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Abstract: Shallow bathymetry inversion algorithms have long been applied in various types of remote
sensing imagery with relative success. However, this approach requires that imagery with increased
radiometric resolution in the visible spectrum be available. The recent developments in drones
and camera sensors allow for testing current inversion techniques on new types of datasets with
centimeter resolution. This study explores the bathymetric mapping capabilities of fused RGB and
multispectral imagery as an alternative to costly hyperspectral sensors for drones. Combining drone-
based RGB and multispectral imagery into a single cube dataset provides the necessary radiometric
detail for shallow bathymetry inversion applications. This technique is based on commercial and
open-source software and does not require the input of reference depth measurements in contrast
to other approaches. The robustness of this method was tested on three different coastal sites with
contrasting seafloor types with a maximum depth of six meters. The use of suitable end-member
spectra, which are representative of the seafloor types of the study area, are important parameters
in model tuning. The results of this study are promising, showing good correlation (R2 > 0.75 and
Lin’s coefficient > 0.80) and less than half a meter average error when they are compared with sonar
depth measurements. Consequently, the integration of imagery from various drone-based sensors
(visible range) assists in producing detailed bathymetry maps for small-scale shallow areas based on
optical modelling.

Keywords: drones; UAV; bathymetry; shallow water; multispectral; inversion

1. Introduction

Shallow bathymetry is a crucial input parameter in several projects, such as: moni-
toring beach erosion [1–3], mapping geoarchaeological features [4,5], and benthic habitat
assessment [6–8]. Nevertheless, shallow seafloor has long been characterized as the “white
ribbon” [9] due to the ineffectiveness of traditional techniques (e.g., boat surveying) to
provide full coverage at high spatial resolution (<5 m) and at reasonable time frame and
costs [10]. High-resolution bathymetry mapping using hydro-acoustic technology is limited
in shallow waters due to safe operational depth of the vessel and restricted coverage due
to survey geometry [11]. Furthermore, although traditional topo-bathymetric surveying
(using total station or real-time kinematics (RTK) GPS pole) provides high precision data,
it is not effective for covering large-scale shallow-water areas in detail. Thus, shallow
water bathymetry retrieval using optical imagery, is a field of ongoing research, which has
been greatly expanded in recent years. Consequently, the technique of satellite-derived
bathymetry (SDB) has seen significant growth with plentiful applications [12].

There are two major groups of algorithms for SDB, namely the empirical and the
analytical methods. The empirical algorithms are mostly based on the models suggested
by [13,14], which are implemented in various contexts [15–19] and rely on the availability
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of ground-truth depth measurements for model calibration compared to the analytical
methods. The empirical methods do not necessarily require absolute radiometric and
atmospheric corrections [16,20] and depending on model performance, they can be applied
on datasets with similar seafloor types [21]. In contrast, analytical methods account for
any seafloor type included as model input [12,22–24]. The analytical algorithms have been
developed using in situ calibrated spectral data which are fitted with radiative-transfer
models [22,25,26]. These algorithms are considered more suitable for imagery consisting
of multiple bands (>4) in the visible spectrum; they do not require the input of a priori
depth information and they account for the inherent optical properties (IOPs) of water
and bathymetric uncertainty as well, in contrast with the empirical methods. Ideally, the
analytical algorithms perform well on hyperspectral imagery data with optimal quality
and with appropriate radiometric and atmospheric corrections applied [22,27]. A review
from [22] evaluated the performance of several analytical algorithms for shallow water
bathymetry retrieval using airborne hyperspectral data. These algorithms produced good
results with low residuals (<~1 m) for depths up to 10 m. For greater depths, the residual
error was increasing with water depth. The hyperspectral sensors provide several bands
(>10) in the visible spectrum offering the possibility for applying analytical algorithms
that potentially increase the accuracy of SDB. Ref. [28] suggest that by using an increased
number of bands, the problem of deriving bathymetry is better constrained and the water
column optical properties are accurately estimated, thus improving the accuracy of the
SDB product.

The recent developments in drone technology offer tremendous opportunities for the
development of novel geospatial applications. Drones are becoming increasingly popular
in remote sensing studies since they are low-cost platforms; they provide centimeter-scale
spatial resolution that is suitable for observing objects and/or processes in unique detail;
they require negligible logistic effort, allowing for frequent deployment on demand, thus
increasing the temporal resolution of imagery; and they operate in close range without being
influenced by clouds or other atmospheric effects [29–31]. There have been a few recent
studies applying empirical SDB algorithms (i.e., extensions of the logarithmic band-ratio
technique) on drone-based multispectral imagery [31–34] showing relatively good results
with up to 40 cm vertical errors. However, these studies rely on the availability of in situ
depth measurements for calibrating the SDB models. In practice, this is not always a feasible
and affordable approach. Additionally, [35] developed a pioneering sensor for seafloor
mapping providing active compensation for refraction and other optical distortions due to
waves on the sea surface, without the need for in situ depth data. Shallow water inversion
modeling (using analytical algorithms) is an alternative to these approaches that requires
remotely sensed imagery with improved spectral resolution (i.e., hyperspectral data) in the
visible spectrum. The issue of spectral resolution in shallow bathymetry inversion studies
has been further highlighted by [24,26]. However, to our knowledge, there are not many
studies analyzing drone-based hyperspectral data for shallow bathymetry mapping.

Considering the issue of spectral resolution, there are several commercial sensors for
drones, such as the MicaSense-RedEdge© dual camera offering 10 bands in the visible
and near-infrared areas, and other lightweight RGB or hyperspectral cameras which are
routinely used on various projects. These projects include environmental mapping [36],
water quality monitoring [37] and intertidal/subtidal habitat mapping [30,32,36,38–41].
Ideally, hyperspectral sensors would provide significant input data in shallow bathymetry
inversion with analytical methods, due to their enhanced radiometric resolution in the
visible range of the spectrum [32]. In practice, however, their considerable cost and other
hardware-related issues probably do not allow them to be utilized extensively in drone-
based projects [41]. Another issue is the software availability or algorithm implementation
for shallow bathymetry inversion. In practice, apart from the commercial software Hy-
drolight©, there are not many user-friendly packages for shallow water inversion. In
this study, we employ the WASI open-source software which consists of an intuitive
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graphic-user-interface allowing for analyzing radiometrically corrected multiband imagery
(see Section 2.3).

A similar approach to the one presented here was applied by [42] for classifying
microalgae habitats. In their study, they combined drone-based RGB and multispectral (MS)
imagery together in order to enhance the supervised classification accuracy of microalgae
taxa but without including bathymetry calculation. Apart from the presented study, to
our knowledge, there have not been any studies published currently, where shallow-water
analytical models are applied on drone-based imagery. With the increasing availability of
various camera sensors for drones, there are further opportunities for developing novel
approaches regarding shallow bathymetry mapping at the landscape scale.

This study aims at improving the three major issues considering optically derived
bathymetry, which include: (a) the requirement for a priori bathymetry input, (b) the
lack of an affordable sensor with suitable spectral resolution and (c) the need for high-
resolution mapping of fine-scale seafloor objects (e.g., boulders). In order to overcome
these obstacles, we suggest an experimental alternative solution to costly hyperspectral
sensors utilizing drone-based imagery. This novel concept is based on integrating low-cost,
drone-based RGB and MS imagery resulting in a multi-band cube, which can be utilized
in shallow bathymetry inversion algorithms. This approach requires that both RGB and
MS datasets have complementary spectral responses, they are radiometrically calibrated
and that suitable end-member seafloor cover spectra are available. Therefore, we test the
effectiveness of this new approach in three coastal sites with contrasting seafloor types and
water qualities. Bathymetry outputs are validated with sonar measurements obtained from
an unmanned surface vehicle (USV).

2. Methodology
2.1. Study Areas and Fieldwork

In this study, we deployed a DJI Phantom 4 Pro drone equipped with an 1-inch,
20-megapixel CMOS sensor as well as a MicaSense RedEgde-MX© multispectral camera.
A synopsis of the drone survey acquisition characteristics for each study area is shown
in Table 1.

Table 1. Drone survey details for each study area.

Study Area Number of
RGB Images

Number of
MS Images Altitude

Sun Zenith
Angle

(Degrees)

Acquisition
Time

(hh:mm)

Lambayanna
beach 500 >1000 90 70 09:00

Kalamaki bay 400 400 150 52 11:30

Plakias bay 230 200 150 49 12:00

The following study areas have been selected for assessing the performance of hybrid
composite imagery regarding shallow bathymetry retrieval (Figure 1). The first area is
the small bay of Lambayanna located in the Argolida region (Peloponesse, Greece) which
comprises smooth seafloor covered with medium sand and with some beach-rock outcrops
in places. This area has been studied thoroughly in recent years due to its significance
as a submerged prehistoric site [4]. Particularly, in 2019, [4] performed an extensive
shallow bathymetric survey that took place using an inflatable boat yielding more than
10,000 bathymetry points (Figure 2).

The second area is the Kalamaki beach located in the western part of Chania city (Crete,
Greece). It is a semi-enclosed bay with smooth, sandy seafloor covered with scattered
pebbles and beach-rock in places, which are further covered with algae. The third study
area is the Plakias bay located in the southern part of Rethymno region (Crete, Greece).
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Plakias bay forms a shallow embayment with numerous rocky outcrops and gravelly sand
on the seafloor.

Figure 1. Overview maps of the study areas overlaid with true color of drone-based mosaics.
(A) Map legend (Greece); (B) Lambayanna area; (C) Kalamaki area; (D) Plakias area. Red lines
indicate the USV tracks. (At Lambayanna, the whole area was covered with dense tracks of the
inflatable boat and thus these are not presented for visualization purposes).

Figure 2. (A) Schematic representation of the USV platform and sensors deployed at Kalamaki
and Plakias areas; (B) Boxplots of the sonar depth measurements collected at each area. The black
horizontal line inside each box indicates the median value of each sample, and the numbers at the
horizontal axis indicate the number of measurements in each area.
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Depth measurements acquired on the same date of each drone survey, apart from the
Lambayanna area where the sonar data were acquired two years before the drone survey.
Sonar depths were collected using an Ohmex BTX© single-beam sonar with an operating
frequency of 235 kHz. The sonar is integrated with a Real-Time Kinematics (RTK) GPS
sensor for collecting attitude-corrected bathymetry points at 2 Hertz rate. The RTK-GPS
measurements provide high spatial accuracy (<10 cm) which is essential in processing
drone-based imagery with a pixel resolution of a few centimeters. Regarding the Kalamaki
and Plakias areas, the bathymetric surveys took place with a remotely controlled USV. An
overview of depth data from each area is shown on the boxplot graphs in Figure 2. The
USV depth measurements were used for validating the outputs of bathymetry inversion by:
(a) calculating the coefficient of determination (R2) as a measure of agreement between the
sonar data and the predicted depth; (b) calculating the mean average error (MAE) and the
root-mean-square error (RMSE) as metrics of the spread of the residuals; and (c) comparing
the corresponding bathymetric profiles at each area. Additionally, we considered Lin’s
concordance correlation coefficient [43,44] for evaluating further the accuracy of shallow
inversion bathymetry outputs. Lin’s coefficient has been successfully applied for accuracy
assessment in soil spectroscopy studies [45] and provides a robust metric for evaluating
the prediction accuracy of continuous variables.

2.2. Pre-Processing of Drone-Based Imagery

The diagram in Figure 3 shows the steps of the acquisition, processing and analysis
pipeline followed in this study. Both sensors were set to collect nadiral images at one
second intervals for maximizing the overlap between adjacent images and assisting with
the ortho-mosaicking process in Pix4D© 4.5 software. The first step was to reconstruct an
approximate 3D surface of the scene using the photogrammetric module of Pix4D© soft-
ware. The refraction effects were considered negligible due to the relatively small depth
differences compared to the altitude of data acquisition and thus were not accounted for
in the reconstruction process. Then, the resulting surface was used together with sev-
eral (6–7) onshore 3D ground-control points, in order to orthorectify both of the drone
datasets (RGB and MS). The control points were measured with an RTK-GPS for providing
maximum horizontal accuracy. The resulting orthomosaics showed excellent horizon-
tal alignment (<0.10 cm horizontal error), allowing for the production of a multi-band
composite cube. Although the MS sensor records five spectral bands simultaneously
(blue, green, red, red edge and near-infrared), in this study we only considered the blue,
green and red bands from the visible spectrum since these are more favorable in optical
bathymetry studies [46] and their spectral characteristics are complementary with the P4P
bands (Figure 4; Table A1, Appendix A). The MS sensor was integrated with an external
Downwelling Light Sensor (DLS-2) module, which records sun illumination parameters
(i.e., angle, radiance) that are stored in the imagery metadata. These recordings are required
during radiometric correction processing of multispectral imagery in Pix4D© software.
In addition, the DLS-2 module provides GPS and attitude information for each acquired
image, assisting the georeferencing and mosaicking of processed imagery using the Pix4D©
software. In order to convert the pixel values to reflectance values, we acquired the images
of a spectral calibration panel, which is specifically provided for the MS sensor and has
a known reflectance coefficient for each band. In this way, the final processed data are
suitable for quantitative analysis. The spectral responses of the P4P and the MS sensors are
shown in Figure 4.
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Figure 3. Workflow diagram of the methodology followed in this study.

Figure 4. (A) Spectral responses of both P4P and MS sensors (modified from [47,48]); (B) End-member
spectra used for inversion in WASI (from [49]).
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Both RGB and multispectral datasets were processed with Pix4D© software for subse-
quent radiometric and geometric corrections. Ref. [50] suggest that radiometric corrections
are also required for drone RGB imagery for optimal results in shallow water bathymetry
mapping. The RGB images were adjusted for radial lens distortion using the specific
camera model included in the Pix4D© 4.5 software, and individual band mosaics (red,
green, blue) were exported. A reference reflectance value of 0.51 was set for all bands
(both RGB and MS) considering that this value accounts for all wavelengths in the visible
spectrum (MicaSense©, personal communication by email, 3 November 2020). Regarding
the images captured with the MS camera, these were corrected for radial lens distortion
using the respective camera model provided by the Pix4D© software. The multispectral
imagery was radiometrically corrected using the reference spectral panel and the infor-
mation collected by the on-board sun illumination sensor of the camera. The main points
of radiometric calibration procedure regarding the MS sensor are described on the Pix4D©
software website [51]. Initially, the pixel values are compensated for sensor bias such as
sensor black-level, sensitivity, gain settings, exposure settings and lens vignette effects, and
then they are converted to radiance values (i.e., in units Wm−2sr−1nm−1, meaning watts
per square meter per steradian per nanometer). Following this, the radiance values are
converted to spectral reflectance for each band by incorporating the information from the
calibrated reflectance panel (CRP) and the DLS-2 sensor. This is an automated procedure
provided by the Pix4D© software and requires that images of the CRP are taken prior to
the drone survey.

After the pre-processing stage, both RGB and MS reflectance mosaics were resampled
at 20 cm pixel size and stacked together resulting in a six-band composite cube. The cube
was converted to ENVI standard format for processing with the open-source WASI software.
In this study, atmospheric correction of drone-based imagery was not necessary. This is
due to the fact that the drone surveys took place at a significantly low altitude (<150 m)
and with optimal weather conditions, such that the atmospheric effects on the recorded
reflectance are totally negligible.

2.3. Shallow Bathymetry Inversion in WASI

The WASI software is one of the few open-source tools for analyzing the spectral
properties of aquatic environments. The WASI tool was initially designed for studying the
water properties of freshwater environments and it has been applied on a limited number
of bathymetry studies, mainly in lake areas so far [52–54]. However, this marks the first
time that the WASI software was used for analyzing drone-based imagery, and this is
considered an additional novelty of the study. The software is based on earlier bio-optical
models developed by [46,55,56]. WASI has a 2D module that allows for image analysis
on a per-pixel basis [57]. This is particularly useful for analyzing imagery from multi-
or hyper-spectral sensors. Regarding bathymetry retrieval, the WASI tool considers the
influence of water-column constituents (IOPs) along with combinations of end-member
seafloor reflectance spectra on water-leaving reflectances. For the Lambayanna area, we
used one of the default end-member spectra embedded in WASI (Figure 4B). This is a sand-
type spectrum that was measured by [58] at shallow depth (0.5 m) using a submersible
RAMSES spectroradiometer on the coast of Bolivar (South Australia). The selection of this
spectrum was based on in situ observations of the seafloor with snorkeling.

At the study areas of Kalamaki and Plakias, we considered to replace some default
end-member spectra of WASI with more appropriate ones that are similar to the seafloor
types that were observed during in situ visual assessments along the coastline. Thus, we
imported the end-member spectra shown in Figure 4B which include rock, turf algae and
brown algae collected underwater with a spectroradiometer and a reference reflectance
panel at various coastal locations in the southwest Indian Ocean [49]. Similar end-member
spectra collected at different locations show little spectral difference according to [12];
therefore, we considered the above end-member spectra based on their correspondence
with in situ observations.
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Suitable initial values of geometric (i.e., sun zenith angle) and irradiance model pa-
rameters (Table A1, Appendix A) are required for accurate fitting of the spectral signatures.
The values of initial model parameters (e.g., chlorophyll-a [CHL-a]; suspended particulate
matter [SPM]) were inserted empirically, and their fine-tuning was estimated by fitting a
few (2–3) single pixels with known depth. Ideally, in situ water column data should be
applied for tuning these parameters; however, collecting such data was not practical in
this study. Once the model is tuned, the depth and seafloor type are fitted using the least-
squares method iteratively. The modeled spectral signature showing the lowest residual
with the observed signature is used to determine the depth and seafloor type for each pixel.
A detailed description of the WASI tool can be found in [57].

The remote sensing reflectance in WASI is modeled according to the equations of [46,55]:

Rsh−
rs (λ) = Rdeep−

rs (λ) ∗ [1− Ars,1 ∗ exp{−(Kd(λ) + KuW(λ)) ∗ Zb}]+Ars,2 ∗ Rb
rs(λ) ∗ exp{−(Kd(λ) + KuB(λ)) ∗ Zb} (1)

The superscript sh indicates shallow water, deep—deep water, b—bottom, and the
symbol λ indicates the wavelength. The first term on the right-hand side is the contribution
of the water column with depth Zb, the second term represents the contribution of the
bottom albedo. Light attenuation is described by the attenuation coefficients Kd for down-
welling irradiance, KuW for upwelling radiance originating from the water layer, and KuB
for upwelling radiance from the bottom surface. These three coefficients are calculated
as a function of the sun zenith angle, viewing direction and the concentrations of water
constituents using equations also derived by [46,55]. Ars,1 and Ars,2 are empirical constants.

The WASI algorithm iterates the spectral signatures on a per-pixel basis, trying to fit an
optimal spectrum given the constant values of model parameters (Table A2, Appendix A).
Inverse modeling takes place by approximating the remote sensing reflectance (Rrs) spectra
(of each pixel) with suitable WASI spectra for different depths. The best fit with the observed
image spectrum is obtained by minimizing a cost function that calculates the correlation
between the Rrs and the WASI spectra. The inversion algorithm employs the absolute
difference function in order to identify an optimal set of fit parameters (depth and seafloor
type), which minimize the residual of the cost function [54,56,57].

3. Results

The drone-based bathymetry at Lambayanna area (Figure 5A) depicts an overall
smooth seafloor with occasional outcrop features, possibly corresponding to beach rock.
Bathymetry outputs resulting from shallow water inversion in WASI were validated by
fitting a linear regression with in situ sonar measurements (Figures 1 and 2B). At the
Lambayanna area, the WASI inverted depths show a very good coefficient of determination
with sonar data (R2 = 0.82) and have an MAE of 0.41 m (Figure 5B) and an RMSE of 0.59 m.
Lin’s concordance correlation coefficient (LCCC) is 0.85, suggesting that the inversion
depths fit well with the sonar measurements. Considering the overall homogeneity of the
study area, only one end-member spectrum (WASI sand) was used for inversion within the
range of 400–700 nm. The maximum depth estimated by inversion is −5.5 m.

The drone-based bathymetry at Kalamaki bay (Figure 6B) captures fine-scale nearshore
bedforms similar to those reported by [10] in this area. The resulting bathymetry fits very
well (R2 = 0.87) with USV sonar measurements and has an MAE of 0.42 m and an RMSE of
0.52 m. The LCCC is 0.91, suggesting that inversion depths are in optimal agreement with
the sonar measurements. The end-member spectra of WASI-sand, turf algae and brown
algae were selected as more suitable for driving the bathymetry inversion in this area, since
they correspond with the seafloor cover composition at the Kalamaki area. Inversion took
place at the range of 420–600 nm since the pixel values of the MS-red band (660 nm) were
too high for the very shallow part (>−1 m) and they were not providing useful reflectance
values for deeper (<−2 m) water. The regression plot in Figure 6B shows that there is not
an apparent increase in error with increasing depth. The maximum depth estimated by
inversion is −5.5 m.
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Figure 5. (A) Lambayanna area bathymetry resulting from inversion of the 6-band composite in
WASI; (B) Linear regression plot between the WASI bathymetry and sonar-based measurements.

The drone-based bathymetry at Plakias bay (Figure 7A) delineates rocky outcrops
and even boulders with sufficient detail. The bathymetry inversion results for the Plakias
area (Figure 7B) show a good coefficient of determination (R2 = 0.75) with USV sonar
measurements and have an MAE of 0.44 m and an RMSE of 0.58 m. The LCCC is 0.83,
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suggesting that inversion depths are in good agreement with the sonar measurements. The
bathymetry error appears evenly distributed across all depths. Here, three end-member
spectra (rock, brown and turf algae) applied for inversion since these two are more promi-
nent in the study area. Inversion took place at the range of 420–600 nm since the pixel
values of the MS-red band (660 nm) were too high for the very shallow part (>−1 m) and
they were not providing useful reflectance values for deeper (<−2 m) water. The maximum
depth estimated by inversion is −7.5 m. Analysis of the bathymetry residuals (absolute
difference between reference depth and inverted depth) shows that residuals with large
difference values (>2 m) are clearly associated with extremely low reflectance values of the
respective bands (Figure 8D,F and Figure 9). Particularly, the pixels corresponding with
>2 m depth residuals show the lowest reflectance values in both blue and green bands (for
both RGB and MS sensors). Such low reflectance pixels probably represent shaded seafloor
or seagrass areas (Figure 8D,F).

Figure 6. (A) Kalamaki area bathymetry resulting from inversion of the 6-band composite in WASI;
(B) Linear regression plot between the WASI bathymetry and USV sonar-based measurements.
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Figure 7. (A) Plakias area bathymetry resulting from inversion of the 6-band composite in WASI, and
isolated spots with blue color in the middle of the map correspond to errors over seagrass patches;
(B) Linear regression plot between the WASI bathymetry and USV sonar-based measurements.
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Figure 8. (A) Frequency distribution plot of the residual bathymetric error at each area. Comparison
between sonar and inversion bathymetric profiles overlaid with true-color mosaic stripes for the
(B) Lambayanna area, (C,E) Kalamaki area and (D,F) Plakias area.
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Figure 9. Boxplots showing the correspondence between different depth residual classes and RGB-MS
reflectance values for the Plakias area.

4. Discussion

This experimental approach was based on leveraging open-software and literature
data (spectra) for producing the first-of-its-kind shallow water bathymetry inversion. The
results of this study highlight the effectiveness of hybrid multiband composites for proximal
sensing of shallow water bathymetry. Optimal bathymetry results were obtained for all
three study areas regardless of the optical complexity of the seafloor types.

The combination of RGB and MS imagery provides a cube with improved spectral
resolution in the visible spectrum which is suitable for shallow water inversion. The
number of spectral bands determines the detail (and hence the accuracy) at which the
seafloor reflectance is approximated and assists in estimating the IOPs values. In addition,
only bands sensitive to visible wavelengths are suitable for bathymetry inversion since
those are transmitted (some more than others) through the water column without being
absorbed or scattered. Particularly, the blue and green wavelengths penetrate deeper into
the water column compared to yellow and red wavelengths that are easily absorbed by
the first 1–2 m of water depth [28,59]. Our findings suggest that any combination of dual
sensors (either RGB or MS) with complementary bands in the visible spectrum are suitable
for shallow bathymetry inversion, provided that they are radiometrically calibrated. The
overall bathymetric accuracy is <10% of water depth, which is comparable with that from
earlier studies using empirical algorithms [31,33].

Drone acquisition during clear, sunny conditions with a calm sea-state provided opti-
mal conditions for capturing representative Rrs values of shallow seafloor and minimized
unwanted reflections from the sea surface. Additionally, the close range of the drone to the
seafloor assisted in capturing Rrs without the need for applying atmospheric corrections
on drone imagery. Drone-based imagery with Rrs values, is required for analyzing imagery
with shallow water inversion techniques. Furthermore, end-member spectra are a very
important input in shallow bathymetry inversion [53,60]. In the case of Kalamaki beach,
it seems that although deeper (>−2 m) parts of the scene are covered with brown algae,
bathymetry error is not increasing significantly over those areas (Figure 8C,E). This high-
lights the robustness of the input end-member spectra for inferring bathymetry in this area.
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Thus, it is hypothesized that there is a considerable shape similarity between end-member
spectra used from the literature and those naturally occurring in the Kalamaki area. At the
Lambayanna area, only one end-member spectrum (WASI sand) was sufficient for yielding
bathymetry results with low error. This is attributed to the overall homogeneity of the
seafloor type in this area. In contrast, at the Plakias area, we applied three end-member
spectra in order to better approximate the seafloor types occurring in this complex area.

It is suggested that smooth seafloor geometry at the Lambayanna and Kalamaki
areas assisted in calculating more accurate bathymetry inversion than the Plakias area.
Smooth seafloor provides a more unobstructed and uniform transmission of seafloor albedo
resulting in capturing a clear reflectance signal by drone-based imagery. However, the time-
difference between the sonar measurements and the drone survey at Lambayanna area has
contributed errors at intermediate depths in the southern part of the area (Figure 8B). This
is highlighted further on the plot of Figure 8A where there is a second peak around 0.9 m
regarding the frequency of residuals at Lambayanna area. The rugged seafloor surface
at Plakias is probably responsible for the observed deviations in bathymetry results. In
order to examine this hypothesis, we classified the bathymetry residuals at the Plakias
area according to their magnitude and we extracted their corresponding reflectance values
for each band. The reflectance boxplots for each residual class and for all bands are
shown in Figure 9. These plots reveal that residuals with maximum deviation from actual
depth are associated with extremely low reflectance values across all bands of the cube.
Consequently, it is inferred that seafloor rugosity is related to cracks and crevices that block
sunlight and cast shadows in places, causing significantly lower reflectance values than
their surroundings. These obscured areas result in considerable overestimation of depth
by the inversion model which falsely fits them with spectral signatures corresponding to
deeper waters (Figure 8D,F).

In addition, the results at the Plakias area showed increased errors over seagrass
patches (isolated blue spots in Figures 7A and 8D,F) and therefore were not included in the
scatterplot in Figure 7B. This issue was encountered even when a seagrass end-member
was used in the model. The reason for this problem may be the fact that the characteristic
seagrass spectrum beyond the 650 nm range becomes rapidly absorbed even from one-
meter depth, leading to confusion with other spectra (e.g., rocks) corresponding to deeper
water. Considering that in Plakias bay, seagrass patches occur in areas with at least 2 m
depth, it is understood that absorption of red wavelengths in the water column leads to
depth overestimation.

This model behavior can be explained by the effect of “non-uniqueness”, which is
a common issue hindering bathymetry retrieval from hyperspectral data. This problem
has been described by [26,61,62] and is related to the natural phenomenon where different
combinations of (a) optically active constituents in the water-column and/or (b) seafloor
albedos, can produce the same spectral signature, challenging the accuracy of the final SDB
results. In the case of the Plakias area, the seagrass patches are fitted with very deep-water
signatures because they cannot be differentiated from the rest of the seafloor types as their
spectral features beyond 650 nm are absorbed.

Shallow bathymetry analytical models require careful tuning of initial parameters in
order to produce accurate results. By selecting a smaller number of suitable parameters,
the model is better constrained and requires less computational resources [54,57]. Thus,
when additional information is known (e.g., depth) for a particular location on the image,
then model inversion should be applied on individual pixels first, in order to determine the
initial values of model parameters (Table A2, Appendix A). Ideally, spectral measurements
from a deep water area (where seafloor albedo is negligible) should be collected in order to
provide more realistic initial values for CHL-a and SPM [54]. Alternatively, these data could
be extracted either from coarse resolution satellite imagery, in situ optical measurements in
the water column or from the available literature.
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5. Conclusions

This study shows that the integration of drone-based RGB and multispectral imagery
provides promising results in shallow bathymetry inversion. Both imagery types are
required to be radiometrically corrected and to have complementary bandwidths in the
visible range of the spectrum. The multi-band composite cube provides a potentially
affordable alternative to costly hyperspectral commercial sensors, allowing for a wider field
of shallow water applications. In addition, the cube is suitable for analysis with physics-
based optical models, reducing further the costs for obtaining in situ bathymetry data for
model calibration. Suitable end-member spectra of local seafloor types should be carefully
selected as inputs to shallow analytical algorithms for maximizing the quality of bathymetry
output. The presented approach works well across various water types and for relatively
smooth seafloor, while seafloor roughness was found to contribute larger bathymetric errors.
This novel method is appropriate for high-resolution bathymetry mapping at a landscape
scale when only drone imagery is available from areas with sufficient water transparency.
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Appendix A

Table A1. Spectral information included in the header file of each cube. * full-width at half maximum.

Band Name Central Wavelength (nm) Fwhm* (nm)

P4P-Blue 462 40

P4P-Green 525 50

P4P-Red 592 25

MS-Blue 480 10

MS-Green 560 10

MS-Red 671 5

Table A2. Values of water IOPs used as constants in this study.

Study Area CHL-a (mg/L) SPM (mg/L)

Lambayanna 0.3 0.3

Kalamaki 0.18 0.13

Plakias 0.18 0.10

https://actys.ims.forth.gr/


Remote Sens. 2022, 14, 1127 16 of 18

References
1. Bio, A.; Bastos, L.; Granja, H.; Pinho, J.L.S.; Gonçalves, J.A.; Henriques, R.; Madeira, S.; Magalhães, A.; Rodrigues, D. Methods for

Coastal Monitoring and Erosion Risk Assessment: Two Portuguese Case Studies. RGCI 2015, 15, 47–63. [CrossRef]
2. Davidson, M.; Van Koningsveld, M.; de Kruif, A.; Rawson, J.; Holman, R.; Lamberti, A.; Medina, R.; Kroon, A.; Aarninkhof, S.

The CoastView Project: Developing Video-Derived Coastal State Indicators in Support of Coastal Zone Management. Coast. Eng.
2007, 54, 463–475. [CrossRef]

3. Deronde, B.; Houthuys, R.; Debruyn, W.; Fransaer, D.; Lancker, V.V.; Henriet, J.-P. Use of Airborne Hyperspectral Data and
Laserscan Data to Study Beach Morphodynamics along the Belgian Coast. Coas 2006, 2006, 1108–1117. [CrossRef]

4. Papadopoulos, N.; Oikonomou, D.; Cantoro, G.; Simyrdanis, K.; Beck, J. Archaeological Prospection in Ultra-Shallow Aquatic
Environments: The Case of the Prehistoric Submerged Site of Lambayanna, Greece. Near Surf. Geophys. 2021, 19, 677–697.
[CrossRef]

5. Wiseman, C.; O’Leary, M.; Hacker, J.; Stankiewicz, F.; McCarthy, J.; Beckett, E.; Leach, J.; Baggaley, P.; Collins, C.; Ulm, S.; et al. A
Multi-Scalar Approach to Marine Survey and Underwater Archaeological Site Prospection in Murujuga, Western Australia. Quat.
Int. 2021, 584, 152–170. [CrossRef]

6. Costa, B.M.; Battista, T.A.; Pittman, S.J. Comparative Evaluation of Airborne LiDAR and Ship-Based Multibeam SoNAR
Bathymetry and Intensity for Mapping Coral Reef Ecosystems. Remote Sens. Environ. 2009, 113, 1082–1100. [CrossRef]

7. Goes, E.R.; Brown, C.J.; Araújo, T.C. Geomorphological Classification of the Benthic Structures on a Tropical Continental Shelf.
Front. Mar. Sci. 2019, 6, 47. [CrossRef]

8. Zhang, C. Applying Data Fusion Techniques for Benthic Habitat Mapping and Monitoring in a Coral Reef Ecosystem. ISPRS J.
Photogramm. Remote Sens. 2015, 104, 213–223. [CrossRef]

9. Carvalho, R.C.; Hamylton, S.; Woodroffe, C.D. Filling the ‘White Ribbon’ in Temperate Australia: A Multi-Approach Method to
Map the Terrestrial-Marine Interface. In Proceedings of the 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium
(RIO Acoustics), Rio de Janeiro, Brazil, 25–27 July 2017; pp. 1–5.

10. Alevizos, E.; Roussos, A.; Alexakis, D. Geomorphometric Analysis of Nearshore Sedimentary Bedforms from High-Resolution
Multi-Temporal Satellite-Derived Bathymetry. Geocarto Int. 2021, 1–17. [CrossRef]

11. Kenny, A.J.; Cato, I.; Desprez, M.; Fader, G.; Schüttenhelm, R.T.E.; Side, J. An Overview of Seabed-Mapping Technologies in the
Context of Marine Habitat Classification. ICES J. Mar. Sci. 2003, 60, 411–418. [CrossRef]

12. Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote Sensing of Shallow Waters—A 50 Year Retrospective and
Future Directions. Remote Sens. Environ. 2020, 240, 111619. [CrossRef]

13. Lyzenga, D.R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Appl. Opt. 1978, 17, 379–383.
[CrossRef] [PubMed]

14. Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-Resolution Satellite Imagery over Variable
Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [CrossRef]

15. Geyman, E.C.; Maloof, A.C. A Simple Method for Extracting Water Depth From Multispectral Satellite Imagery in Regions of
Variable Bottom Type. Earth Space Sci. 2019, 6, 527–537. [CrossRef]

16. Gholamalifard, M.; Kutser, T.; Esmaili-Sari, A.; Abkar, A.A.; Naimi, B. Remotely Sensed Empirical Modeling of Bathymetry in the
Southeastern Caspian Sea. Remote Sens. 2013, 5, 2746–2762. [CrossRef]

17. Ma, S.; Tao, Z.; Yang, X.; Yu, Y.; Zhou, X.; Li, Z. Bathymetry Retrieval From Hyperspectral Remote Sensing Data in Optical-Shallow
Water. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1205–1212. [CrossRef]

18. Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating Satellite-Derived Bathymetry (SDB) with
the Google Earth Engine and Sentinel-2. Remote Sens. 2018, 10, 859. [CrossRef]

19. Wei, C.; Zhao, Q.; Lu, Y.; Fu, D. Assessment of Empirical Algorithms for Shallow Water Bathymetry Using Multi-Spectral Imagery
of Pearl River Delta Coast, China. Remote Sens. 2021, 13, 3123. [CrossRef]

20. Kibele, J.; Shears, N.T. Nonparametric Empirical Depth Regression for Bathymetric Mapping in Coastal Waters. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 5130–5138. [CrossRef]

21. Caballero, I.; Stumpf, R.P. Retrieval of Nearshore Bathymetry from Sentinel-2A and 2B Satellites in South Florida Coastal Waters.
Estuar. Coast. Shelf Sci. 2019, 226, 106277. [CrossRef]

22. Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B.; Fearns, P.; Hedley, J.; Klonowski, W.; Lee, Z.P.; et al.
Intercomparison of Shallow Water Bathymetry, Hydro-Optics, and Benthos Mapping Techniques in Australian and Caribbean
Coastal Environments. Limnol. Oceanogr. Methods 2011, 9, 396–425. [CrossRef]

23. Klonowski, W.M. Retrieving Key Benthic Cover Types and Bathymetry from Hyperspectral Imagery. J. Appl. Remote Sens. 2007,
1, 011505. [CrossRef]

24. Leiper, I.A.; Phinn, S.R.; Roelfsema, C.M.; Joyce, K.E.; Dekker, A.G. Mapping Coral Reef Benthos, Substrates, and Bathymetry,
Using Compact Airborne Spectrographic Imager (CASI) Data. Remote Sens. 2014, 6, 6423–6445. [CrossRef]

25. Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters: 2. Deriving
Bottom Depths and Water Properties by Optimization. Appl. Opt. 1999, 38, 3831–3843. [CrossRef]

26. Mobley, C.D.; Sundman, L.K.; Davis, C.O.; Bowles, J.H.; Downes, T.V.; Leathers, R.A.; Montes, M.J.; Bissett, W.P.; Kohler, D.D.R.;
Reid, R.P.; et al. Interpretation of Hyperspectral Remote-Sensing Imagery by Spectrum Matching and Look-up Tables. Appl. Opt.
2005, 44, 3576–3592. [CrossRef]

http://doi.org/10.5894/rgci490
http://doi.org/10.1016/j.coastaleng.2007.01.007
http://doi.org/10.2112/04-0264.1
http://doi.org/10.1002/nsg.12174
http://doi.org/10.1016/j.quaint.2020.09.005
http://doi.org/10.1016/j.rse.2009.01.015
http://doi.org/10.3389/fmars.2019.00047
http://doi.org/10.1016/j.isprsjprs.2014.06.005
http://doi.org/10.1080/10106049.2021.2007296
http://doi.org/10.1016/S1054-3139(03)00006-7
http://doi.org/10.1016/j.rse.2019.111619
http://doi.org/10.1364/AO.17.000379
http://www.ncbi.nlm.nih.gov/pubmed/20174418
http://doi.org/10.4319/lo.2003.48.1_part_2.0547
http://doi.org/10.1029/2018EA000539
http://doi.org/10.3390/rs5062746
http://doi.org/10.1109/TGRS.2013.2248372
http://doi.org/10.3390/rs10060859
http://doi.org/10.3390/rs13163123
http://doi.org/10.1109/JSTARS.2016.2598152
http://doi.org/10.1016/j.ecss.2019.106277
http://doi.org/10.4319/lom.2011.9.396
http://doi.org/10.1117/1.2816113
http://doi.org/10.3390/rs6076423
http://doi.org/10.1364/AO.38.003831
http://doi.org/10.1364/AO.44.003576


Remote Sens. 2022, 14, 1127 17 of 18

27. Castillo-López, E.; Dominguez, J.A.; Pereda, R.; de Luis, J.M.; Pérez, R.; Piña, F. The Importance of Atmospheric Correction
for Airborne Hyperspectral Remote Sensing of Shallow Waters: Application to Depth Estimation. Atmos. Meas. Tech. 2017,
10, 3919–3929. [CrossRef]

28. Kobryn, H.T.; Wouters, K.; Beckley, L.E.; Heege, T. Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral
Sensor. PLoS ONE 2013, 8, e70105. [CrossRef]

29. Alevizos, E. How to Create High Resolution Digital Elevation Models of Terrestrial Landscape Using Uav Imagery and Open-
Source Software. 2019. Available online: https://www.researchgate.net/publication/333248069_HOW_TO_CREATE_HIGH_
RESOLUTION_DIGITAL_ELEVATION_MODELS_OF_TERRESTRIAL_LANDSCAPE_USING_UAV_IMAGERY_AND_OPEN-
SOURCE_SOFTWARE (accessed on 1 October 2021).

30. Román, A.; Tovar-Sánchez, A.; Olivé, I.; Navarro, G. Using a UAV-Mounted Multispectral Camera for the Monitoring of Marine
Macrophytes. Front. Mar. Sci. 2021, 8, 722698. [CrossRef]

31. Rossi, L.; Mammi, I.; Pelliccia, F. UAV-Derived Multispectral Bathymetry. Remote Sens. 2020, 12, 3897. [CrossRef]
32. Parsons, M.; Bratanov, D.; Gaston, K.; Gonzalez, F. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing

Reef Monitoring. Sensors 2018, 18, 2026. [CrossRef]
33. Slocum, R.K.; Parrish, C.E.; Simpson, C.H. Combined Geometric-Radiometric and Neural Network Approach to Shallow

Bathymetric Mapping with UAS Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 169, 351–363. [CrossRef]
34. Starek, M.J.; Giessel, J. Fusion of Uas-Based Structure-from-Motion and Optical Inversion for Seamless Topo-Bathymetric Mapping.

In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28
July 2017; pp. 2999–3002.

35. Chirayath, V.; Earle, S.A. Drones That See through Waves–Preliminary Results from Airborne Fluid Lensing for Centimetre-Scale
Aquatic Conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 237–250. [CrossRef]

36. Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.;
Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [CrossRef]

37. Isgró, M.A.; Basallote, M.D.; Barbero, L. Unmanned Aerial System-Based Multispectral Water Quality Monitoring in the Iberian
Pyrite Belt (SW Spain). Mine Water Environ. 2021. [CrossRef]

38. Kabiri, K.; Rezai, H.; Moradi, M. A Drone-Based Method for Mapping the Coral Reefs in the Shallow Coastal Waters – Case Study:
Kish Island, Persian Gulf. Earth Sci. Inform. 2020, 13, 1265–1274. [CrossRef]

39. Fallati, L.; Saponari, L.; Savini, A.; Marchese, F.; Corselli, C.; Galli, P. Multi-Temporal UAV Data and Object-Based Image Analysis
(OBIA) for Estimation of Substrate Changes in a Post-Bleaching Scenario on a Maldivian Reef. Remote Sens. 2020, 12, 2093.
[CrossRef]

40. Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Ierodiaconou, D. Applications of Unmanned Aerial Vehicles in
Intertidal Reef Monitoring. Sci. Rep. 2017, 7, 10259. [CrossRef]

41. Rossiter, T.; Furey, T.; McCarthy, T.; Stengel, D.B. UAV-Mounted Hyperspectral Mapping of Intertidal Macroalgae. Estuar. Coast.
Shelf Sci. 2020, 242, 106789. [CrossRef]

42. Tait, L.; Bind, J.; Charan-Dixon, H.; Hawes, I.; Pirker, J.; Schiel, D. Unmanned Aerial Vehicles (UAVs) for Monitoring Macroalgal
Biodiversity: Comparison of RGB and Multispectral Imaging Sensors for Biodiversity Assessments. Remote Sens. 2019, 11, 2332.
[CrossRef]

43. Barnhart, H.X.; Haber, M.; Song, J. Overall Concordance Correlation Coefficient for Evaluating Agreement among Multiple
Observers. Biometrics 2002, 58, 1020–1027. [CrossRef]

44. Lin, L.; Hedayat, A.S.; Wu, W. A Unified Approach for Assessing Agreement for Continuous and Categorical Data. J. Biopharm.
Stat. 2007, 17, 629–652. [CrossRef] [PubMed]

45. Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil Exchangeable Cations Estimation Using Vis-NIR Spectroscopy in Different
Depths: Effects of Multiple Calibration Models and Spiking. Comput. Electron. Agric. 2021, 182, 105990. [CrossRef]

46. Albert, A. Inversion Technique for Optical Remote Sensing in Shallow Water. Ph.D. Thesis, Hamburg University, Hamburg,
Germany, December 2004. Available online: https://ediss.sub.unihamburg.de/handle/ediss/812 (accessed on 1 October 2021).

47. Tagle, X. Study of Radiometric Variations in Unmanned Aerial Vehicle Remote Sensing Imagery for Vegetation Mapping. Master’s
Thesis, Lund University, Lund, Sweden, June 2017. [CrossRef]

48. Burggraaff, O.; Schmidt, N.; Zamorano, J.; Pauly, K.; Pascual, S.; Tapia, C.; Spyrakos, E.; Snik, F. Standardized Spectral and
Radiometric Calibration of Consumer Cameras. Opt. Express 2019, 27, 19075. [CrossRef] [PubMed]

49. Mouquet, P.; Quod, J.-P. Spectrhabent-OI-Acquisition et Analyse de la Librairie Spectrale Sous-Marine. 2010. Available online:
https://archimer.ifremer.fr/doc/00005/11647/ (accessed on 1 October 2021).

50. Alevizos, E.; Alexakis, D.D. Evaluation of Radiometric Calibration of Drone-Based Imagery for Improving Shallow Bathymetry
Retrieval. Remote Sens. Lett. 2022, 13, 311–321. [CrossRef]

51. Radiometric Calibration Model for MicaSense Sensors. Available online: https://support.micasense.com/hc/en-us/articles/11
5000351194-Radiometric-Calibration-Model-for-MicaSense-Sensors (accessed on 23 October 2021).

52. Gege, P. A Case Study at Starnberger See for Hyperspectral Bathymetry Mapping Using Inverse Modeling. In Proceedings of
the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne,
Switzerland, 24–27 June 2014; pp. 1–4.

http://doi.org/10.5194/amt-10-3919-2017
http://doi.org/10.1371/journal.pone.0070105
https://www.researchgate.net/publication/333248069_HOW_TO_CREATE_HIGH_RESOLUTION_DIGITAL_ELEVATION_MODELS_OF_TERRESTRIAL_LANDSCAPE_USING_UAV_IMAGERY_AND_OPEN-SOURCE_SOFTWARE
https://www.researchgate.net/publication/333248069_HOW_TO_CREATE_HIGH_RESOLUTION_DIGITAL_ELEVATION_MODELS_OF_TERRESTRIAL_LANDSCAPE_USING_UAV_IMAGERY_AND_OPEN-SOURCE_SOFTWARE
https://www.researchgate.net/publication/333248069_HOW_TO_CREATE_HIGH_RESOLUTION_DIGITAL_ELEVATION_MODELS_OF_TERRESTRIAL_LANDSCAPE_USING_UAV_IMAGERY_AND_OPEN-SOURCE_SOFTWARE
http://doi.org/10.3389/fmars.2021.722698
http://doi.org/10.3390/rs12233897
http://doi.org/10.3390/s18072026
http://doi.org/10.1016/j.isprsjprs.2020.09.002
http://doi.org/10.1002/aqc.2654
http://doi.org/10.3390/rs10040641
http://doi.org/10.1007/s10230-021-00837-4
http://doi.org/10.1007/s12145-020-00507-z
http://doi.org/10.3390/rs12132093
http://doi.org/10.1038/s41598-017-10818-9
http://doi.org/10.1016/j.ecss.2020.106789
http://doi.org/10.3390/rs11192332
http://doi.org/10.1111/j.0006-341X.2002.01020.x
http://doi.org/10.1080/10543400701376498
http://www.ncbi.nlm.nih.gov/pubmed/17613645
http://doi.org/10.1016/j.compag.2021.105990
https://ediss.sub.unihamburg.de/handle/ediss/812
http://doi.org/10.13140/RG.2.2.16940.36485
http://doi.org/10.1364/OE.27.019075
http://www.ncbi.nlm.nih.gov/pubmed/31503673
https://archimer.ifremer.fr/doc/00005/11647/
http://doi.org/10.1080/2150704X.2022.2030068
https://support.micasense.com/hc/en-us/articles/115000351194-Radiometric-Calibration-Model-for-MicaSense-Sensors
https://support.micasense.com/hc/en-us/articles/115000351194-Radiometric-Calibration-Model-for-MicaSense-Sensors


Remote Sens. 2022, 14, 1127 18 of 18

53. Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First
Evaluation in an Oligotrophic Lake. Remote Sens. 2016, 8, 941. [CrossRef]

54. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-Based Bathymetry and Water Quality Retrieval Using Plan-
etScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020,
12, 2381. [CrossRef]

55. Albert, A.; Mobley, C.D. An Analytical Model for Subsurface Irradiance and Remote Sensing Reflectance in Deep and Shallow
Case-2 Waters. Opt. Express 2003, 11, 2873–2890. [CrossRef]

56. Gege, P.; Albert, A. A tool for inverse modeling of spectral measurements in deep and shallow waters. In Remote Sensing of
Aquatic Coastal Ecosystem Processes; Richardson, L.L., Ledrew, E.F., Eds.; Remote Sensing and Digital Image Processing; Springer
Netherlands: Dordrecht, The Netherlands, 2006; pp. 81–109. ISBN 978-1-4020-3968-3.

57. Gege, P. WASI-2D: A Software Tool for Regionally Optimized Analysis of Imaging Spectrometer Data from Deep and Shallow
Waters. Comput. Geosci. 2014, 62, 208–215. [CrossRef]

58. Pinnel, N. A method for mapping submerged macrophytes in lakes using hyperspectral remote sensing. Ph.D. Thesis, Technischen
Universitaet Muenchen, München, Germany, 2007. Available online: https://mediatum.ub.tum.de/doc/604557/document.pdf
(accessed on 5 November 2021).

59. Eugenio, F.; Marcello, J.; Martin, J.; Rodríguez-Esparragón, D. Benthic Habitat Mapping Using Multispectral High-Resolution
Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques. Sensors 2017, 17, 2639. [CrossRef]

60. Garcia, R.A.; Lee, Z.; Hochberg, E.J. Hyperspectral Shallow-Water Remote Sensing with an Enhanced Benthic Classifier. Remote
Sens. 2018, 10, 147. [CrossRef]

61. Defoin-Platel, M.; Chami, M. How Ambiguous Is the Inverse Problem of Ocean Color in Coastal Waters? J. Geophys. Res. Ocean.
2007, 112. [CrossRef]

62. Garcia, R.A. Uncertainty in Hyperspectral Remote Sensing: Analysis of the Potential and Limitation of Shallow Water Bathymetry
and Benthic Classification. Ph.D. Thesis, Curtin University, Perth, Australia, October 2015.

http://doi.org/10.3390/rs8110941
http://doi.org/10.3390/rs12152381
http://doi.org/10.1364/OE.11.002873
http://doi.org/10.1016/j.cageo.2013.07.022
https://mediatum.ub.tum.de/doc/604557/document.pdf
http://doi.org/10.3390/s17112639
http://doi.org/10.3390/rs10010147
http://doi.org/10.1029/2006JC003847

	Introduction 
	Methodology 
	Study Areas and Fieldwork 
	Pre-Processing of Drone-Based Imagery 
	Shallow Bathymetry Inversion in WASI 

	Results 
	Discussion 
	Conclusions 
	Appendix A
	References

