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Abstract: The incorporation of autonomous computation and artificial intelligence (AI) technologies
into smart agriculture concepts is becoming an expected scientific procedure. The airborne hyperspec-
tral system with its vast area coverage, high spectral resolution, and varied narrow-band selection is
an excellent tool for crop physiological characteristics and yield prediction. However, the extensive
and redundant three-dimensional (3D) cube data processing and computation have made the popular-
ization of this tool a challenging task. This research integrated two important open-sourced systems
(R and Python) combined with automated hyperspectral narrowband vegetation index calculation
and the state-of-the-art AI-based automated machine learning (AutoML) technology to estimate yield
and biomass, based on three crop categories (spring wheat, pea and oat mixture, and spring barley
with red clover) with multifunctional cultivation practices in northern Europe and Estonia. Our study
showed the estimated capacity of the empirical AutoML regression model was significant. The best
coefficient of determination (R2) and normalized root mean square error (NRMSE) for single variety
planting wheat were 0.96 and 0.12 respectively; for mixed peas and oats, they were 0.76 and 0.18 in
the booting to heading stage, while for mixed legumes and spring barley, they were 0.88 and 0.16 in
the reproductive growth stages. In terms of straw mass estimation, R2 was 0.96, 0.83, and 0.86, and
NRMSE was 0.12, 0.24, and 0.33 respectively. This research contributes to, and confirms, the use of
the AutoML framework in hyperspectral image analysis to increase implementation flexibility and
reduce learning costs under a variety of agricultural resource conditions. It delivers expert yield and
straw mass valuation two months in advance before harvest time for decision-makers. This study
also highlights that the hyperspectral system provides economic and environmental benefits and
will play a critical role in the construction of sustainable and intelligent agriculture techniques in the
upcoming years.

Keywords: hyperspectral; automated machine learning; vegetation index; yield estimates; biomass
estimation; precision agriculture; narrowband; spring wheat; spring barley; pea and oat

1. Introduction

Fresh trends in precision agriculture (PA) and the development of automated sys-
tems for agricultural resource management have been widely explored and deployed in
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recent years [1]. The emergence of these techniques seeks to increase crop growth and
production, maximize profitability through empirical models and data assimilation, and
make a substantial contribution to food security [2,3], agricultural disasters risk manage-
ment [4], and, more importantly, address concerns relating to climate change mitigation [5].
Image-based remote sensing (RS) technologies are regarded as a vital instrument in this
context for providing valuable information that is currently unavailable or inaccurate for
achieving sustainable and efficient farming operations [6]. The use of RS technologies
provides timely, non-destructive, spatial estimates for measuring and tracking specific
vegetation attributes [7], as well as continuing to improve crop yield production and
quality, thereby assisting in future food security and reducing the negative impacts of
agricultural practices [5,8,9]. Moreover, agriculture management practices based on the
concept of sustainable cropping ideas (such as reduced tillage intensity [10–15], fertilizer
input [16], and organic farming [17,18]) combined with mixed cropping systems, particu-
larly legume-based, can effectively diminish greenhouse gas emissions by reducing the use
of inorganic nitrogen fertilizers and replacing them with symbiotically fixed nitrogen [19],
as well as carbon loss [5,20,21] and soil erosion [22] in cultivated soil. Furthermore, they
can contribute to productivity and economic appeal to Northern European farmers, which
is crucial for ensuring that these ecologically friendly systems can compete in terms of
profitability with more traditional or artificially generated systems [23]. Variety perfor-
mance trials (VPTs) with a well-designed randomized design, for example, are an excellent
technique to assess a variety of management procedures and their interactions with the
agri-environment [24–26]. However, owing to the variability in the structure, character,
and husbandry of each experiment, investigations of VPT datasets can provide diverse
outcomes [27].

Despite weather conditions, soil, and management in current trials with rigorous
model simulation, the challenge of sampling and model development is exacerbated
by landscape heterogeneity [28] and varied spatial distribution patterns of geographical
items [29]. To face these challenges, RS technology provides the opportunity to measure
biophysical indicators in research sites. In addition to detecting and quantifying their
geographical variability, it can potentially play a pivotal role in the provision of time-
specific information for decision supporting systems [1,6] and improve operations by
making them more cost-effective and time-efficient.

Currently, a primary objective of agronomic remote sensing is to identify those bands of
light-spectrum which are most sensitive to canopy reflectance, and the derived parameters
that distinguish vegetation features, identify growth status, and quantify the relationships
which exist between spectral properties and agronomic parameters [30]. Vegetation indices
(VIs) are one of the most extensively utilized precision farming tools for supplying reliable
spatial and temporal information on vegetation cover across a variety of agricultural oper-
ations. In visible/near-infrared imagery, vegetation has a distinct spectral signature that
permits it to be distinguished from other forms of land cover [31]. VIs utilize a mathematical
combination from at least two spectral bands of the electromagnetic spectrum, intending
to reduce confusing factors (i.e., soil disturbance and other environmental noises) while
increasing the importance of plant features [32,33]. As an example, a traditional agricultural
yield estimation methodology, such as the Normalized Difference Vegetation Index (NDVI),
calculates the difference between the red and near-infrared bands from multispectral sen-
sors and provides a measure of chlorophyll pigmentation. Furthermore, a variety of new
indicators were developed in the early years to correct for soil backgrounds and the effects
of climatic environments [34–37]. Multi-spectral, broadband-based remote sensing has
had longstanding success in established correlations between conventional indices with
yield and crop status. However, due to saturation in dense vegetation at larger leaf area
index (LAI) values, multilayered canopies, and various farming systems, the calculated
indices can occasionally produce inaccurate measurements and pose limits for quantitative
estimation of biochemical properties owing to lower spectral resolution [7,38–40].
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As an alternative technology, a high-spectral-resolution imaging system (i.e., hyper-
spectral imaging) creates the opportunity to enable increasingly sophisticated agricultural
applications. The necessity for research in identifying optimum wavebands to predict crop
biophysical characteristics is vital as hyperspectral remote sensing data becomes ever more
available and significant [41,42]. With the use of narrow spectral channels of less than
10 nm, hyperspectral remote sensing data has the potential to identify more nuanced differ-
ences in vegetation than multispectral data [43]. It has been suggested that hyperspectral
data analysis may present a format to provide a deeper understanding of the mechanisms
governing spectral reflectance from field scales and canopy levels [44,45]. These reduced-
range channels allow for the detection of detailed plant and crop characteristics that would
typically be obscured by broader-band multispectral channels. Innovative approaches for
analyzing spectral reflectance data are being established as a result of advances within
hyperspectral remote sensing technology [41,46]. Whilst hyperspectral sensors provide a
more detailed depiction of plant canopy reflectance than more traditional multispectral
sensors, they come with concerns regarding data redundancy and spectral autocorrela-
tion [31,47,48]. In an attempt to redress and resolve these challenges, the reduction of
data dimensionality is proposed, which can often be achieved via feature extraction, i.e.,
translating the spectra to a lower-dimensional representation, or selecting only a subset
of essential bands or spectral characteristics for analysis. [49]. One proposed technique to
investigate imaging spectroscopy via spectral characteristics is to use application-specific
optimal bands’ combination, i.e., narrowband VIs. These narrowband VIs have significantly
improved crop characteristics and deliver substantially advanced variability information
with a superior dynamic range and considerable improvements over broad bands [7]. There
is mounting evidence that narrowband VIs can improve biomass estimations for many
land-cover types [50]. Recently, a study regarding wheat grain yields also revealed that
when compared with broadband VIs, hyperspectral indices provided greater estimation
ability of grain production and biophysical factors [42]. As a result of the emergence of
hyperspectral systems, there now exists the possibility to both refine previous spectral
indices and build novel approaches that make use of the increased spectral resolution of
hyperspectral data. Alternatively, the analysis might suggest that narrow-band, continuous
reflectance data from a hyperspectral sensor are preferred and potentially more accurate
for certain remote sensing applications [31].

Hyperspectral data, when paired with popular machine learning (ML) algorithms,
have made a substantial contribution to crop biomass and yield estimation [51–53]. These
multimodal computing technologies broaden the application of ML to a wider range of
beneficial data collection and selection for the progression of agriculture practices [54]
These approaches will contribute to improved decision-making within complex systems,
with minimal human interaction, and provide a scalable framework for integrating expert
knowledge of the PA system [55]. Complexity can be seen as a disadvantage in crop trials
since the ML modelling includes training/testing databases, limited areas with insignificant
sampling sizes, time and space-specificity, and environmental factor interventions, which
raise problems in parameter selection and make use of a single empirical model for an
entire region impractical [56,57]. Instead, the robust artificial intelligence-based notion
of automated machine learning (AutoML) has emerged to minimize such data-driven
expenses and enables experts to build self-regulating machine learning applications [58,59].
AutoML is characterized as a combination of selecting an algorithm and hyperparameter
optimization based on the Bayesian optimization method that seeks to identify the optimum
(cross-validated) combination of algorithm components by encompassing data from raw
datasets to a deployable pipeline ML model, which greatly simplifies these stages for people
with limited expertise [60–62]. For improving the model’s prediction performance, the
common technique for ML modelling includes data pre-processing, feature and algorithm
selection, extraction, and engineering, as well as hyperparameter optimization [63].

However, although AutoML has made significant contributions to computer science
and, more recently, remote sensing applications, such as soil moisture monitoring and plant
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phenotyping [64,65], it has yet to be broadly adopted in the disciplines of hyperspectral
imaging and PA systems. This study used an open-source, cutting-edge Auto-Sklearn
algorithm to close the knowledge gap [62]. It is based on the widely-used ML system
Scikit-learn platform in Python [66] In addition, the hyperspectral data analysis (hsdar)
package [67] was utilized in software R [68] to address crop yield and biomass regression
tasks. To be more specific, our goals were to use a novel AutoML system to (1) construct
an AutoML framework for hyperspectral imaging regression tasks, and (2) explore the
applicability of the AutoML models to estimate spring wheat, spring barley, pea and
oat mixture grain yields and straw mass in regular mono- or mixed cropping systems
in Northern Europe and Estonia. In this study, we presented a comprehensive AutoML
infra-structure for a wider range of crop management practices tasks, as well as innovative
AutoML- hyperspectral fusion methodologies for future PA and crop phenotyping research.

2. Materials and Methods
2.1. Research Site and Experiment Layout

This experiment was conducted in the Agricultural Research Centre (ARC) in Kuusiku
(58◦58′52.7′′N 24◦42’59.1′′E), Estonia (Figure 1a), which is the division of the Estonian
Ministry of Agriculture. Over 2.1 hectares of the variety performance trial (VPT) area were
involved in this study, and the area consisted of two soil types: Calcaric Cambisol and
Calcaric-Leptic Regosol [69]. The ARC experimental area had a temperate climate with an
average annual temperature of 5.3 ◦C, where the average daytime temperature was 9.5 ◦C,
and 0.8 ◦C as night temperature. The annual precipitation was 75 cm. The daily climograph
of the study area (see Figure A1) shows precipitation and temperature fluctuations for the
crop growing period from April to August 2019. The experimental fields consisted of three
commonly cultivated crop categories and their regular cropping combinations in Estonia
(Figure 1b), i.e., Field 1: spring wheat (SW) (Figure 1c), as representative of the uniform
variety planting field; Field 2: pea and oat mixture (P + O); and Field 3: spring barley with
under-sowing red clover (SB + RC) (Figure 1b) as representative of the mixed planting fields.
All three fields are part of common crop rotation with a spatial and temporal arrangement.

The experimental strategy was established to aid in the recognition of physiological
parameters and comparison of yield abilities of the selected varieties and their combinations
under three forms of agriculture management practices (AMP): (1) soil tillage methods
(STM); (2) cultivation methods (CM); and (3) manure applications (MA), as well as to
demonstrate appropriate farming methods to local farmers. Figure 2 shows the AMPs
and their specific arrangement in SW, P + O, and SB + RC fields. Every field comprised
72 plots, with a total of 216 plots. Based on considerations of budget limitations, labor
shortages, excessive scope, and repetitiveness, the sampling of grain yield was taken from
56 out of 72 plots (n = 56), and straw biomass was sampled from 24 out of 72 plots (n = 24)
specific from the disking and ploughing (DP) area (Figure 2). The harvesting took place on
5 August 2019 in field SB + RC and on 16 August 2019 in fields SW and P + O. The fresh
grain and biomass were weighed by plot and dried to verify the dry grain yield and fresh
straw mass measured in kilograms per hectare. However, regarding the mixture P + O
field, the total weight of the two crops was calculated, while in the SB + RC field only the
SB grain yield and straw mass.

2.2. Hyperspectral Image Data Collection

Airborne measurements were carried out in Kuusiku Agricultural Research Centre on
18 June 2019 using hyperspectral imager HySpex (Norsk Elektro Optikk AS (NEO), Oslo,
Norway) owned by Estonian Marine Institute and operated by the Estonian Land Board.
HySpex was flown at an altitude of 900 m which resulted in a spatial resolution of 40 cm
(Figure 1a). The spectral resolution of HySpex is approximately 2.69 nm (216 spectral bands
ranging from visible to near-infrared with centers between 409 nm and 989 nm). The day
was sunny with a wind speed of 2.6 m/s, average air temperature of 10 ◦C. Regarding the
growth stages of the main crops on the flight date, spring wheat, spring barley, and oat
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were approximately in the booting to heading stage. The mixed crops, i.e., field pea and
red clover were in the reproductive growth stages and the flowing stage, respectively.

Raw HySpex image data were converted into units of spectral radiance (W m−2 nm−1 sr−1)
using Rad software developed by the NEO. PARGE (Parametric Geocoding, ReSe Applica-
tions Schäpfler, University of Zurich) geo-coding software was used for geo correction of the
flight lines utilizing accurate altitude and location measurements provided by the GPS/INS
unit. The captured Hyspex flight line used in this study is shown in Figure 2. Atmo-
spheric influence at such a low altitude was considered minimal and therefore atmospheric
correction was not applied to the imagery.
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Figure 1. Airborne push-broom hyperspectral image in the Agricultural Research Centre (ARC), Ku-
usiku, Estonia. (a) Hyperspectral image with the band combination: band 83 (630 nm), band 47 (532 nm),
and band 22 (465 nm) light in. (b) The experiment fields of this study, where Field 1 (F1): spring wheat
(SW), Field 2 (F2): pea and oat mixture (P + O), and Field 3 (F3): spring barley with under-sowing
red clover (SB + RC). The interpretation diagrams represent on-site (c) single variety planting SW, and
(d) mixed planting SB + RC.
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Figure 2. The structure of agriculture management practices (AMPs) and the sampling method of
grain yield and straw mass in the SW, P + O, and SB + RC fields. The AMPs contain three treatments:
1. soil tillage method (STM), 2. cultivation method (CM), and manure application (MA), where
the grain yield (n = 56) (black striped rectangle box) and straw mass (n = 24) (grey rectangle box).
To guarantee that the training area contained all combinations of AMPs, each field was split into
training and testing areas equally from the center. The special arrangements of AMP categories and
the sampling method were the same in the three fields.

2.3. Hyperspectral Image Processing

Most hyperspectral processing techniques now employ commercial software such
as Erdas Imagine, ENVI, or the MATLAB hyperspectral toolbox [70]. These technologies
are often expensive and can have limited statistical analysis capabilities. Therefore, we
employed a new package that was built on the open-source software R in 2019. The
hyperspectral data analysis (Hsdar) package incorporates several important hyperspectral
capabilities from the HyperSpec package [71], with an emphasis on the analysis of large
data sets collected in the field for vegetation remote sensing. It is available at https:
//CRAN.R-project.org/package=hsdar (accessed on 20 July 2021) on the Comprehensive R
Archive Network (CRAN).

In our study, hyperspectral data were reconstructed into a class named ‘Speclib’ to offer
a framework for handling huge sets in R. This allows the user to store three-dimensional
(3D) cube data together with extra adding information into a matrix. This matrix, together
with the wavelength information can then be utilized in the Hsdar software and used to
manage subsequent calculations. A Savitz-ky-Golay filter (method “sgolay”) with a length
of 15 nm was used in the initial preprocessing stage to reduce noise from the spectra. By
fitting a polynomial function to the reflectance data, the filter minimizes noise and removes
minor discrepancies between adjacent bands. These noise-reduced hyperspectral data
were calculated zonal statistics and converted to a (216 (wavelength bands) multiplied by
216 (plot Shapefile)) table. This table was then subsequently used for preliminary correlation
analysis between grain yield and straw mass with the mean wavelength reflectance value
into plot level (Figure 3A). The correlation analysis results of each narrowband band can be
utilized as a consideration in the following selection of narrowband vegetation indexes.

https://CRAN.R-project.org/package=hsdar
https://CRAN.R-project.org/package=hsdar
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Figure 3. The flowchart of the hyperspectral image processing and AutoML framework was utilized
in this study. (A) The hyperspectral image processing framework where hyperspectral imager HySpex
was conducted and R Hsdar package was employed in the processing steps. (B) Field reference data
transformation, ARC field were digitized based on each field and following AMP treatments. The
grain yield and straw mass data were collected according to plots. Eight narrowband VIs were
selected and calculated and segmented into corresponding plot digital numbers (DN) for AutoML
modelling. (C) To achieve robust performance, the Auto-sklearn framework automatically built ML
pipelines that were provided by the Bayesian optimization method with warm-started meta-learning
and combined with a post hoc ensemble building strategy (Adapted with permission from ref. [62]
2019 Springer).

2.4. Narrowband Vegetation Index

Optical indices for chlorophyll estimation studies have focused on analyzing re-
flectance in specific narrow bands, ratios, combinations, and the properties of derivative
spectra to minimize extraneous factor changes and increase sensitivity to chlorophyll con-
tent [6]. In this study, we targeted VIs that were sensitive to canopy structure, biochemistry,
and physiology, and those that might potentially indicate variance in grain yields and
biomass in our study. Pigments (i.e., chlorophyll a, chlorophyll b, and carotenoids) exhibit
varied spectral behavior from an optical standpoint, with specific absorption properties
at different wavelengths [72]. Therefore, we employed pre-defined indices in the Hsdar R
package to automatically fit provided wave-length positions and compute corresponding
VIs to reduce the intricacy of computation and boost the repeatability of this research
(Table 1).
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During our study, the Normalized Difference Vegetation Index (NDVI) was adopted
based on it is sensitivity to green leaf area or green leaf biomass, and it can be used to
monitor photosynthetically active vegetation biomass distribution using linear combina-
tions of red and infrared radiances [73]. However, it is crucial to note that NDVI has a
saturation effect at richer vegetation covers [74]. To solve the probable saturation problem,
NDVI2 was applied with its ability to adequately determine chlorophyll in the presence of
a high-pigment concentration background [75]. The renormalized difference vegetation
index (RDVI) narrow band was employed in this study due to its capacity in identifying
mixture phytomass in grassland [76]. The prospect for using the Transformed Chlorophyll
Absorption in Reflectance Index (TCARI) in an operational remote sensing situation in
the context of precision agriculture was investigated. The R700/R670 ratio was chosen
to reduce the combined impacts of underlying soil reflectance and non-photosynthetic
materials. The changes in reflectance characteristics of background materials (soil and non-
photosynthetic components) and the R700/R550 ratio are strongly connected to differences
in background materials [6,77]. Soil-Adjusted Vegetation Index (SAVI) was conducted to
reduce soil-induced fluctuations in vegetations using a transformation approach to de-
crease soil brightness impacts by counting red and near-infrared wavelengths from spectral
data [78]. Optimized Soil-Adjusted Vegetation Index (OSAVI) with two types of reflectance
combinations (OSAVI and OSAVI2) was selected for its simplicity of use in the context of de-
ployable observations on agricultural landscapes, as its estimation requires no knowledge
of soil optical properties, and it also provided the best results for most crops [79], as well as
the distinction of tillage effects in an economically RGB UAV application [80]. In addition,
the choice of Simple Ratio (SR) narrow-band indices (R515/R550), different from chloro-
phyll pigment content detection, was based on its feasibility to predict carotene content on
hyperspectral imagery in heterogeneous canopies [81]. Carotenoid concentrations reveal
important information about plant physiological state [82], and offering a heterogeneous
VI source may improve model predictability and minimize collinearity.

Table 1. Descriptions and formulae of narrowband VIs were utilized in this study. Narrowband VIs
were calculated, which were closest to the wavelengths given in the original Hsdar R package references.

Vegetation Index Description Equation Reference

NDVI Normalized Difference Vegetation Index (R800 − R680)/(R800 + R680) [73]

NDVI2 Normalized Difference Vegetation Index 2 (R750−R705)/(R750 + R705) [75]

OSAVI Optimized Soil Adjusted Vegetation Index (1 + 0.16) × (R800 − R670)/(R800 + R670 + 0.16) [79]

OSAVI2 Optimized Soil Adjusted Vegetation Index 2 (1 + 0.16) × (R750 − R705)/(R750 + R705 + 0.16) [83]

RDVI Renormalized Difference Vegetation Index (R800 − R670)/
√

(R800 + R670) [84]

SR Simple Ratio R515/R550 [81]

SAVI Soil-Adjusted Vegetation Index (1 + L 1) × (R800 − R670)/(R800 + R670 + L) [78]

TCARI Transformed Chlorophyll Absorption
Reflectance Index ((R700 − R670) − 0.2 × (R700 − R550) × (R700/R670) [6]

1 L, a soil brightness adjustment factor (L) established as 0.5 to suit the majority of land cover types for the SAVI index.

These narrowband VIs were computed and saved in TIFF file format (https://www.
adobe.io/open/standards/TIFF.html accessed on 15 July 2021), which were then utilized to
extract spatial information in the SW, P + O, and SB + RC experimental fields. For extraction,
a total of 216 plots were digitized in ArcGIS Pro [85]. Average VIs across every plot were
extracted and determined at each plot at the research location, while one-meter buffer
zones were calculated inwards from each plot boundary to eliminate unexpected boundary
effects. Considering the potential variances in the treatment of each AMP, we divided the
field from the center of the area into training and testing areas equally, ensuring that the
training area contained all combinations of AMPs (Figure 2). These collected parameters
were then utilized in this study to create AutoML algorithms for estimating and evaluating
grain production and straw mass.

https://www.adobe.io/open/standards/TIFF.html
https://www.adobe.io/open/standards/TIFF.html
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2.5. AutoML Regression with Auto-Sklearn

This study employed the robust and frequently updated AutoML system, Auto-
sklearn, based on the scikit-learn ML library in Python [86]. It employs 15 classifiers, 14 fea-
ture processing, and four data pre-processing methods, yielding a 110-hyperparameter
structured hypothesis space [62,87]. It offers an advancement on existing AutoML ap-
proaches by incorporating prior performance on comparable datasets and generates en-
sembles from the models that were examined throughout the optimization procedure
(Figure 3C). This technique involves the largely configurable ML prototype with the auto-
matically generated ML pipelines, i.e., feature selection (deleting trivial features), transfor-
mation (reducing dimensionality), and hyperparameter optimization based on Bayesian
optimization strategy sequential model-based algorithm configuration (SMAC) [88]. Fol-
lowing that, a Random Forest [89] approach was utilized for fast cross-validation, assessing
one-fold at a time and eliminating poor-performing hyperparameter configurations during
the initial phases. The Random Forest approach delivers a superior accuracy rate, as well as
alternative pipeline operators that boost regression performance within the datasets [62,90].

All computations in this study were performed on an Intel Core i5-1035G1 CPU
(1.00 GHz) with 16 GB RAM utilizing the LINUX open-source operating system. The pro-
cesses outlined in [62] were executed for the AutoML framework. To begin with, the system
employs a supplemental technique based on widely used meta-learning procedures to train
machine learning models over the statistical features of datasets and evaluates the model
parameters that produce the greatest performance [91]. Second, the system creates ensem-
bles of the models that Bayesian optimization examined, using high-performing regressors
and pre-processors employed within the ML framework. Finally, the program works a
wide range of empirical examinations on a diverse set of data to determine whether the Au-
toML regression offers better outcomes than previous regressions. However, any strongly
correlated VIs should be eliminated during the feature selection step to avoid the effects of
collinearity. Since Auto-sklearn works with low-dimensional optimization issues [92], this
step was bypassed in this stage. Table 2 lists the principal AutoML regression parameters
employed in this study. To perform tests, as a demonstration of the practicability and
efficiency of AutoML model selection, CPU timing for each task was restricted to 30 s, and
the runtime for assessing a single model to 10 s. The analyses were performed separately
for each of the crop fields, with grain yield consisting of 56 plots (n = 56) and straw mass
divided in the training and test sites (0.5/0.5) for regression modelling (Figures 6 and 7).

Table 2. The AutoML regression parameters and descriptions that were employed in this study.

Parameter Name Range Value Description

time_left_for_this_task 30 s The time restriction for seeking suitable models.
per_run_time_limit 10 s The maximum amount of time a single call to the ML model could perform.

ensemble_size 50 (default) Several models were added to the ensemble from Ensemble libraries.
ensemble_nbest 50 (default) The amount of best models for building an ensemble model.

resampling_strategy CV; folds = 3 (CV = cross-validation); to deal with overfitting
seed 47 Used to seed SMAC.

training/testing split (0.5; 0.5) Data partitioning way

Note: Other options and parameters that aren’t shown in the table were set to default.

2.6. Model Evaluation

The assessment was carried out for the prediction of AutoML models (Figures 6 and 7).
Performance evaluation approaches proposed by [19,93] were utilized to evaluate each
model. The coefficient of determination (R2) (Equation (1) and normalized root means
square error (NRMSE) (Equation (2)) were used to evaluate the models’ accuracy. The
following are the equations that were used:

R2 = 1− ∑(ŷi − yi)
2

∑(yi − y)2 (1)
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NRMSE =

√
∑((ŷi − yi)

2)/n

∆y
(2)

where: yi is the training dataset’s ith observation value represents the observation value;
y denotes the training dataset’s mean value; ŷi denotes the model predictions, n denotes
the number of observations; and ∆y represents the difference between the training dataset’s
lowest and highest values.

3. Results
3.1. The Field Observation DM Data Analysis

The average actual grain yield and above ground straw mass data (fresh and dry)
gathered from the SW, P + O, and SB + RC experimental regions are displayed in the
violin plot (Figure 4), where we exhibited the range of grain yield and straw mass data
and assembled them by fields since the treatments were interspersed within each plot. In
addition, we opted to examine at dry and fresh weight separately since the accumulated
rainfall of 4.1 mm (in SW and P + O fields) and 0.4 mm (in SB + RC fields) in the three days
before the two harvests (on 16 August 2019, and 5 August 2019, respectively) may have
contributed to increased fresh weight with additional water content.
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grouped by spring wheat (SW), pea and oat mixture (P+O), and spring barley with under-sowing 
Figure 4. Violin plots of mean harvest results of fresh and dry (a) grain yield and (b) straw mass,
grouped by spring wheat (SW), pea and oat mixture (P + O), and spring barley with under-sowing
red clover (SB + RC) fields. White dots represent the median, while thick black bars in the center
demonstrate interquartile ranges, and black lines represent the remainder of the distribution. The
shape of the violins shows point density and data distribution as a whole.

3.2. The Hyperspectral Reflectance Signature under Various Agriculture Management Practises

Figure 4 displays a mean reflectance plot produced from hyperspectral data of SW,
P + O, and SB + RC fields, with enclosed subsets categorized by (Figure 5A) soil tillage
method (STM) and (Figure 5B) cultivation method (CM) agricultural operations. Regard-
ing agricultural management practices, the wavelength bands between 700–750 nm and
760–900 nm had significant identification capabilities, while the 400–700 nm region showed
little differentiation between management practices. The cultivation method (Figure 4B)
provides greater recognition ability (separation) in this range when compared with STM
spectral information (Figure 5A). In terms of crop types, spring wheat monocropping
seemed to give a better ability to recognize AMPs, followed by mixed cropping systems
SB + RC and P + O fields. However, since the focus of this study was on grain yield
and biomass prediction, we omitted the narrowband VIs wave range based on the strong
absorption bands near 760 nm and excluded them from subsequent AutoML analyses.
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3.3. Characterization of the Correlation Coefficient with Averaged Radiance Hyperspectral Data
and Field Observation

Correlation Coefficient (r) was used as exploratory analysis in our study and as a
reference for subsequent modelling. Figure 5 shows the correlation coefficients (r) between
each averaged hyperspectral narrow-band data with the dry mass (Figure 6A) and fresh
mass (Figure 6B) at the plot level. The pattern of positive r values was typically obtained
with reflectance between 750–940 nm wavelengths, whereas the strong negative corre-
lation with reflectance was between 500–700 nm. Moreover, we also observed that the
correlation of straw mass (red line) was stronger than grain yield (blue line) at all fields
in the 750–1000 nm range. By comparison, the results showed that, in the patterning of
r curves, SW was closely associated with highly positive and negative r values in dry
mass (Figure 6A), while with the lower correlation nearby the oxygen absorption peak
was 760 nm. This tendency was observed in our previous reflectance signature analysis
as well. Among the three fields, P + O had the least correlation. Regarding the fresh mass
(Figure 5B), the correlation and spectral characteristics were comparable to the weight of
the dry mass. Except for 740–750 nm, SW had overall the strongest correlation, followed by
SB + RC and P + O.

3.4. The AutoML Model Prediction and Evaluation

In this study, the narrowband VIs reflectance of grain yield (n = 56) and straw mass
(n = 24) based on training/testing (0.5/0.5) principles were used for AutoML modelling,
respectively. The AutoML framework was used to test the appropriate combinations of
data set parameters throughout the modelling process. Scatter plots representing model
predictions and observed weight values (kg ha−1) were compared to the coefficient of
the determination (R2) and normalized root means square error (NRMSE) along with the
1:1 line.

Figure 7 shows the regression plots of fresh (Figure 7A) grain yield (kg ha−1) and
(Figure 7B) straw mass (kg ha−1) in SW, P + O, and SB + RC fields based on narrowband
VIs and AutoML methods. The results indicated that, in fresh grain yield (Figure 7A),
the AutoML model had the lowest prediction errors (NRMSE = 0.13) and the highest
R2 value (0.95) in SW field, followed by SB + RC field (NRMSE = 0.16, R2 = 0.88) and
P + O (NRMSE = 0.16, R2 = 0.88). Even though the three models functioned well, there
was a minor non-uniform bias found within the models, with an underestimation of grain
yields in areas with higher output in SW and SB + RC fields. On the other hand, for
fresh straw mass, the SW field remains the best performing among the other fields with
(NRMSE = 0.16, R2 = 0.88) followed by the SB + RC field (NRMSE = 0.27, R2 = 0.77) with
uniform overestimation bias, and P + O (NRMSE = 0.25, R2 = 0.56) (Figure 7B). Among
them, P + O’s prediction ability was insufficient, and the reference data collected were
concentrated in the 3000 to 5000 (kg ha−1) interval, which makes the regression model
unable to be effectively extended.

Figure 8 demonstrates the behavior of predictive models utilizing dry (A) grain
yield (kg ha−1) and (B) straw mass (kg ha−1) in SW, P + O, and SB + RC fields based
on narrowband VIs and AutoML methods. The results specified that, in summary, SW
yielded the best performance for dry grain yield (NRMSE = 0.12, R2 = 0.96) and straw mass
(NRMSE = 0.15, R2 = 0.89) among SB + RC, and P + O files (Figure 8A). Compared with
the fresh mass model, the dry performance was better in general, especially in the dry
straw model of SB + RC (NRMSE = 0.33, R2 = 0.86) and P + O (NRMSE = 0.24, R2 = 0.83)
(Figure 8B), although these two models had a larger degree of bias under the comparison
of 1:1 slope.
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Figure 5. Mean radiance plot derived from hyperspectral data of spring wheat (SW), pea and oat
mixture (P + O), and spring barley with under-sowing red clover (SB + RC) fields, grouped by (A) soil
tillage method (STM) and (B) cultivation method (CM) farming operations with contained subsets.
The wavelength ranges from the visible to near-infrared (VNIR, 400–1000 nm).
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Figure 7. Regression plots of (A) fresh grain yield (kg ha−1) and (B) fresh straw mass (kg ha−1) in
SW, P + O, and SB + RC fields based on narrowband VIs and AutoML methods. The horizontal axis
in the scatter plots represents the model’s projected grain yield or straw mass, while the vertical axis
represents field-observed data. Where the R2 = coefficient of determination, NRMSE = normalized
root represents the squared error, while the 1:1 slope is shown by the black dotted line.
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3.5. The AutoML Model Pipeline Visualization 
An interactive AutoML visualization tool PipelineProfiler [94] was used in this study 

(Figure 9). To simplify the description, we only list the best regression modelling results 
across two crop fields (SW and SB+RC) with the evaluation performance of AutoML pipe-
line execution times set at 30 s, the primitive comparison against other regressors in the 
same pipeline, and real-time hyperparameter selections. The results confirmed that the 
best regressor found for dry grain yield was automatic relevance determination (Ard) Re-
gression [95] for the SW field (Figure 9A), and for the SB+RC field, it was the Random 
Forest [89] (Figure 10A), while for dry straw mass, it was Gaussian Process [96] (Figure 

Figure 8. Regression plots of (A) dry grain yield (kg ha−1) and (B) dry straw mass (kg ha−1) in SW,
P + O, and SB + RC fields based on narrowband VIs and AutoML methods. The horizontal axis in
the scatter plots represents the model’s projected grain yield or straw mass, while the vertical axis
represents field-observed data. Where R2 = coefficient of determination, NRMSE = normalized root
means squared error, and the black dotted line exemplifies the 1:1 slope.

3.5. The AutoML Model Pipeline Visualization

An interactive AutoML visualization tool PipelineProfiler [94] was used in this study
(Figure 9). To simplify the description, we only list the best regression modelling results
across two crop fields (SW and SB + RC) with the evaluation performance of AutoML
pipeline execution times set at 30 s, the primitive comparison against other regressors
in the same pipeline, and real-time hyperparameter selections. The results confirmed
that the best regressor found for dry grain yield was automatic relevance determination
(Ard) Regression [95] for the SW field (Figure 9A), and for the SB + RC field, it was the
Random Forest [89] (Figure 10A), while for dry straw mass, it was Gaussian Process [96]
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(Figure 9B) for the SW field, and Ard Regression for the SB + RC field (Figure 10B), with all
hyperparameters found by AutoML also displayed in the figures.
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Figure 9. The interactive AutoML pipeline matrix plots with thirty-second running-time limits
sorted by coefficient of determination (R2) performance (A,B). (A) Spring wheat (SW) dry grain yield
pipeline matrix with the Top1 regressor, automatic relevance determination (Ard) regression, where
(A1) illustrated Primitives (in columns) used by the pipelines (A2) the blue line (in rows) showed the
best R2 rank); (A3) one-hot-encoded hyperparameters (in columns) for the primitive across pipelines,
(A4) R2 performance ranking of AutoML pipelines; (A5) Primitive contribution view demonstrating
the correlations between pipeline scores and primitive usage are displayed in A5. The Gaussian
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Process showed the highest correlation score regarding R2 performance; (A6) step-by-step AutoML
Pipeline algorithm flowchart, where the box before the output represents the regressor of the model
(in A6 Ard regression as the regressor). (B) Spring wheat (SW) dry straw mass field pipeline matrix
with the Top1 regressor, Gaussian Process.
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Remote Sens. 2022, 14, 1114 18 of 26

red clover (SB + RC) dry grain yield pipeline matrix with the Top1 regressor, Random Forest. The
rows display a blue line representing the best R2 rank followed by its hyperparameters settings;
(B) SB + RC dry straw mass pipeline matrix with the Top1 regressor, Ard regression, followed by its
hyperparameters settings.

3.6. The Field Observation DM Data Analysis

Based on the AutoML models provided above (Figures 7 and 8), a series of prediction
maps were generated (Figure 11) for dry grain yield and straw mass for SW, P + O,
and SB + RC experimental sites at the plot level. Furthermore, the SW and P + O fields’
prediction capabilities were 60 days before the harvest date (18 June–16 August), whereas
the SB + RC field’s estimating was 49 days before harvest (18 June–5 August).
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Figure 11. The spatial prediction mapping output of (A) dry grain yield (kg ha−1) and (B) dry straw
mass (kg ha−1) in SW, P + O, and SB + RC fields based on their respective AutoML prediction models
at the plot level. The performing coefficient of determination (R2) is displayed in the previous results.

4. Discussion

This research demonstrated an automatic, open-sourced, rapid, and non-destructive
framework by using hyperspectral narrow-band vegetation indexes under regular mono-
and mixed cultivation for crop grain yield and straw mass modelling. Since the investiga-
tion was carried out under a diversity of agricultural management practices, the methods
and findings can profoundly aid agronomists and farmers in designing accurate cropping
systems to enhance environmental assessment.

4.1. The Effect of Hyperspectral Signatures and the Correlation between Crop Yield and Straw Mass

The initial goal of this study was to conduct an exploratory evaluation of the hy-
perspectral reflectance signature and determine the ideal narrowband VIs for modelling
common crop types and farming schedules in Northern Europe. To identify redundant
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bands and establish wavebands that could best help AutoML regression modelling, the
VIs were first chosen based on prior knowledge of the literature and then filtered by the
reflectance signature (Figure 5) and their Correlation Coefficients with yield and biomass
(Figure 6). Although there was no general focus on a formal classification analysis in our
current study, the characteristics of hyperspectral data under different agricultural practices
(i.e., STM, CM, and MA) are still worthy of attention.

Figure 5 reveals that, in general, because chlorophyll absorption is not limited to the
center wavelength but also affects adjacent bands, we can see that reflectance values in
the blue and red sections are significantly reduced, resulting in “absorption characteris-
tics” in the spectral signature of the reflectance in all spectral results. In addition, all the
reflection spectra showed obvious absorption peaks at 760 nm. This spectral region is
influenced by atmospheric oxygen [97,98] and, therefore, this region was avoided while
calculating VI’s. Additionally, from the results, the wavelength range 750–900 nm (NIR)
had strong recognition capabilities based on the variation of reflection intensity; however,
the 400–700 nm (visible bands) region was inefficient and offered little separation or dis-
cernment. The differentiation on spectra at the wavelength range of 750–900 nm suggested
that the interior leaf structure, biochemical concentration, and water content of the target
vegetation are different. A previous study pointed out that the diversity of NIR regions is
usually caused by differences in internal leaf structure [99]. However, reflectance variation
at the canopy level may be due to additional factors like LAI, canopy design, and backdrop
soil [100]. These results will be valuable for further classification activities in agriculture
management recognition.

The coefficients correlation (r) of each narrow-band with both grain yield and straw
mass exhibited a similar pattern of r curves for both dry (Figure 6A) and fresh weight
(Figure 6B) analysis, yet r in absolute values for the P + O field was observed to be less
correlated than those for grain yield and straw mass, especially in the fresh weight. This is
because the P + O field was mixed cultivation and the source of weight is the sum of the
two crops and the amount of precipitation before harvesting may indirectly bring about a
lower degree of correlation. Interestingly, while the findings of these linear correlation tests
all showed that the straw mass has a stronger link with the spectrum, it does not depend
on the empirical model’s degree of fit (see Figures 7 and 8). Hence, we discovered that
grain yield (R2) had a superior goodness-of-fit performance than straw mass in general,
with lower NRMSE.

4.2. The Hyperspectral Narrowband VIs and AutoML Modelling

Despite the opportunities afforded by hyperspectral systems to collect a multitude
of spectrum data, extracting the relevant important wavelengths from a data cube can be
challenging [101]. In our study, we used hyperspectral narrowband VIs as predictors for
AutoML modelling. However, we avoided selecting narrowband VIs with spectrums that
might be affected by atmospheric oxygen. With this in mind, the target VIs selected for
analysis were extracted, calculated, and processed in the modelling stage, which reduced
processing and storage demands.

Based on the empirical AutoML regression model, the estimation capacity of hy-
perspectral narrowband VIs was exceptional. The best coefficient of determination for
mono-cultivated wheat was 0.96, for mixed peas and oats was 0.76, and for mixed legumes
and spring barley was 0.88. In terms of straw mass estimation, they were 0.98, 0.83, and
0.86 respectively. We determined that the prediction ability of dry weight was typically
greater than that of fresh weight, especially in fields where mixed peas and oats, which
was 27 per cent higher. This demonstrated that the crop water content has an influence on
the model’s estimation outputs to a certain extent.

According to a previous study, spectral measurements were taken during the Tillering
II and Heading phases in wheat yielded the best results for estimating biophysical factors
using narrowband VIs [42]. This is consistent with our recommended flight time. In
addition, different band combinations can be effectively utilized since crop circumstances
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change according to factors such as management conditions and soil characteristics. Others
have demonstrated that piecewise multiple regression models on narrow bands provide
for greater flexibility in selecting the bands that provide the most information at a given
stage of crop development [102]. This viewpoint has also been confirmed in our research.

4.3. The AutoML Method’s Applicability and Impact in Hyperspectral Imaging

In this study, we employed an AutoML framework to assist in self-regulating, instinc-
tive regression operations, as well as enhancing challenging hyperparameter adjustments.
This method advances the use of hyperspectral imaging in farm-scaled environmental and
crop phenotypic activity and possesses several advantages.

Firstly, the flexibility of implementation. With the ever-increasing variability of remote
sensing systems and the requirement for empirical model choices, the constraints of ad-
justing unidentified background parameters are being addressed. This means that many
existing models that have been under-optimized in the past now have the chance to be
re-modelled using artificial intelligence-based machines to relearn the performance tasks.

Secondly, the alleviation of learning costs. Experience tells us that computer learning
for remote-sensed images frequently necessitates a large number of samples and a lengthy
learning period, i.e., deep learning [103–105]. This is incompatible with conventional
agricultural experimental sampling procedures, which are limited by personnel, the com-
plexity of the experiment design, and the number of repetitions. While, AutoML practices
the Random Forest (RF) method [89] for fast cross-validation, testing one-fold at a time
and weeding out underperformance hyperparameter choices, for example, the combined
algorithm selection and hyperparameter optimization (CASH) problems [62]. It boasts
novel pipeline operators that increase the goodness of fit of datasets significantly. The RF
approach is well-known for assessing lower sample sizes and increasing the performance of
small datasets. [89,106]. In addition, the AutoML framework quickly provided promising
regressors and hyperparameter selections. In our research, each run of the regression model
only took thirty seconds of learning time. This considerably improves learning efficiency,
the ability to find an appropriate formula in the time allotted, and reduces the requirement
for machine learning expertise [87,107].

Thirdly, the capacity of innovation. It is noticeable that random forest (RF), support
vector machine (SVM), and artificial neural network (ANN) algorithms are among the
most widely employed ML techniques in a wide range of recent remote sensing-based
studies [108]. Their practicality and performance have been confirmed by many, but equally,
there are still other similarly applicable ML methods that may have been shelved. As shown
in Figures 9 and 10, the Ard regressors [109,110] and Gaussian Processors [96] were chosen
as the best regressors for the grain yield and biomass tasks. These algorithms have received
less attention and reference in remote sensing studies. These results indicated that AutoML
can uncover alternative ML methods that would otherwise be overlooked by investigators
when working with regression subjects.

4.4. The Limitations in This Study

The location, soil types, chosen crop categories, and varieties present may be restricted
in this study. In addition, it is important to note that we did not address yield comparisons
under different agricultural management approaches since the intricacy of the experimental
design may have led to inadequate sampling numbers, as well as possible interaction effects.
However, we have presented a framework that can be applied to numerous test regions and
the necessity to moderately reduce the number of samples by using AutoML. In addition,
due to the limits of the current Auto-Sklearn system, not all regressors performed could be
backtracked in our research to explore the individual feature importance ranking, which
limits their capacity to aid in the selection of suitable VIs. However, our attempts to
provide a wide range of continuous and selectable narrow-band spectral information (over
216 spectral bands) resulted in improved performance.
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5. Conclusions

Our study highlights the capability of hyperspectral analysis for yield and biomass
prediction in complex design fields through the use of two significant open-sourced soft-
ware systems: the R language hyperspectral processing package and Python’s Auto-Sklearn
machine learning technology. The performance evaluation with several types of hyper-
spectral vegetation indicators we employed to characterize crop production and straw
mass was satisfactory. We suggest they can be further applied to other crop biophysical
characteristics. The VIs we suggest, as well as automatic narrowband VI calculation, might
minimize data redundancy and cleaning time, as well as the computational power hard-
ware requirements. It is also envisaged that further agricultural cultivation practices could
be classified using hyperspectral imaging in the NIR spectral region (750–900 nm) with
considerable discernible changes in reflectance spectra.

However, the aerial hyperspectral platform utilized in this study may be less cost-
effective than fixed-wing or rotary-wing drone systems, which may be more viable for
farm-scale exploration. Comprehensive and contemporaneous phenotypic information of
products under various agri-environment schemes, as well as their field-based biochemical
conditions, reminds us of further challenges which likely exist for remote sensing technol-
ogy to overcome. Nevertheless, hyperspectral imaging combined with complementary
modelling precision, the abundance of spectrum selection flexibility, and extensive flight
coverage still have an important role at this stage.

In conclusion, our research focused on the integration and implementation of the
hyperspectral imaging and AutoML framework approach with various crop types under
multifunctional agriculture management fields in response to crop biomass/yield esti-
mation. Under common crops and cultivation in most Nordic countries, it will provide
agricultural decision-makers with professional yield estimation and sustainable agricul-
tural management advice. The study also revealed that the anticipated yield may be
advanced two months before harvest. That is, spring wheat, spring barley, and oat were
approximately in the booting to heading stage, field pea was around the reproductive
growth stages, and the red clover field was in the flowering stage (49 days before in our
case). The emergence of the AutoML system has helped to increase the application and
effectiveness of remote sensing-based data analysis technology. However, more research
and experiments will be required in the future to advance and validate the automatic
learning framework’s true potential and usage.
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