overall objective of this study is to develop a model for reliable deterioration
maps based on automated IBA of GPR profiles. The following enumerates a breakdown of
milestones achieved while developing the model:

1. A review of the GPR scanning procedure and its data interpretation methods including
the widely used amplitude-based approach.

2. An overview of IBA, its advantages, and current limitations.
3. A summary of the Viola–Jones Algorithm for hyperbola detections.
4. Develop a new model to generate a deterioration map based on automated detections,

textural factors, and clustering.
5. Comparison of maps generated by the developed model with two existing approaches

using a RC slab case study.

3. Research Background

The first step in assessment using GPR involves scanning the structure such as a bridge
element or a pavement with a mobile or manually driven antenna that emits electromagnetic
(EM) waves. A manual-driven cart is preferred for a detailed survey while a mobile or
airborne survey is opted for reconnaissance. Typically, the scanning is conducted either
along the longitudinal section of the element or in a grid pattern with uniform traverse
spacing to cover the whole element. The traverse spacing between each scan depends
upon the aim of the investigation such as the level of details needed. For example, to
map detailed features of a bridge deck, spacing of 1 to 2 feet is utilized while 3 to 6 feet is
generally used for a reconnaissance or quality-assurance survey [8]. The antenna frequency
for GPR scanning typically varies from 1 to 5 GHz and is decided based on the resolution
needed for the survey and the penetration depth. Generally, a higher antenna frequency
provides higher resolution power but lower penetration depth and vice versa [9]. Several
other parameters for the GPR survey such as the number of samples per scan, transmit
rate, number of scans per unit of distance, and dielectric constant are pre-set based on the
investigation needed [8].

The EM signals emitted from the GPR frequency antenna are reflected at various
material interfaces and are recorded by the GPR equipment. The output signal at a par-
ticular point, called the A-scan, is proportional to its amplitude. When these A-scans are
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stacked together along the length of the survey scan, it represents a greyscale image called a
B-Scan [10]. Figure 1 shows a typical B-Scan of a concrete bridge deck with asphalt overlay
with distinct reflections at various interfaces: air/asphalt, asphalt/concrete, and concrete–
rebar. The reflections at the concrete–rebar interface form a characteristic hyperbolic shape
and its peak represents the embedded rebar location in concrete.
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Figure 1. A GPR B-Scan of a bridge deck with asphalt overlay showing various interfaces and
hyperbolic reflections from rebars [10].

3.1. GPR Data Analysis

Several methods have been proposed in the literature to interpret data obtained from
GPR scans. The earliest approach identified irregular signatures in profiles as concrete
deterioration typically present in a depressed shape [11]. Subsequently, individual wave-
forms at the concrete/asphalt level were analyzed in several bridge decks and a rating
system was developed to classify the deck condition [12,13]. Numerous researchers ana-
lyzed attenuation signals based on amplitude values and compared their effectiveness in
measuring concrete deterioration [14–18]. To improve results of amplitude-based analysis,
the following advances were proposed: (a) analyzed signal depth–amplitude effects [19],
(b) measured change in amplitude values over time [10], and (c) correlated original wave-
forms with semi-simulated waveforms at deterioration state [20]. An experimental study
was conducted to assess the reliability of GPR in detecting delamination [21]. Some recent
methods for complete data assessment can be summarized as follows: (a) analyzed ampli-
tude values with synthetic aperture focusing technique (SAFT) and 3D interpolation [22],
(b) compared A-scans at different locations [23], (c) utilized step-frequency GPR antenna ar-
rays [24], (d) applied frequency–wavenumber (F–K) migration and several other algorithms
to detect major defects (delamination, air voids and moisture) [25], (e) statistically ana-
lyzed concrete relative permittivity over multiple years [26], (f) evaluated three parameters
(direct-coupling, amplitude, wave velocity, and signal attenuation) at different depths [27],
and (g) used dual-polarization antenna for scanning and developed SAFT-based algorithms
for 3D imaging of concrete structures to detect objects, defects, steel bar debonding, and
concrete delamination [28].

The commonly adopted approach by transportation authorities to analyze GPR data
is based on ASTM D6087 [4]. After obtaining GPR profiles from scanning a bridge element
required to be inspected, this method involves picking reflection amplitude values in
regular intervals across B-scans at either of the two locations: (a) concrete–rebar interface,
i.e., the peak of hyperbolas or (b) relative amplitudes from the bridge deck bottom relative
to the bridge deck surface. Subsequently, a condition map is generated for the complete
bridge element by mapping these amplitude values. Higher values of amplitudes in this
map indicate locations of good conditions of concrete while lower values indicate locations
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of moderate-to-bad conditions of the concrete. Bridge inspectors can use such a map to
identify deteriorated areas for further inspection and repairs.

3.2. Visual Image-Based Analysis

The methods based on numerical amplitude values have many limitations. Firstly, by
considering only amplitude values in a B-scan, they ignore the majority of the information
contained in a radar profile. Secondly, they can yield erroneous results due to factors affect-
ing amplitudes such as depth, surface anomalies, reinforcing bar spacing/configuration,
and others. Thirdly, the condition map generated is noisy and not completely reliable
when compared with the actual condition of concrete with destructive measures such as
core sampling [5]. To overcome these shortcomings, an alternative approach proposed by
Tarussov et al., 2013 [5] considers GPR B-scans as an imaging tool rather than a numeral
measuring tool. In this visual-IBA, an experienced analyst marks attenuated areas in a
B-scan manually while considering several factors such as reflection amplitudes at the
concrete/rebar and bottom of slab levels, surface and structural anomalies, variations
in slab thickness, reinforcement bar spacing, etc. For example, Figure 2 shows a typical
GPR profile wherein moderate zones of deterioration are marked in yellow color by the
analyst on top of the profile while severe zones are marked in red. The deterioration maps
generated based on this approach have the following benefits: (a) it maps exact limits for
zones of corrosion; (b) it reduces noise in results through visual filtering; (c) it accounts for
depth-correction; (d) it considers various surface and structural anomalies as stated before;
and (e) it shows good correspondence when compared with ground-truth results.
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Figure 2. Attenuated areas marked in a GPR profile based on Image-Based Analysis [5].

The IBA method was correlated with extracted cores (destructive technique), chain-
drag and chloride profiles on sets of concrete bridge decks scanned using GPR along a
section of the I-290 and I-294 Tollways in Chicago, IL, USA. The corrosion maps gener-
ated during this investigation showed better correspondence with the actual concrete
condition [5]. Abouhamad et al., 2017 [29] proposed a systematic framework to develop
corrosion maps based on visual-IBA method by Tarussov et al., 2013 [5]. The developed
IBA framework was validated by scanning two bridge decks in Quebec and comparing
the resultant maps with amplitude-based maps, visual inspection, ground-truth cores and
Half-Cell Potential (HCP). Dawood et al., 2020 [30] proposed an integrated approach to
develop deterioration maps which delineates air/water voids in subway tunnels based on
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the GPR-IBA framework [29]. A part of Montreal, Quebec subway tunnel was inspected,
and the map generated by the developed model [30] showed high correlation when com-
pared with laser-based thermal map, visual inspection (camera images), and extracted
cores. Therefore, the visual-IBA method philosophy was adopted in the proposed model
instead of amplitude-based approaches due to better correspondence with the ground truth
condition. However, this method has a few limitations of its own [6]. Primarily, since an
analyst marks the attenuated areas manually, it is prone to human errors. For example,
an analyst could mark a particular area in a B-scan differently each time as moderate or
severe based on his/her optic judgment. Secondly, different analysts could have varied
visual perspectives of what constitute areas in GPR profiles as good, moderate, or bad; and
therefore, it is subjective. Lastly, the method could be time-consuming and tiresome espe-
cially in cases of bridge decks with large spans. This paper overcomes the limitations of the
visual-IBA method through automated detections of hyperbolas and classification based
on mathematical modeling. A condition map generated using the developed model would
yield a consistent (same) result for a given set of GPR data devoid of any human errors.

The premier step, detection of hyperbolas in GPR profiles, has been the focus of vari-
ous researchers in analyzing GPR data. These methods utilize a variety and combination of
image processing techniques such as edge detection, thresholding, and template matching.
There are several limitations in employing such techniques; for example, edge detection or
thresholding involves a pre-defined automatic or manual “threshold” which could lead to
noise and non-uniform results across a variety of GPR profiles. Template matching causes
missing or false detections of hyperbolas and requires a large database to incorporate the di-
versity of the shape of hyperbolas. Initial techniques of detecting hyperbola involved direct
curve fitting such as Hough transform [31,32], wavelets [33,34], radon transforms [35], and
hyperbolic echo characteristics [36]. A smart algorithm identified ill-shaped hyperbolas as
it accounted for misshapenness by considering a buffer zone [37]. Some methods have used
neural networks [38–41], while a few have adopted pattern-recognition algorithms [42–44].
Peak detection was also achieved by fuzzy clustering [45] and a multi-objective genetic
algorithm [46]. Two holistic methods generated deterioration maps through automated
rebar picking of amplitude values [47,48]. Some of the latest approaches to distinguishing
hyperbolic regions from the background have been developed based on following algo-
rithms: (a) a novel column-connection clustering (C3) algorithm [49], (b) a new drop-flow
algorithm which mimics movement of a raindrop [50], (c) a trained convolutional neural
network (CNN) [51], (d) a novel Open-Scan Clustering Algorithm (OSCA) which identifies
downward-opening signatures [52], and (e) a double cluster-seeking estimate (DCSE) algo-
rithm which improved the OSCA along with faster R-CNN [53]. The majority of the recent
methods utilize machine learning (ML) and deep-learning algorithms such as Convolu-
tional Support Vector Machine (CSVM) [54], Multi-Layer Perceptron [55], and enhanced
mask R-CNN [56]. However, these approaches have their own limitations especially related
to precision and large data set reliance, as discussed earlier. For efficient detections, the
proposed model adopted a two-step approach in detecting hyperbolic regions for speed and
accuracy. Firstly, a popular ML algorithm called Viola–Jones speedily detected all possible
hyperbolic regions in GPR profiles. Secondly, the top layer was identified based on regional
comparison, and subsequently eliminated false detections and filled missing gaps based on
statistical analysis for automated accurate detections [7].

4. Methodology

A flowchart that depicts the complete methodology of the developed model is shown
in Figure 3. The first step involves scanning the element to be inspected typically using
commercially available GPR equipment from manufacturers such as Geophysical Survey
Systems, Inc. (GSSI®, Nashua, NH, USA), Ingegneria Dei Sistemi (IDS) Georadar (Pisa,
Italy), MALÅ GPR (Malå, Sweden), among others. As discussed previously (in Section 3),
the parameters of the survey including traverse spacing, frequency of the antenna, and
number of samples per scan must be predetermined and utilized for scanning [8]. The
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presence of large air or water gaps has a significant impact on penetration depth and
transmission velocity of the electromagnetic signals and must be considered [57]. The
speed with which the GPR antenna is dragged must be optimal based on sweep rate and
the scan spacing to avoid unreasonable blurred scans. If the scan is being performed
only along one direction, it should be perpendicular to the location of rebars present
along the critical axis. For example, in the case of a bridge deck, it should be along the
longitudinal direction parallel to the centerline of the deck such that the antenna crosses the
reinforcing layer at an angle as close as possible to 90◦ [4]. After the scanning is complete,
the GPR profiles, obtained as B-scans, would be pre-processed manually for better detection
of hyperbolas.
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4.1. Pre-Process GPR Profiles

The pre-processing steps on raw GPR B-scans may need to be performed in the
proprietary software of the GPR equipment used for scanning such as RADAN® 7 of
GSSI® (Nashua, NH, USA) as described by A. Rahman and Zayed [7]. The algorithm
used for hyperbola detections, Viola–Jones, is sensitive to the aspect ratio, i.e., the ratio
of the width to the height of boxes containing detected regions. Therefore, the first step
involves either horizontally stacking or stretching all the GPR profiles of the element
to be inspected, if needed, to maintain an aspect ratio closer to the average calculated
value of the trained classifier of 1:1.68. It will significantly enhance the detection rate of
hyperbolic regions. This involves the following steps: (a) calculate the aspect ratio of the
raw B-scans by randomly taking a few samples with the highest frequency of occurrence,
and (b) if required, horizontally stack, or stretch profiles by an integer which makes it
closer to classifier aspect ratio. For example, Figure 4 shows a sample GPR profile of a
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large bridge deck whose hyperbolas are stacked very closely to each other and must be
horizontally stretched.
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The second consecutive step of pre-processing is to increase “display” or “range”
gain, if required, to improve the contrast of the GPR B-scans. It would be needed either
because of horizontal stretching in the previous step and/or if the contrast were inherently
too low in the raw GPR data. The gain applied is optimal yet subjective; however, it is
easier to adjust visually by an analyst manually. It should neither be too low nor too
high in order to avoid the poor performance of the detection algorithm. The final step is
background removal of signals in the B-scans which reduces the high contrast of reflections
from asphalt/concrete and/or concrete/air level. This would also improve the contrast of
hyperbolic regions in the B-scans. Figure 5 shows the result of a pre-processed sub-section
of the sample GPR profile in Figure 4. Firstly, it was horizontally stretched by a factor
of “8” to maintain an aspect ratio of 1:1.49; secondly, the display gain was set to “20” in
RADAN®; and lastly, the background was removed to distinctly identify the top layer in
assisting detections. It is extremely crucial to apply the same pre-processing steps for each
of the B-scans of the scanning element to avoid generating unreliable maps. Although these
steps could be automated by exporting raw profiles and executing with image processing
techniques using a tool such as MATLAB® R2019b the authors of this paper found that for
given cases, pre-processing performed using the proprietary software yielded better results
in comparison. The application time of these steps is typically just a few minutes, but
they would vastly reduce the limitation of using a template-matching approach through
improved detection of hyperbolas.
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4.2. Hyperbola Detections

After pre-processing the GPR profiles, they are converted into image files (.jpeg,
.tiff, etc.) and further processed in MATLAB® environment. The next step is to apply
a trained custom classifier for hyperbolic detections in GPR profiles as developed by A.
Rahman and Zayed [7]. A brief overview of the Viola–Jones Algorithm along with the data
used for training the classifier is discussed. The algorithm was originally introduced as a
face-detection framework with the ability to rapidly process images with high detection
rates [58]. The complete analysis, development, and application of this algorithm for
face detection has been explained by Viola and Jones, 2004 [58], Wang, 2014 [59], and
Chaudhari et al., 2015 [60]. It initially utilized “Haar-like” features to detect faces but was
later extended to train and detect any object or facial feature using Local Binary Pattern
(LBP) [61] and Histogram of Oriented Gradients (HOG) [62] feature types including “Haar”.
It has the highest precision and recall rate among popular face-detection algorithms [63].
This algorithm was adopted to detect hyperbolic features in GPR profiles [7] because of
following advantages: (a) it is scale-invariant, i.e., it can detect hyperbolas of varying
sizes but with similar aspect ratio, (b) it considers the features to be in a full-view upfront
position typical of hyperbolas in B-scans, and (c) it has high speed and accuracy with low
false-detection rate [64].

The first step is to train the custom classifier using a cascade object detector in
MATLAB®. A set of positive samples (image boxes with hyperbolas present) and negative
samples (image boxes with non-hyperbolas in GPR profiles) need to be provided and
trained through multiple stages. HOG feature type was used as it is suitable to detect
objects without fine-scaled details such as cars and people akin to hyperbolas. During the
training, negative samples are discarded in each stage and positive samples are processed
to the next stage while improving each stage through the boosting technique. Since the
classifier is trained to classify only the hyperbolic regions from the background of a GPR
profile, i.e., a case of binary categorization, the type of boosting algorithm preferred in
literature for this purpose is known as Adaboost [65]. It combines several weak learners
by taking a weighted average of decisions in each stage to form a strong classifier, as
described in detail by Viola and Jones, 2004 [58]. The detected objects can be classified
into the following three categories: (a) true positive: a positive sample identified correctly;
(b) false positive: a negative sample mistakenly identified as positive; and (c) false negative:
a positive sample mistakenly identified as negative. Figure 6 shows a sample GPR profile
with true positives marked in filled yellow boxes while a false negative and a false positive
are marked in a surrounding blue box. Besides the number of stages, two other parameters
need to be specified for cascade training as follows: (a) the false positive rate—the ratio
of total false positives to the summation of all false positives and true negatives; and (b)
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true positive rate—the ratio of total true positives to the summation all false negatives and
true positives.
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The data used for training the classifier were taken from a bridge deck, labeled O2,
which was inspected as part of comprehensive bridge deck deterioration mapping of nine
bridges in the state of Iowa, US [66]. This deck, O2, was specifically chosen as it has
small-corroded zones spread across the bridge deck. It carries national highway #93 and is
located over a small natural stream in Sumner, Iowa. It has a total span of 63 ft with a clear
span length of approximately 60 ft. It has a total width of 48 ft with two-lane roadways
besides two 5-foot sidewalks. It was scanned using GSSI® radar equipment named SIR®

3000 (Nashua, NH, USA) with a 1.5 GHz antenna. A grid pattern was laid out and a total of
24 swabs were taken 2 feet apart each to cover the whole width. The training was performed
in two consecutive stages with the cascade object detector. Firstly, samples were taken only
from one B-scan (first swab): a total of 167 positive samples (hyperbola enclosed boxes)
and negative samples (profile with hyperbola removed) were supplied for training. The
following were the input parameters: number of cascade stages—20; per-stage false alarm
rate—0.5; and per-stage true positive rate—0.995. Subsequently, the obtained classifier
which was trained using one profile was used to detect hyperbolas in all 24 profiles. The
results obtained when compared to the ground-truth number of hyperbolas (manually
counted to be 3843) were as follows: true positives—3400 (88.5%), false positives—14 (0.4%),
and false negatives—443(11.5%) [7]. Finally, all these true positives and false negatives
were supplied again as input for further training of the classifier using the same input
parameters. The resulting custom classifier could be used for detecting hyperbolas in
GPR profile scans of any RC structural or bridge element, assuming the profiles were
pre-processed as described earlier.

While the custom classifier can majorly detect hyperbolas in B-scans, a few false
detections would typically occur in practice. These false positives and false negatives,
as shown in Figure 6 for instance, can be eliminated based on regional comparison and
statistical analysis through automation [7]. The basic assumption is that the reinforcement
bars are stacked in a single or double layer with uniform spacing, generally in the case of
RC bridge elements, slabs, or parking lots. The false positives and false negatives could be
resolved by applying these three principles in sequential order:

1. The detections (true or false) which do not lie across the top layer and bottom layer (if
present) are considered as false positives and eliminated due to their regional position
in the B-Scan. The developed code [7] automatically identifies the top layer, but in
some cases it yields erroneous results due to complex hyperbolic signatures and/or
heavily disoriented top layer in GPR profiles. Therefore, the proposed model utilizes
a user-interactive approach to prompt the user to verify if the necessary layer has
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been identified correctly. In case of incorrect detection, the user is prompted again
to roughly mark the top and bottom limit of the top layer present in the GPR profile.
Identification of top layer is extremely crucial in generating reliable maps, and thus, a
user-interactive approach has been adopted in this step.

2. The actual false positives among overlapping detections are identified and subse-
quently eliminated along the top/bottom layers by comparing them with the average
size and location of neighboring non-overlapping true positives automatically.

3. The missing gaps present across the top/bottom layers could be either of the following:
(a) false negatives, (b) zones with highly distorted hyperbolas or (c) zones with
no hyperbolas; probably undetected due to deterioration. These are bounded by
rectangular boxes automatically to align with the neighboring true positive detections.
Figure 7 shows a cut-out from a GPR profile with three missing detections or gaps
after applying a custom classifier. Figure 8 shows the same sample after filling missing
gaps in rectangular boxes across both layers. The detections of the GPR profiles are
complete and ready for the next step of evaluating textural factors after bounding
the top layer and bottom layer (if present) with rectangular boxes composing of true
positive detections and missing gaps which include false negatives.
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4.3. Deterioration Mapping

After detecting regions in the top (and bottom) layer, a numeric value needs to be
assigned to each of these regions or boxes which could correspond to its deterioration level.
As discussed earlier for visual-IBA [5], an analyst well-versed in reading GPR profiles
marks attenuated areas using his perception and visual judgment. An equivalent factor
to distinguish the features in a GPR profile would be texture. Although the human visual
system is remarkable in its ability to identify and segment different textures, automating it
using computer vision is not easy [67]. Texture refers to both the tactile nature, i.e., tangible
“feel” of a surface, and optical nature, i.e., shape or contents in an image [68]. Tamura et al.,
1978 [69] refers to six mathematical measures which could relate textural features to visual
perception: coarseness, contrast, directionality, line-likeness, regularity, and roughness.
In image processing, the texture provides information about the spatial arrangement of
intensities in a grey-scale image [70]. A textural factor has been preferred in this model
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for analyzing detected regions as it can distinguish nuances in patterns of GPR images
whereas traditional intensity-based thresholding techniques would be ineffective.

While there are various classifications for analyzing textures, the two main approaches
are structural and statistical [70]. A structural approach is utilized for assessing fairly
regular or repeated textures such as a brick wall. A statistical approach is preferred
for analyzing GPR profiles as these are based on quantitative measurement of intensity
arrangements within a region. Entropy, one such statistical factor, has been used in this
model as it is a measure of variability or randomness of an image [71]. Essentially, two
similar detected regions would have closer entropy values while two dissimilar regions
would have a large difference in their entropy values. Corollary, entropy can distinguish
areas of deterioration from good to bad based on its values. Higher values of entropy are
indicative of relatively better condition of concrete and vice versa. Entropy has no units,
and it can be evaluated mathematically directly from the gray level pixels of a region or
image as follows [71]: If z is a random variable representing intensity, let p(zi) refer to its
respective histogram; wherein, i = 0, 1, 2, 3, . . . , L−1; L is the number of distinct intensity
levels (for example, 256 levels in a gray-scale 8-bit image).

Entropy = −
L−1

∑
i =0

p(zi) log2 p(zi) (1)

Entropy is calculated for all the regions detected across a single layer (typically, at the
top reinforcement level) for all GPR profiles of the structural element. Subsequently, these
values are graded into zones using data-clustering techniques (unsupervised learning).
Data classification or supervised learning is not preferred as each set of scanned GPR pro-
files has unique variations in its data or entropy values corresponding to what constitutes a
good or bad region. A broadly agreed framework to classify data-clustering approaches are
as follows: (a) hierarchical clustering wherein data is divided through multiple sequences,
ranging from a single cluster comprising all individuals to n clusters comprising each indi-
vidual, and (b) partitional clustering wherein data are divided into prespecified zones in a
single step with no hierarchical structure [72]. The number of zones or clusters is usually
predetermined in generating deteriorating maps, and therefore a partitional clustering
approach has been adopted. K-means is a widely popular data-partitioning algorithm still
in use since its development 50 years ago [73]. The entropy values of detected regions are
clustered using this algorithm as the maps generated using K-means show good correspon-
dence with existing approaches. The application of this algorithm is demonstrated in the
next section with the help of a case study. A set of data can be partitioned using K-means
as follows [73]:

If X = {xi}, i = 1, 2, . . . , n; wherein, X is a set of n data points to be clustered into a
set of K-partitions, C = {ck, k = 1, 2, . . . , K}. C is a set wherein ck is a set of data points of
k-th cluster and let µk be its mean. K-means algorithm partitions the data set such that the
squared error between the points in each cluster and its mean are minimized. The squared
error between ck and µk is calculated as:

J(ck) = ∑
xiεck

||xi − uk|| (2)

Thus, K-means aims to minimize the sum of this squared error over all K-clusters.

J(C) =
K

∑
k=1

∑
xiεck

||xi − uk||2 (3)

The iterative steps of this algorithm can be summarized as [74]:

1. Initially, assign K-partitions randomly or based on some prior information. The
centroid means matrix can be written as: M = {µk, k = 1, 2, . . . , K};
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2. Each data point in the data set X is assigned to its nearest clusters cω such that: xiε cω ;
||xi − uω || < ||xi − uk||; i = 1, 2, . . . , n; i 6= ω; k = 1, 2, . . . , K;

3. The centroid matrix M is recalculated based on the current partition set, C;
4. Repeat steps 2–3 until no change is observed in each cluster.

All the entropy values of detected regions in GPR profiles of a scanned element
are clustered with a pre-set number of clusters or zones, typically three or four zones
for deterioration mapping. As entropy values are directly correlated to concrete level
deterioration, zones with higher values of entropy would correspond to better conditions
of concrete and vice versa. A color code is used in generating the map to correspond each
detected region with the level of deterioration. The color convention for three zones with
respect to concrete condition levels are as follows: green color is good (detected regions
zoned with highest values of entropies using K-means), the yellow color is moderate, and
the red color is bad (detected regions zoned with lowest values of entropies). If four color
zones are used, the following is the convention used in this model: blue is very good,
green is good, yellow is moderate, and red is bad. After evaluating the clustered zone of
each detection, the first step for mapping is to develop a deterioration scale for each profile.
This scale is showcased in Figure 9 using a sample GPR profile. The profile is marked
with detected regions in red boxes with evaluated entropy values written, respectively,
within them. Each of these boxes is assigned a clustered zone and is represented using a
colored deterioration scale as shown on top of the profile. It has only one green and one
red region while all others are yellow. If the profile is looked at individually, the yellow
zones could be marked as green by an analyst based on visual-image analysis. However, it
has been zoned accurately as this method marks these regions not based on entropy values
of this individual profile but based on all GPR profiles pertinent to the obtained sample
profile. Moreover, the results would be consistently robust as the zoning assignment is
not manual. Thus, cases prone to human errors, especially cases with large profiles, are
avoided using this developed model. Finally, the deterioration scale developed for each
individual profile is staked together for all profiles of the scanned element being inspected
to generate a deterioration map. The application of this model with deteriorating mapping
and its comparison is discussed in the following section using a case study.
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5. Case Study
5.1. Data Collection

The implementation of the developed model is demonstrated by a small case study
conducted on a concrete slab of a parking lot located in Côte-des-Neiges, Montreal. The
scanning was performed across both directions of the slab surface using a hand-held GPR
device from GSSI® with an antenna frequency of 1.6 GHz, depth range of 55 cm, an assigned
dielectric constant of 6.0 (concrete), and other factors to ensure proper collection of data.
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The scanned dimensions of the slab were 3.5 m × 2.9 m (approximately). Figure 10 shows
the parking lot with the scanning grid pattern shown in white chalk each 20 cm apart
(traverse spacing). The figure also indicates the sequence of the 31 swabs taken across
both directions: initially, 14 scans were taken along X-direction, as indicated, to cover the
longitudinal direction (3.5 m) of the slab, and subsequently, 17 scans were taken along
Y-direction to cover the transverse direction (2.9 m).
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5.2. Data Processing

The B-scans obtained from the scans were pre-processed in RADAN® software: only
the background subtraction was performed as the original scans had aspect ratios relatively
closer (1:1.44) to the trained classifier and the range gain was not needed. These scans
were subsequently converted into image files and processed in a MATLAB® environment.
The hyperbola detections were identified using the cascade detector and the remaining
missing detections were enclosed in boxes across the top layer of reinforcement while
eliminating false detections based on statistical analysis. After evaluating entropy values
of each detected region, a deterioration scale was developed for each scan. Figure 9
mentioned earlier shows the deterioration scale of scan number 6 along the Y-direction for
theww cluster zones (green, yellow, red). Finally, separate deterioration maps were created
across both X and Y directions while clustering with two color-coded conventions (three
and four zones). A comparison of generated maps was made with maps of two existing
approaches. The first approach utilized the commonly adopted numerical amplitude
method described in ASTM D6087 [4] while the second approach was visual-IBA. Although
the amplitude-based approaches are not completely reliable, it can be inferred that there is
good correspondence of general concrete condition zones when compared with visual-IBA
especially in cases of relatively ideal GPR profiles with no anomalies [5], [29]. The maps
based on developed model would have much better correspondence with maps based on
visual-IBA as it aims to automate the latter method. Additionally, extreme care was taken
by the analyst in marking attenuated areas based on visual-IBA to avoid human errors as
much as possible.

5.3. Results and Their Discussion

The deterioration maps generated along the X and Y direction are represented graphi-
cally with a figure and the comparison between varying methods along each direction is
discussed separately.
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X-direction: Figure 11 shows the four deterioration maps of swabs 1–14 generated
along the X-direction using the following methods: (a) amplitude-based method, (b) visual-
IBA, (c) developed model with three clusters (green, yellow, red), and (d) developed model
with four clusters (blue, green, yellow, red). Table 1 shows the range of entropy values for
each zone in maps (c) and (d) and it varies from 7.21 to 4.27 in both. When four cluster
zones are utilized, the added blue zone (very good) and green (good) zone majorly occupy
the green zone (good) of the three-cluster-based map, while the moderate and severely
deteriorated zones remained relatively the same. Table 2 shows a quantitative comparison,
i.e., the percentages of green, yellow, and red zones were evaluated for maps based on
amplitude, visual-IBA and developed model (three zones only) as these three maps indicate
equal number of concrete condition zones (good, moderate, and bad). Firstly, there is
some resemblance between the map based on amplitude (map-a) and developed model
(map-c) as the upper region is either severely or moderately corroded in both. However,
map-c shows that the slab is heavily corroded unlike map-a as the bottom of map-c is also
moderately corroded. Moreover, map-c has a total of 84.3% area covered in yellow and
red zones when compared to 40.7% in map-a. Map-a estimates (59.6%) that the concrete
condition of the slab is four times as good as map-c (15.7%). Secondly, the map based
on visual-IBA (map-b) shows greater resemblance to map-c as all the corrosion zones’
distributions are visually similar and that the slab is heavily corroded in the middle region.
Additionally, total percentage of corroded concrete (yellow and red) in map-b (77.9%) is
close to map-c (84.3%). However, map-b (33.4%) estimates that the slab is slightly more
corroded than map-c (29.6%).

Table 1. Range of entropy values in generated deterioration maps.

Map-Direction Zone
Color (Entropy Values)

Blue Green Yellow Red

X-direction
3 Clusters - 7.21–6.28 6.28–5.44 5.44–4.27
4 Clusters 7.21–6.34 6.34–5.76 5.76–5.16 5.16–4.27

Y-direction
3 Clusters - 20.86–11.28 11.28–5.94 5.94–2.22
4 Clusters 20.86–14.49 14.49–9.92 9.92–5.56 5.56–2.22

Table 2. Quantitative comparison of maps based on color distribution (concrete condition).

Map-Direction Type of Analysis
Percentage of Color Distribution in Maps

Green (Good) Yellow
(Moderate) Red (Bad)

X-direction
(a) Amplitude-based 59.6 25.7 14.7

(b) Visual-IBA 22.1 44.5 33.4
(c) Developed

model (3 clusters) 15.7 54.7 29.6

Y-direction
(a) Amplitude-based 22.6 41.7 35.7

(b) Visual-IBA 46.1 15.1 38.7
(c) Developed

model (3 clusters) 18.2 35.9 45.9

Y-direction: Figure 12 shows the four deterioration maps of swabs 15–31 generated
along the Y-direction using the aforementioned methods. Table 1 also delineates the range
of entropy values for each zone in map-c and map-d varying from 20.86 to 2.22 in both
directions. The spread of entropy values is higher along the Y-direction when compared
to X; however, these ranges cannot be standardized for each zone as the survey data are
unique for any scanned element. There is some visual resemblance between map-c and
map-a as the middle region of the slab is heavily corroded along with moderate-to-severe
corrosion on the right-side of both maps. Furthermore, in map-c (81.3%) the percentage of
total corroded concrete (yellow and red) is closer to that of map-a (77.4%). While there is
greater visual resemblance of map-b with map-c in the center and right side of the slab, the
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left side of map-c displayed some regions of moderate corrosion in the slab unlike map-b.
The analyst generating map-b could not identify this disparity as the profiles are looked at
individually, unlike in the developed model, which clusters all profiles together and thus is
able to distinguish zones more appropriately. Map-c (81.3%) shows that the slab is relatively
more corroded than map-b (53.6%). Furthermore, map-b (46.1%) estimates that the slab
is in approximately 2.5 times better (good) condition than map-c (18.2%). If we compare
results along both directions, it can be inferred that the slab is heavily corroded (~80%) and
that map-c is able to estimate the condition of slab more accurately along both directions.
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In brief, greater correlation of maps based on an automated approach with visual-IBA
method indicates that the developed model potentially identifies the zones of deterioration
accurately as the visual-IBA method itself has been proved to be closer to the ground-
truth condition [5,29,30]. Moreover, the results are easily reproducible and do not vary
due to scientific analysis. However, for superior validation of the developed model, the
maps generated must be compared with lab tests and in situ destructive techniques in
the field. Finally, identification of deteriorated zones using the developed model can help
structural inspectors to locally identify deteriorated zones within a structural element that
require immediate attention for repair and rehabilitation. Such maps could also be useful
in modelling a deteriorated structure to assess the remaining capacity of the structure [75].
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6. Conclusions and Future Work

A model has been developed to generate reliable deterioration maps using GPR B-
scans for RC bridge and structural elements. The proposed method is superior to existing
amplitude-based methods and aims to reduce the subjectivity of visual-IBA through au-
tomation. The following inferences can be drawn based on the developed methodology
and demonstrated case study:

1. Pre-processing of GPR profiles is necessary to improve the detection rate of hyperbolas,
especially maintaining an aspect ratio closer to the trained classifier.

2. Most hyperbolas are detected in B-scans based on a classifier trained on a complete real
bridge-deck data using Viola–Jones Algorithm. The remaining missing hyperbolas
and regions are enclosed in boxes across the top/bottom layer of reinforcement
automatically with a user-interactive approach based on regional comparison and
statistical analysis.

3. A statistical textural factor, entropy, has been evaluated to differentiate detected
regions closely equivalent to the human visual system.

4. The entropy values are clustered into three or four zones using K-means clustering. A
deterioration scale is developed for all B-scans by assigning a color code to each of
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the detected regions relative to the zone in which they were clustered. These scales
are subsequently stacked together to generate a deterioration map.

5. A comparison of the deterioration map of a parking lot case study shows considerable
correspondence of the developed model with existing approaches, especially with the
visual image-based analysis.

The developed model has few limitations of its own which the authors wish to address
as part of the ongoing research project. Firstly, the model does not consider various
anomalies which include (a) structural anomalies such as presence of a structural member
across the top layer such as a beam/column, voids (air or water), variation in reinforcement
bar spacing, staggered rebars, chloride saturation; and (b) surface anomalies such as
pavement debonding, expansion joints, concrete cut-and-repair. Secondly, validation of
deterioration zones must be performed with in situ destructive techniques on existing
structures and in a controlled laboratory environment. Lastly, the detection rate may
not be accurate in GPR profiles with very ill-shaped hyperbolas in complex media. The
authors aim to address these drawbacks by improving the developed model in the future
by incorporating the following: (a) the anomalies would be automatically detected and
considered while developing the deterioration scale, (b) more accurate validation would
be achieved by testing samples with varying degrees of deterioration in a laboratory and
through in situ tests such as visual inspection, HCP or core-sampling (destructive tests),
and (c) improving the hyperbola detection model. However, the model in its current state
does generate reliable maps for most elements scanned, with GPR having no anomalies
across the inspected layer (top/bottom) of reinforcement. The ongoing work including
the developed model seeks to develop a robust tool for condition assessment that can be
readily utilized by transportation authorities for bridge maintenance and repair.
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