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Abstract: Aiming at the difficult problem of the classification between flying bird and rotary-wing
drone by radar, a micro-motion feature classification method is proposed in this paper. Using K-
band frequency modulated continuous wave (FMCW) radar, data acquisition of five types of rotor
drones (SJRC S70 W, DJI Mavic Air 2, DJI Inspire 2, hexacopter, and single-propeller fixed-wing
drone) and flying birds is carried out under indoor and outdoor scenes. Then, the feature extraction
and parameterization of the corresponding micro-Doppler (m-D) signal are performed using time-
frequency (T-F) analysis. In order to increase the number of effective datasets and enhance m-D
features, the data augmentation method is designed by setting the amplitude scope displayed in T-F
graph and adopting feature fusion of the range-time (modulation periods) graph and T-F graph. A
multi-scale convolutional neural network (CNN) is employed and modified, which can extract both
the global and local information of the target’s m-D features and reduce the parameter calculation
burden. Validation with the measured dataset of different targets using FMCW radar shows that
the average correct classification accuracy of drones and flying birds for short and long range
experiments of the proposed algorithm is 9.4% and 4.6% higher than the Alexnet- and VGG16-based
CNN methods, respectively.

Keywords: radar target classification; micro-motion; flying bird; rotor drone; frequency modulated
continuous wave radar; data augmentation; multi-scale convolutional neural network

1. Introduction

Bird strikes refer to incidents of aircraft colliding with birds while taking off, landing or
during flight, which is a traditional security threat. Recently, “low altitude, slow speed and
small size” aircraft, e.g., small rotor drones, have been developing rapidly [1–3]. There have
been successive incidents of trespassing drones in many airports, which would seriously
threaten public safety. Monitoring the illegal flying of drones and the prevention of bird
strikes have become challenging problems for several applications, e.g., airport clearance
zone surveillance, important event or place security, etc. [4–6]. One of the key technologies
is classification of the two kinds of targets, as people need to tell them apart for the following
different precautions. Radar is an effective means of target surveillance; however, there is
still a lack of effective methods for identification of drones and flying birds via radar.

They are non-rigid targets and the rotation of the drone’s rotor and the flapping of the
bird’s wings will introduce additional modulation sidebands near the Doppler frequency
of the radar echo generated by the translation of the main body, which is called the micro-
Doppler (m-D) effect [7–9]. The micro-motion characteristics are closely related to the
type, motion state, radar observation parameter, environment and background, etc. [10,11].
Therefore, m-D is an effective characteristic for the classification of drones and flying
birds, which can improve the ability of fine feature description [12–15]. However, the
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internal relationship of complex motions and environmental factors is sometimes difficult
to describe clearly by means of mathematical models and parameters. Moreover, as a key
step, the feature extraction requires a large amount of data, and the features are mostly
manually designed, which makes it difficult to obtain the essential features. At present,
for the m-D feature classification, methods based on neural network algorithms show
high accuracy [16]. Compared with methods such as empirical mode decomposition
(EMD) [14], principal component analysis (PCA) [15], and linear discriminant analysis,
deep convolutional neural networks (DCNN) can directly learn and obtain effective features
from the original data. This has received great attention and is widely used in the field of
pattern recognition [17].

CNNs, as the most classical method of deep learning, have been widely used in image
detection and classification [18,19], which has two important properties: local connection
and weight sharing. However, it is easy for a CNN to learn some useless feature information,
which will lead to over-fitting problems with worse generalization performance [20–22].
There is large-scale periodic modulation information in the micro-motion features, as well
as small-scale details and small motions. In order to learn the two features, the depth of
the traditional CNN model should be as deep as possible, resulting in a sharp increase in
training parameters, which is not conducive to real applications. Therefore, determining
how to retain useful feature information while suppressing invalid feature information
is important for the feature extraction and classification of complex moving targets. In
addition, the completeness and quantity of the radar dataset are critical to the training of
deep learning network models. Using traditional image augmentation methods to expand
the dataset, such as image rotation, cropping, blurring and adding noise, the dataset can
be expanded to a certain extent, but it cannot fundamentally obtain additional effective
features. As the amount of similar expanded data increases, more and more similar data in
the dataset will also lead to overfitting and poor generalization. For micro-motions, the
time-frequency (T-F) graph of the echo is often used as the learning feature, while the time
domain characteristic along the range and time direction is often ignored, which limits
further improvement of classification accuracy. Therefore, it is necessary to find a simple
and efficient method of dataset augmentation for radar micro-motion classification.

In this paper, the classification of flying birds and rotary-wing drones is analyzed
based on multi-feature fusion, i.e., the range profile, range-time/modulation periods
and m-D features (T-F graph). Based on K-band frequency-modulated continuous wave
(FMCW) radar [23,24], micro-motion signal measurement experiments were carried out
for five different sizes rotary drones and flying birds, i.e., the SJRC S70 W, DJI Mavic
Air 2, DJI Inspire 2, hexacopter, and single-propeller fixed-wing drone, and bionic and
seagull birds. Based on the proposed data augmentation method, by setting the color
display amplitude of the T-F graph and combining the range-time/periods features, the
m-D dataset of flying birds and rotary wing drones was constructed. A multi-scale CNN
model is employed [25,26] and modified with other modules for learning and classification
of micro-motion features of different types of targets, which can extract global and local
information of m-D features. The data augmentation and modified multi-scale CNN model
can effectively solve the problem of the small amount of sample data for radar target
classification, and at the same time enhance the feature information of micro-motion targets.
At the same time, the process of deep learning is greatly simplified with fewer parameters,
and efficient and accurate target motion classification can be realized.

The structure of the paper is as follows. In Section 2, the m-D signal model of the
flying birds and rotary-wing drones is established, which lays the foundation for the
subsequent feature extraction and micro-motion parameter estimation. In Section 3, micro-
motion signal acquisition and the dataset construction method are introduced. Section 3.1
introduces the K-band FMCW radar and its basic working principles; Section 3.2 introduces
the proposed data augmentation method; Section 3.3 the micro-motion characteristics of
different types of drones and flying bird are analyzed based on the collected data; and
Section 3.4 describes the composition and quantity of the dataset. Description of the
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proposed multi-scale CNN model and detailed flowchart of the m-D feature extraction and
classification method are given in Section 4. Finally, in Section 5, detection experiments are
carried out using the target dataset and the multi-scale model. The experimental results
show that the proposed method has better classification accuracy and generalization ability
compared with popular methods, e.g., AlexNet [27] and VGG16 [28]. The last section
concludes the paper and presents future research directions.

2. Radar M-D Model of Flying Bird and Rotor Drone
2.1. M-D Signal of Flying Bird

Flying bird with flapping wings is a typical non-rigid target with joints [29]. For the
kinematic model of the flapping wing of a bird, it is assumed that the wings have two
interconnected parts, i.e., the elbow joint and the wrist joint. In Figure 1, the elbow joint
is used to connect the upper arm and the forearm, and the wrist joint is used to connect
the forearm and the hands. The elbow joint can only swing up and down on a fixed plane
of one motion axis; the wrist joint can swing and circle around two vertical motion axes
respectively. The flapping angle and torsion angle of the wings are both expressed by a
general sine and cosine function.
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Figure 1. Flying bird flapping motion model. (a) The front view; (b) The top view.

The relationship of the wingtip linear velocity with time is established. We ignore the
influence of the upper arm on the angular velocity, and the upper arm and forearm are
analyzed as a whole. The flapping angle of the upper arm and forearm are

ψ1(t) = A1 cos
(

2π fflapt
)
+ ψ1 (1)

ψ2(t) = A2 cos
(

2π fflapt
)
+ ψ2 (2)

where A1 and A2 are the swing amplitude of upper arm and forearm, f flap is the flapping
frequency and ψ1 and ψ2 represent the delay of the flapping angle.

The torsion angle of the forearm is

ϕ2(t) = C2 cos
(

2π fflapt
)
+ ϕ2 (3)

where C2 is the flapping amplitude of the forearm and ϕ2 is the delay of the torsion angle.
Furthermore, the angular velocity and the linear velocity of the wingtip can be ob-

tained. The angular velocity is expressed as

ωψ(t) =
d
dt

ψ2(t) = −2πA2 fflap sin
(

2π fflapt
)

(4)

ωϕ(t) =
d
dt

ϕ2(t) = −2πC2 fflap sin
(

2π fflapt
)

(5)



Remote Sens. 2022, 14, 1107 4 of 25

Therefore, the linear velocity of a bird’s wing tip can be expressed as

vψ(t) = (L1 + L2)ωψ(t) = −2(L1 + L2)πA2 fflap sin
(

2π fflapt
)

(6)

vϕ(t) = (L1 + L2)ωϕ(t) = −2(L1 + L2)πC2 fflap sin
(

2π fflapt
)

(7)

where L1 and L2 are the length of upper arm and forearm, respectively, and L1 + L2 is the
half length of the bird’s wingspan, i.e., half the wingspan.

For ordinary birds, the flight speed, flapping angle and other factors are quite similar,
but for different birds such as swallows and finches, the motion state and wingspan
length are different. The flapping wing frequency and wingspan length of flying birds are
important factors that affect the m-D signal.

2.2. M-D Signal of Rotor Drone

The echo signal of the rotary-wing drone is represented by sum of the Doppler of main
body and the m-D of the rotor components. The main body motion is mainly modelled
as having uniform or accelerated motion. The significant difference in m-D characteristics
between the rotation and the flapping motion provides the basis for the classification. A
fixed space coordinate system (X, Y, Z) and a fixed object coordinate system (x, y, z) are
established, which are parallel to each other, and the radar and rotor center positions are
respectively located at the original point of the two coordinate systems. In addition, the
rotor blade is regarded as composed of countless scattering points. During the movement
of the rotor drone target, the scattering point in the rotor rotates around the center of the
rotor at an angular velocity ω. The azimuth and pitch angles of the rotor relative to the
radar are α and β, as shown in Figure 2.
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Figure 2. The geometric diagram of radar and quadrotor drone. 
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Figure 2. The geometric diagram of radar and quadrotor drone.

The echo signal of the multi-rotor drone is composed of the main body of the drone
and the m-D signal of the rotor components. For the former one, it does not contribute
much to the classification features and can be removed by compensation methods, so it is
not considered in the paper. The rotor echo reflecting the micro-motion characteristics can
be regarded as the sum of multi-rotor echoes together. Based on the helicopter single-rotor
signal model, the echo of multi-rotor drone can be represented as follows [7].

s∑(t) =
M

∑
m=1

l0 exp
[
−j4π

(R0,m + Z0,m sin βm)

λ

]N−1

∑
k=0

sin c
[

4π

λ

l0
2

cos βm cos
(

ωmt + ϕ0,m +
2(k− 1)π

N

)]
exp

[
−jΦk,m(t)

]
(8)
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and the phase function is

Φk,m(t) =
4π

λ

l0
2

cos βm cos(ωmt + ϕ0,m + 2kπ/N)(k = 1, 2, . . . , N; m = 1, 2, . . . , M) (9)

where M is the number of rotors; l0 is the length of rotor blades; R0,m is the distance from
the radar to the center of the mth rotor; Z0,m is the height of the mth rotor blade; βm is the
pitch angle from the radar to the mth rotor; N is the number of single rotor blades; ωm is
the frequency of the rotation angle; and ϕ0,m is the initial rotation angle of the mth rotor.

Correspondingly, the m-D frequency of the kth blade of the mth rotor is

fm,k(t) = −
l0ωm

λ
cos βm sin(ωmt + ϕ0,m + 2kπ/N) (10)

It can be seen that the m-D frequency is modulated in the form of a sine function, and is
also affected by radar parameters, blade length, initial phase and pitch angle. As the drone
rotor rotates, the linear velocity at the tip of the blade is the largest, so the corresponding
Doppler frequency is also the largest, and the maximum m-D frequency is

fmax =
2vtip

λ
cos β =

2l0ω

λ
cos β =

4l0πn
λ

cos β (11)

where vtip is the blade tip linear velocity, ω is the rotational angular velocity (rad/s) and n
is the rotational speed of the rotor blade (r/s, revolutions per second).

Based on Equation (11), the length of the rotor blade can be estimated as follows

l0 =
fmaxλ

2ω cos β
(12)

3. M-D Data Collection and Classification
3.1. Data Augmentation via Adjusting T-F Graph Display Scope and Feature Fusion

The main parameters of the K-band FMCW radar used in this paper are shown in
Table 1. A higher working frequency will result in a more obvious m-D signature. The
modulation bandwidth related to the range resolution and longer modulation period means
more integration time with longer observation range. The parameter of −3 db beamwidth
indicates the beam coverage.

Table 1. Main parameters of the K-band FMCW radar.

Parameters Value

Working frequency 23.8 GHz
Modulation bandwidth 10 MHz~2 GHz

Modulation period 0.2 ms~40 ms
Transmitting power 10 dBm
−3 db beamwidth Azimuth: 16 degree; Elevation: 12 degree

Figure 3 shows the data acquisition and signal processing flowchart of K-band FMCW
radar. The processing results obtained after data acquisition are shown in Figure 4, which
are a one-dimensional range profile (after demodulation), range-period graph, range-
period graph after stationary clutter suppression and T-F graph of the target’s range unit.
Figure 4c,d can accurately reflect the location and micro-motion information of the target,
which are also the basis of the following m-D dataset.
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The measurement principle of FMCW (triangular wave) radar for detecting relative
moving target is shown in Figure 5. ft is the transmitted modulated signal, fr is the received
reflected signal, B is the signal modulation bandwidth, f 0 is the initial frequency of the
signal, f d is the Doppler shift, T is the modulation period of the signal, and τ is the time
delay. For FMCW radar (triangular wave modulation mode), the range information and
speed information between the radar and the target can be measured by the difference
frequency signal ∆ fa and ∆ fb of the triangular wave for two consecutive cycles [23].
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Then, the received signal after demodulation can be written as

SM × N = {s(i, j)|i = 1, 2, . . . , M; j = 1, 2, . . . , N} (13)

where M represents the number of range unit and N is the samplings during the
modulation periods.

The feature selection of target’s signal includes high-resolution range-period and m-D
features. The former can reflect the property of radar cross section (RCS) and the range walk
information. The latter can obtain the characteristic of the vibration and rotation of the target
and its components. At present, moving target classification usually uses T-F information,
while the characteristics of range profile and range walk are ignored. Moreover, it cannot
bring in additional effective features using traditional image augmentation methods, such
as image rotation, cropping, blurring, and adding noise. It only generates similar images
with the original images, and as the increment of expanded dataset, the similar data will
also lead to network overfitting and poor generalization. In this paper we proposed three
methods for effective data enhancement.

In Method 1, the display of range unit in the range-time/period graph is selected and
focused on the target location to obtain the most obvious radar m-D characteristics of flying
birds and rotary drones.

In Method 2, the amplitude scope displayed in T-F graph is adjusted to enhance the
m-D features, and then the detail features of m-D are more obvious in the spectrum.

In Method 3, the above two methods can be combined together, i.e., adjusting different
range units and setting different amplitude scopes. The advantage of the proposed data
augmentation is that more different data can be fed into the classification model, and more
feature information can be learned from the m-D signals.

The detailed data augmentation is described as follows:
Step 1: The target’s range unit is selected from the range-time/period graph, and T-F

transform is performed on the time dimension data of a certain range unit to obtain the
two-dimensional T-F graph, i.e., STFTs(t, ω).

STFTs(t, ω) =
∫ +∞

−∞
SM×N(u)g(u− t)e−jω(u−t)du (14)

where SM×N(u) is the demodulated signal or the signal after MTI processing, g(u− t) is a
movable window function and the variable parameter is the window length of the STFT.
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Step 2: The amplitude is firstly normalized to [0, 1]. For the obtained range-time/period
graph and T-F graph, the dataset is expanded by changing the display scope (spectrum
amplitude). By controlling the color range display of the m-D feature in the T-F graph and
the range-time/period graph, the m-D feature of the target and the range walk information
can be enhanced or weakened.

The data in the range-time/period graph and T-F graph can be regarded as an array C,
which is displayed by imagesc(C, clims). The color range (spectrum amplitude) is specified
as a two-element vector of the form clims =[cmin cmax]. According to the characteristic
display of the graph, different color ranges can be set appropriately to obtain different
number of datasets. Take the drone as an example: set the color display for the range-
periods graph to [A, 1] and specify the value of A as 0.01, 0.0001, and 0.00001. Then, the
range-periods graph drawn in dB is shown in Figure 6. The drone target is located at 1 m,
and different amplitude modulation features are given. Set the color display range for the
T-F graph to [B, 1] and specify the values of B as 0.01, 0.0001 and 0.00001, respectively. The
dataset augmentation of the T-F graph drawn in dB is shown in Figure 7.
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Step 3: The dataset is performed by cropping, feature fusion and label calibration.
Based on the original range-period graph and T-F graph, select an area containing the

target micro-motion feature for cropping, and the cropped image contains the target micro-
movement feature in the uniform size. Feature fusion is to merge the range-period graph
and T-F graph of the cropped image, which contains the target’s micro-motion features.
The width of the range-period graph and T-F graph are consistent with the categories
of different micro-motions. Then, label calibration of the dataset after feature fusion is
performed for unified size. The feature fusion processing is shown in Figure 8.
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3.2. Datasets Construction

We selected civilian-grade large, medium and small drones as typical rotary drones,
i.e., the SJRC S70 W, DJI Mavic Air 2, DJI Inspire 2, six-rotor drone (hexacopter) and single-
propeller fixed-wing drone, and flying bird targets (bionic and seagull birds). Figure 9 and
Table 2 show the photos and main parameters of the different targets.
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Figure 9. Pictures of different categories of drones and flying bird.

Table 2. Target parameters of different types of birds and drones.

Types Name Abbreviation Type * Number of
Rotors

Length of
Rotor (cm)

1 Hexacopter H Q 6 38
2 DJI Inspire 2 I Q 4 38
3 Fixed-wing drone F P 2 30
4 DJI Mavic Air 2 M Q 4 22
5 SJRC S70 W S Q 4 23
6 Flying bird B B 2 # 22 #

* Type “Q” is for quadrocopter, “P” is for plane, “B” is for bird. # The target parameters of the bird are expressed
as the number of wings and half the length of the bird’s wingspan.

The M-D dataset of different types of drones and flying birds is shown in Table 3
and Figure 10. The construction of the micro-motion dataset mainly includes two parts:
data preprocessing and data augmentation. The preprocessing mainly performs stationary
clutter suppression via MTI (sometimes MTI is not a necessary step). The dataset can be ex-
panded by setting the energy display amplitude of different m-D features. Cut the effective
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information of the range-periods and m-D spectrogram separately, and then combine the
time-range information and the time-Doppler information to realize enhancement of the
micro-motion features. In order to achieve the training of the CNN model, it is necessary to
modify the dataset, remove the scale and colorbar of the horizontal and vertical axes of the
input images, and normalize their sizes.

Table 3. The composition of the micro-motion classification dataset (Each data lasts about 0.4 s).

Types
Data Training Data Validation Data Testing Data

Mavic Air 2 720 180 40
Inspire 2 720 180 40

SJRC S70 W 720 180 40
Hexacopter 720 180 40
Fixed-wing 720 180 40
Flying bird 720 180 40

Total 4320 1080 240
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3.2.1. M-D Analysis of Small Drones, i.e., Mavic Air 2 and Inspire 2

The experimental scene is shown in Figure 11. According to the measured m-D
characteristic image of the rotor drone in Figure 12, it can be seen that the echo intensity
mainly located at zero frequency and its surroundings is very strong, which reflects the
main body motion and micro-motion. The T-F graph of the “Inspire 2”, i.e., Figure 12b, has
clearer m-D features than that of the “Mavic Air 2” in Figure 12a.

Figure 13 shows the m-D characteristics of Mavic Air 2 at different distances, i.e., 3 m,
6 m, 9 m and 12 m. As the distance increases, the m-D characteristics caused by the rotor
are gradually weakened and its maximum Doppler amplitude is decreased, which is due
to the weakening of the rotor echo. Although the m-D signal has been weakened, the
reflection characteristics of the root of the rotor are still obvious, which is shown as a small
modulation characteristic near the frequency of the main body’s motion.
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ping wings of a bird can be effectively observed by the experimental radar. According to 
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3.2.2. M-D Analysis of Flying Birds

Due to the maneuverability of the real flying bird, the amount of bird radar data is
limited. This paper collects two types of bird data: one is the indoor experiment using a
bionic bird that highly simulates the flapping flight of real bird, and the other is the outdoor
experiment for a real seagull bird. The subjects of the indoor experiment are a single bird
and two birds with flapping wings, which is shown in Figure 14. The m-D characteristics
are shown in Figure 15a,b. It can be found that the m-D effect produced by the flapping
wings of a bird can be effectively observed by the experimental radar. According to the
waveform frequency and maximum Doppler of the m-D characteristic in the figure, we can
further estimate the wingspan length and flapping frequency of the bird. When simulating
the side-by-side flapping movement of two birds, the micro-motion characteristics in the
T-F domain may be overlapped.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

 
(c) (d) 

Figure 13. The m-D characteristics of Mavic Air2 at different distances. (a) 3 m; (b) 6 m; (c) 9 m; (d) 
12 m. 

3.2.2. M-D Analysis of Flying Birds 
Due to the maneuverability of the real flying bird, the amount of bird radar data is 

limited. This paper collects two types of bird data: one is the indoor experiment using a 
bionic bird that highly simulates the flapping flight of real bird, and the other is the out-
door experiment for a real seagull bird. The subjects of the indoor experiment are a single 
bird and two birds with flapping wings, which is shown in Figure 14. The m-D character-
istics are shown in Figure 15a,b. It can be found that the m-D effect produced by the flap-
ping wings of a bird can be effectively observed by the experimental radar. According to 
the waveform frequency and maximum Doppler of the m-D characteristic in the figure, 
we can further estimate the wingspan length and flapping frequency of the bird. When 
simulating the side-by-side flapping movement of two birds, the micro-motion character-
istics in the T-F domain may be overlapped. 

 
(a) (b) 

Figure 14. The indoor experimental scene of bionic flying birds. (a) Single bird; (b) Two birds. Figure 14. The indoor experimental scene of bionic flying birds. (a) Single bird; (b) Two birds.

The outdoor experiment for real bird micro-motion signal acquisition is carried out.
The observation distance is 3 m and other parameters remain unchanged. The obtained
m-D characteristics of real bird flight are shown in Figure 16. According to the T-F graph,
the m-D effect of the flapping wings can be observed as well and there are both similarities
and differences of m-D features between the real birds and bionic bird. The similarity
lies in the obvious periodic characteristics of the micro-motions, with longer interval and
stronger amplitude, which are also distinctive features from drone targets. The difference
is that m-D signal of the real bird is relatively weak due to the far distance, and there are
some subtle fluctuations. However, the overall micro-motion characteristics different from
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the rotary-wing drones are obvious, and therefore the indoor and outdoor bird data are
combined together as the overall dataset for further training and testing.
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3.2.3. M-D Analysis of Fixed-Wing Drone

Figure 17 shows the micro-motion characteristics of the fixed-wing drone. In order
to better analyze the influence of different observation angles on the m-D, results of three
observation angles, i.e., side view, front view, and up view, are provided respectively. The
following conclusions can be drawn by comparison.

• When the radar is looking ahead, the echo is the strongest (Figure 17b), with very
obvious Doppler periodic modulation characteristics. Due to the low rotation speed,
the micro-motion period is significantly longer than that of the rotary-wing drone.

• Compared Figure 17b,c, i.e., different observation elevation angles, it can be seen
that there is an optimal observation angle for radar detection of the target. When the
observation angle changes, the m-D characteristics will be weakened to a large extent
and the micro-motion information would be partially missing. In addition, when the
radar is observing the target vertically (side view Figure 17a), the radial velocity of the
blade towards the radar is the biggest, which results in the maximum Doppler effect
compared to the other two angles.

• Due to the large size of the fixed-wing drone and the blades, the main body echo
and the m-D characteristics of the blades are significantly stronger than those of the
rotary-wing drone and the flying bird.

• As the blade speed increases, the micro-motion modulation period becomes shorter
and part of the micro-motion feature is missing.
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Figure 17. M-D characteristics of fixed wing drone for different observation views. From the side
view, range 2.3 m: (a1) Low speed; (a2) High speed; (a3) Scene photo. From the front view range 4 m:
(b1) Low speed; (b2) High speed; (b3) Scene photo. From the up view, range 8 m: (c1) Low speed;
(c2) High speed; (c3) Scene photo.

3.2.4. M-D Analysis of Hexacopter Drone

Figure 18 shows the m-D characteristics of the six-axis rotor drone, i.e., hexacopter,
at two distances. Figure 18a,c shows a range versus modulation periods graph. It can be
clearly seen that there are obvious echoes around 11.5 m and 8.5 m, respectively, and the
radar range resolution is 7.5 cm (bandwidth is 2 GHz). Under high-resolution conditions,
due to the rotation of the rotors, the drone’s echo occupies multiple range units and
exhibits obvious periodic changes. Due to the different lengths and sizes of the rotors,
various extended range units and modulation periods characteristics can be reflected in
the range-periods graph, which verifies the usefulness of the range-period information.
Due to the multiple rotors and the fast rotation speed, the micro-motion components in
the T-F graph (Figure 18b,d) overlap with each other. The positive-frequency of micro-
motion characteristics caused by the rotation of the rotor, i.e., towards the radar, are more
obvious than the other part. Large rotors would result in obvious periodic modulation
characteristics near the main body, which is also helpful for subsequent classification.
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3.3. The Modified Multi-Scale CNN Model

This paper proposes a target m-D feature classification method based on the modified
multi-scale CNN [25], which uses multi-scale splitting of the hybrid connection structure.
The output of the multi-scale module contains a combination of different receptive field
sizes, which is conducive to extracting the global feature information and the local infor-
mation of the target. Firstly, a single-layer convolution kernel with a 7 × 7 convolutional
layer is used to extract features from the input image, and then a multi-scale network
characterization module is employed. The 1 × 1 convolution kernel is used to adjust the
number of input channels, so that the next multi-scale module can perform in-depth feature
extraction. The structure of the multi-scale CNN model is shown in Figure 19, which is
based on the residual network module (Res2 Net). The filter bank with a convolution kernel
size of 3 × 3 is used to replace the 1 × 1 convolutional feature map of n channels. The
feature map after 1 × 1 convolution of two channels is divided into s feature map subsets,
and each feature map subset contains n/s number of channels. Except for the first feature
map subset that is directly passed down, the rest of the feature map subsets are followed by
a convolutional layer with a convolution kernel size of 3× 3, and the convolution operation
is performed.

The second feature map subset is convoluted, and a new feature subset is formed and
passed down in two lines. One line is passed down directly; and the other line is combined
with the third feature map subset using a hierarchical arrangement connection method and
sent to the convolution to form a new feature map subset. Then, the new feature map subset
is divided into two lines; one is directly passed down, and the other line is still connected
with the fourth feature map subset using a hierarchical progressive arrangement and sent
to the convolutional layer to obtain other new feature map subsets. Repeat the above
operations until all feature map subsets have been processed. Each feature map subset
is combined with another feature map subset after passing through the convolutional
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layer. This operation will increase the equivalent receptive field of each convolutional layer
gradually, so as to complete the extraction of information at different scales.
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Figure 19. The multi-scale CNN structure. The right picture is an enlarged view of the SE module.

Use Ki() to represent the 3 × 3 output of the convolution kernel, and xi represents the
divided feature map subsets, where i ∈ {1, 2, . . . , s} and s represents the number of feature
map subsets divided by the feature map. The above process can be expressed as follows

y1 = x1
y2 = K2(x2)
y3 = K3(x3 + y2) = K3[x3 + K2(x2)]
y4 = K4(x4 + y3) = K4(x4 + K3[x3 + K2(x2)])

(15)

Then the output yi can be expressed as

yi =


xi
Ki(xi)
Ki(xi + yi−1)

i = 1
i = 2

2 < i ≤ s
(16)

Based on the above network structure, the output of the multi-scale module includes
a combination of different receptive field sizes via the split hybrid connection structure,
which is conducive to extracting global and local information. Specifically, the feature map
after the convolution operation with the convolution kernel size of 1× 1 is divided into four
feature map subsets; after the multi-scale structure hybrid connection, the processed feature
map subsets are combined by a splicing method, i.e., y1 + y2 + y3 + y4. A convolutional layer
with convolution kernel size 1 × 1 is used on the spliced feature map subsets to realize the
information fusion of the divided four feature map subsets. Then, the multi-scale residual
module is combined with the identity mapping y = x.
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The squeeze excitation (SE) module is added after the multi-scale residual module,
and then the modified multi-scale neural network residual module is completed. The
structure of the SE module is given in the right of 0. For a feature map with a shape of (h,
w, c), i.e., (height, width, channel), the SE module first performs a compression operation,
and the feature map is globally averaged in the spatial dimension to obtain a feature vector
representing global information. Convert the output of the multi-scale residual module
h × w × c into the output of 1 × 1 × c. The second is the incentive operation, which is
shown as follows.

S = Fex(z, W) = σ[g(z, W)] = σ[W2 × δ(W1 × z)] (17)

where δ(W1 × z) represents the first fully connected operation (FC), the first layer weight
parameter is W1 whose dimension is c × c/r, r is called the scaling factor.

Here, let r = 16, its function is to reduce the number of channels with less calculations,
and z is the result of the previous squeeze operation with the dimension 1 × c. g(z, W)
represents the output result after the first fully connected operation. After the first fully
connected layer, the dimension becomes 1 × 1 × c/16, and then a ReLu layer activation
function is added to increase the nonlinearity of the network, while the output dimension
remains unchanged. Then, it is multiplied by W2, i.e., weight of the second fully connected
layer. The output dimension becomes 1 × 1 × c and the output of the SE module is
calculated through the activation function Sigmoid.

Finally, the re-weighting operation is performed, and the feature weights S are multi-
plied to the input feature map channel by channel to complete the feature re-calibration
operation. This learning method can automatically obtain the importance of each feature
channel, increase the useful features accordingly and suppress the features useless for the
current task. The multi-scale residual module and the SE module are combined together
and with 18 such modules the modified multi-scale network is formed. The combination
of the multi-scale residual module and the SE module can learn different receptive field
combinations and retain useful features, and suppress invalid feature information, which
greatly reduces the parameter calculation burden. Finally, we add a three-layer fully con-
nected layer. It is used to map the effective features learned by the multi-scale model to the
label space of the samples; moreover, the depth of the network model is increased so that it
can learn refined features. Compared with the global average pooling, the fully connected
layer can achieve faster convergence speed and higher recognition accuracy.

By setting the parameter solving algorithm Adam, the nonlinear activation function
ReLU, the initial learning rate 0.0001, the training round (Epoch) 100 and other parameters,
the dataset is trained. After training for one round, a verification is performed on the
verification set until the correct recognition rate meets the requirements, and the network
model parameters are saved to obtain the suitable network model. The final test is to
input the test data not involved in training and verification into the trained network model
to verify the effectiveness and generalization ability of the multi-scale CNN model. By
calculating the ratio of the number of samples correctly classified in the test dataset to the
total number of samples in the entire test set, the classification accuracy is obtained.

3.4. Algorithm Flowchart

The detailed flowchart of the classification method for flying birds and rotary-wing
drones based on the data augmentation and the multi-scale CNN is shown in Figure 20,
which is consisted of four parts, radar echo processing, m-D dataset construction, CNN
model training and model testing.
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4. Experimental Results

All models are implemented on a PC equipped with 16 G memory, a 2.5 GHZ Intel(R)
Core (TM) i5-8400 CPU and an NVIDIA GeForce GTX1050Ti GPU. In the experiment,
we use the Adam algorithm as an optimizer, ReLu as the activation function and the
cross entropy as cost function. The initial learning rate is set to 0.0001 and the number
of iterations is 100. In addition, to prevent the overfitting problem, dropout is applied to
improve model generalization ability. The size of the extracted spectrogram was 560 × 420
and normalized to 100 × 100 for data training in order to increase the computational speed.

Using the proposed method and the other popular CNNs, e.g., Alexnet and VGG16,
the classification performance for five types of rotary-wing drones and flying bird is given
by the confusion matrix under the conditions of relative short range (SNR > 0 dB) and
relative long range (SNR < 0 dB). According to the analysis of Section 5.4, the detection
probability of SNR = 0 dB is about 86.3% (normal value), therefore we choose 12 m as the
boundary and when the range is farer than 12 m, it is called relative long range and vice
versa. K-fold cross-validation method is employed in order to obtain a reliable and stable
model [30] (K = 5 in this paper). For shorter range, Tables 4–6 show the confusion matrix of
Alexnet, VGG16 and the proposed method for six targets, and the number of test samples
for each type of target is 40. The true class is along the top. Target A judged as other types
are represented in gray, i.e., there is no mutual judgment error; pink is the samples judged
correctly; green color represents the cases of wrong classification, and dark green means
more than one mistake.
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Table 4. Confusion matrix of Alexnet for relative short range (average classification accuracy 89.6%).

Method Mavic Air 2 SJRC S70 W Inspire 2 Hexacopter Fixed-Wing Flying Bird

M 32 2 1 1 0 0
S 4 32 1 4 0 0
I 1 1 38 0 0 0
H 3 5 0 35 1 0
F 0 0 0 0 38 0
B 0 0 0 0 1 40

Table 5. Confusion matrix of VGG16 for relative short range (average classification accuracy 94.6%).

Class Mavic Air 2 SJRC S70 W Inspire 2 Hexacopter Fixed-Wing Flying Bird

M 35 1 0 0 0 0
S 2 36 1 2 0 0
I 1 0 39 0 0 0
H 2 3 0 38 1 0
F 0 0 0 0 39 0
B 0 0 0 0 0 40

Table 6. Confusion matrix of the proposed method for relative short range (average classification
accuracy 99.2%).

Class Mavic Air 2 SJRC S70 W Inspire 2 Hexacopter Fixed-Wing Flying Bird

M 39 1 0 0 0 0
S 1 39 0 0 0 0
I 0 0 40 0 0 0
H 0 0 0 40 0 0
F 0 0 0 0 40 0
B 0 0 0 0 0 40

It can be seen from Tables 4 and 5 that it is difficult to distinguish the Mavic Air 2,
SJRC S70 W and Hexacopter, and there are many wrong classification cases. Figure 21b–d
shows the range-periods graph and T-F graph, which indicates that the three types of
targets all have the micro-motion characteristics of the rotor. Because of the fast speed,
the T-F graph is densely distributed with short period. However, there are also subtle
differences. For example, the Hexacopter has a wide range of m-D spectrum and obvious
micro-motion peaks, while the micro-motion spectrum of the Mavic Air 2 is concentrated
around −200 Hz~200 Hz, due to its small rotor size. If better classification ability is needed,
the network is required to be able to learn both of large-scale periodic modulation features
and small-scale micro-motion features. Compared with Alexnet, the classification accuracy
of the CNN based on VGG16 is higher, i.e., from 89.6% to 94.6%, but for small drones,
there are still classification errors. Fixed-wing drones have a small number of rotors and
exhibit obvious echo modulation characteristics. The Hexacopter drone has many rotors
with larger size, and therefore it occupies more range units in the time domain (the white
box in Figure 21b), which are also effective features different from small drones. Then,
the modified multi-scale CNN is used to split the hybrid connection structure at multiple
scales, so that the output of the multi-scale module contains a combination of different
receptive field sizes, which is conducive to extracting the global and local information of
the target features. The classification accuracy probability is increased to 99.2%.
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Figure 21. Range-periods and T-F graph for relative short range (4–8 m). (a) Fixed-wing; (b) Hexa-
copter; (c) SJRC S70 W; (d) Mavic Air 2.

For longer ranges, the confusion matrices are shown in Tables 7–9. As the target echo
gets weaker, the m-D characteristics also become inconspicuous. Therefore, for Alexnet, it
is difficult to distinguish the three smaller sizes targets, i.e., the Mavic Air 2, SJRC S70 W
and Inspire 2, as shown in Figure 22b,c. At the same time, it is easy to judge the Hexacopter
as Mavic Air 2, because the spectrum broadening feature of the Hexacopter is not obvious,
as shown in Figure 22a. The proposed method can learn the weak and broadened spectrum
characteristics, thereby improving the classification probability to 97.5% compared with
the other two models, at 88.3% and 92.9%. Based on the above analysis, the proposed
method has a good classification ability for different types of rotary-wing drones, and can
distinguish flying bird targets as well.

Table 7. Confusion matrix of Alexnet for relative long range (average classification accuracy 88.3%).

Class Mavic Air 2 SJRC S70 W Inspire 2 Hexacopter Fixed-Wing Flying Bird

M 32 3 1 2 0 0
S 4 32 1 0 0 0
I 2 2 36 1 1 0
H 2 3 2 37 0 2
F 0 0 0 0 38 1
B 0 0 0 0 1 37

Table 8. Confusion matrix of VGG16 for relative long range (average classification accuracy 92.9%).

Class Mavic Air 2 SJRC S70 W Inspire 2 Hexacopter Fixed-Wing Flying Bird

M 34 1 1 2 0 0
S 3 37 0 0 0 0
I 2 2 37 2 0 0
H 1 0 2 36 0 0
F 0 0 0 0 40 1
B 0 0 0 0 0 39
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Table 9. Confusion matrix of the proposed method for relative long range (average classification
accuracy 97.5%).

Class Mavic Air 2 SJRC S70 W Inspire 2 Hexacopter Fixed-Wing Flying Bird

M 38 1 0 0 0 0
S 1 38 0 0 0 0
I 1 1 39 1 0 0
H 0 0 1 39 0 0
F 0 0 0 0 40 0
B 0 0 0 0 0 40
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5. Discussion
5.1. The Influence of Amplitude Display on Classification

The spectrum amplitude display is set from clim (10−2) to clim (10−6), and it is found
that the m-D spectrum becomes more and more significant. When the amplitude of the
spectrum was set to clim (10−6), the Doppler energy was found to be more divergent
and even some glitches appeared. On the contrary, when the amplitude of the spectrum
is at clim (10−2), the m-D feature disappears or is weakened. In addition, we construct
a dataset with different clim values to study the effect of spectrum amplitude display
on micro-motion classification. The comparison results of different clim are shown in
Table 10. One fold corresponds to the accuracy of each training. It can be observed that the
classification accuracy of target classification is getting higher and higher as the number of
dataset increases. It is noted that the expansion of the dataset plays a key role in improving
the accuracy of the target classification. One phenomenon we find is that the recognition
accuracy of clim (10−4) in the same dataset is higher than that without clim (10−4), such as
the recognition accuracy of C1 and C3 being higher than that of C2. The result shows that
the spectrum with clim (10−4) has the best m-D characteristics for m-D classification.
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Table 10. Classification accuracy results of the different clims.

Methods Dataset Fold 1 Fold 2 Fold 3 Average

C1 clim (10−3, 10−4) 96.96% 96.57% 96.61% 96.71%
C2 clim (10−3, 10−5) 95.42% 95.39% 95.40% 95.40%
C3 clim (10−4, 10−5) 96.11% 96.37% 96.96% 96.48%
C4 clim (10−3, 10−4, 10−5) 98.13% 97.26% 97.48% 97.62%
C5 clim (10−2, 10−3, 10−4, 10−5) 98.61% 98.28% 98.48% 98.46%
C6 clim (10−2, 10−3, 10−4,10−5, 10−6) 98.90% 98.65% 98.71% 98.75%

5.2. Classification Performance Using Feature Fusion Strategy

In order to further compare the impact of the feature fusion method proposed in
Section 3.1 on the classification performance, the results of the single range-period graph
dataset, the T-F graph dataset and the feature fusion dataset are compared, as shown in
Table 11. Each dataset is trained three times and averaged as the final classification accuracy.
Experiments show that the classification accuracy using feature fusion strategy is 31% and
6% higher than the classification accuracy of the single range-period graph and T-F graph
datasets, respectively.

Table 11. Classification accuracy results using feature fusion strategy.

Dataset
Training Times

1 2 3 Average

Range-period graph 65.20% 63.83% 67.61% 65.54%
T-F graph 90.34% 90.85% 90.27% 90.49%

Feature fusion 97.01% 96.9% 96.93% 96.94%

5.3. Classification Performance via Different Network Models

The superiority of the modified multi-scale network model structure is verified and
the two typical ResNet18 and Res2Net18 network models are compared under the same
conditions (the network layer depth is the same as 18 layers and the SE module is added).
The result is shown in Figure 23. The classification accuracy of Resnet, Res2Net and the
modified multi-scale network model on the validation set are as follows: 93.9%, 95.06% and
96.9%, respectively, indicating that the modified model has better classification accuracy.
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11. Each dataset is trained three times and averaged as the final classification accuracy. 
Experiments show that the classification accuracy using feature fusion strategy is 31% and 
6% higher than the classification accuracy of the single range-period graph and T-F graph 
datasets, respectively. 

Table 11. Classification accuracy results using feature fusion strategy. 

    Training Times 
Dataset 

1 2 3 Average 

Range-period graph 65.20% 63.83% 67.61% 65.54% 
T-F graph 90.34% 90.85% 90.27% 90.49% 

Feature fusion 97.01% 96.9% 96.93% 96.94% 

5.3. Classification Performance via Different Network Models 
The superiority of the modified multi-scale network model structure is verified and 

the two typical ResNet18 and Res2Net18 network models are compared under the same 
conditions (the network layer depth is the same as 18 layers and the SE module is added). 
The result is shown in Figure 23. The classification accuracy of Resnet, Res2Net and the 
modified multi-scale network model on the validation set are as follows: 93.9%, 95.06% 
and 96.9%, respectively, indicating that the modified model has better classification accu-
racy. 

 

Figure 23. Comparison of classification accuracy using different network models. Figure 23. Comparison of classification accuracy using different network models.
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5.4. Detection Probability for Different Ranges and SNRs

Since the radar used in this paper is a FMCW radar, the detection range for such low-
observable drones or birds is limited. In order to prove the universality of the proposed
method and further generalize the conclusions, the detection performance with different
signal-to-noise ratios (SNRs) of the returned signal is employed as a parameter to show
how far to detection the target instead of the range parameter. The SNR is defined as the
average power ratio of target’s range unit to the background unit in the range-period data.
Table 12 gives the detection probability of Mavic Air 2 under different SNRs. Its maximum
detection range is about 100 m according to the radar range equation. The data were
recorded for different ranges and we give the relation between the target’s location and
the SNR. The detection process is carried out in the two dimension data, i.e., range-period,
with the CA-CFAR, and the false alarm rate is 10−2. It should be noted that the relation is
only for Mavic Air 2 using the FMCW radar in the paper and we assume the target can be
detected for the following analysis of classification.

Table 12. Detection probability for different ranges (Mavic Air 2).

SNR = −6 dB
(About 50 m)

SNR = −3 dB
(About 20 m)

SNR = 0 dB
(About 12 m)

SNR = 2 dB
(About 8 m)

SNR = 5 dB
(About 6 m)

Detection
Probability 75.9% 80.7% 86.3% 93.2% 99.1%

It should be noted that the proposed algorithm is based on the correct detection of the
target (exceeding the threshold), and the obvious m-D characteristics. Therefore, the result
of clutter suppression and m-D signal enhancement would affect the classification results.
Although due to the low power of the FMCW radar and the small RCS of the drone, the
signal is weak and the detection range is relatively short, the conclusion can be applied to
other radars according to the SNR relations (Table 12).

6. Conclusions

A feature extraction and classification method of flying birds and rotor drones is
proposed based on data augmentation and a modified multi-scale CNN. The m-D signal
models of the rotary drone and flying birds are established. Multi-features, i.e., the range
profile, range-time/periods and m-D features (T-F graph), are employed and a data aug-
mentation method is proposed by setting the color display amplitude of the T-F spectrum
in order to increase the effective dataset and enhance m-D features. Using a K-band FMCW
radar, micro-motion signal measurement experiments were carried out for five different
sizes of rotary drones and one bionic bird, i.e., the SJRC S70 W, DJI Mavic Air 2, DJI Inspire 2,
hexacopter and single-propeller fixed-wing drone. Different observation conditions on the
impact of m-D characteristics, e.g., angle, distance, rotating speed, etc., were analyzed and
compared. The multi-scale CNN model was modified for better learning and distinguishing
of different micro-motion features, i.e., global and local information of m-D features. The
experimental results for different scenes (indoor, outdoor, high SNR and low SNR) show
that the proposed method has better classification accuracy of the five types of drones
and flying birds compared with popular methods, e.g., AlexNet and VGG16. In future
research, in order to better analyze the target classification performance for long distance
and clutter background, the coherent pulse-Doppler radar will be used and the target’s
characteristics, e.g., m-D, will be investigated. Further, the CNN may be more intelligent
with the intelligent systems, which enables truly intelligent processing and recognition [31].

7. Patents

The methods described in this article have applied for a Chinese invention patent: “A
dataset expansion method and system for radar micro-motion target recognition. Patent
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number: 2020121101990640”; “A radar target micro-motion feature extraction and intelli-
gent classification method and system. Patent number: 202110818621.0”.
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