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Abstract: The detection of collapsed buildings based on post-earthquake remote sensing images is
conducive to eliminating the dependence on pre-earthquake data, which is of great significance to
carry out emergency response in time. The difficulties in obtaining or lack of elevation information,
as strong evidence to determine whether buildings collapse or not, is the main challenge in the
practical application of this method. On the one hand, the introduction of double bounce features in
synthetic aperture radar (SAR) images are helpful to judge whether buildings collapse or not. On the
other hand, because SAR images are limited by imaging mechanisms, it is necessary to introduce
spatial details in optical images as supplements in the detection of collapsed buildings. Therefore, a
detection method for collapsed buildings combining post-earthquake high-resolution optical and
SAR images was proposed by mining complementary information between traditional visual features
and double bounce features from multi-source data. In this method, a strategy of optical and SAR
object set extraction based on an inscribed center (OpticalandSAR-ObjectsExtraction) was first put
forward to extract a unified optical-SAR object set. Based on this, a quantitative representation of
collapse semantic knowledge in double bounce (DoubleBounceCollapseSemantic) was designed to
bridge a semantic gap between double bounce and collapse features of buildings. Ultimately, the
final detection results were obtained based on the improved active learning support vector machines
(SVMs). The multi-group experimental results of post-earthquake multi-source images show that
the overall accuracy (OA) and the detection accuracy for collapsed buildings (Pcb) of the proposed
method can reach more than 82.39% and 75.47%. Therefore, the proposed method is significantly
superior to many advanced methods for comparison.

Keywords: remote sensing images; multi-source data; collapsed buildings; double bounce

1. Introduction

Timely and accurate evaluation of earthquake damages to buildings after earthquakes
is an important part of disaster surveillance [1]. Compared with traditional field survey
methods, the remote sensing technology that adopts a remote imaging mode has many
advantages, such as timely acquisition of information and not being limited by field
conditions, so it has become the main technical means for extracting earthquake damage
information of buildings [2,3].
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In recent years, the detection of buildings subjected to earthquake damages based on
remote sensing images has mainly focused on the identification of collapsed buildings [4,5].
The reason is that collapsed buildings are usually severely damaged and people are trapped
therein, which are primary targets in post-earthquake emergency response and rescue [6].
In complex post-earthquake scenarios, collapsed and non-collapsed buildings are generally
significantly different in the height. Therefore, introducing elevation information to tra-
ditional high-resolution remote sensing images can provide direct evidence support for
judging whether buildings collapse or not. Even so, the acquisition of digital elevation data,
such as light detection and ranging (LiDAR), usually requires extracting ground control
points, with high computation complexity and time costs. Therefore, it is difficult to meet
the timeliness requirements for the detection of collapsed buildings after earthquakes [7,8].
For this reason, it is necessary to design a reliable detection method for collapsed buildings
in the event of a lack of elevation data. In accordance with different data sources used,
detection methods for collapsed buildings can be classified into three categories as a whole:
(1) methods based on pre-earthquake and post-earthquake images; (2) methods based on
post-earthquake images; and (3) methods combining elevation data.

(1) Methods based on pre-earthquake and post-earthquake images: Such methods can
be used to evaluate the damage degree of buildings by extracting changes of typical
features from pre-earthquake/post-earthquake images [9]. Due to the introduction
of pre-earthquake data for reference, other ground objects with features similar to
collapsed buildings that have existed before earthquakes generally can be effectively
eliminated from detection results by using such methods. In spite of this, normal
urban evolution may also produce abundant changes in addition to earthquake impact.
Furthermore, the lack of pre-earthquake data after earthquakes is often the bottleneck
that restricts the popularization and application of such methods [10–12].

(2) Methods based on post-earthquake images: Such methods eliminate the dependence
on pre-earthquake data and have stronger universality compared with methods
based on pre-earthquake and post-earthquake images [13]. Collapsed buildings
are depicted by extracting manually defined or automatically extracted features
such as spectra, texture and space and thus an appropriate classifier is selected for
prediction [14]. Even so, the diversity of collapsed buildings and complexity of post-
earthquake scenarios lead to more prominent problems of different objects with the
same spectra and same object with different spectra, which requires establishing more
discriminative classification models. Furthermore, the lack of elevation information,
as the direct evidence to determine whether buildings collapse or not, is still the main
challenge in practical application of such methods [15].

(3) Methods combining elevation data: Based on remote sensing images, elevation infor-
mation provided by elevation data, such as LiDAR and digital elevation model (DEM),
is used in such methods as a strong basis for determining whether buildings collapse
or not [16–18]. Although remote sensing images are strongly complementary with
elevation data, it is not a common practice to specially collect and produce elevation
data only for the detection of collapsed buildings in practical application. In addition,
there is no reliable method for scanning and measuring collapsed buildings at present.

Compared with traditional machine learning, deep learning adopts a deep nonlinear
network structure to achieve an approximation of a complex function through hierarchical
learning, thus extracting advanced features [19]. In recent years, scholars have carried out
research on semantic segmentation of the deep learning technique Mask Region-Based
Convolutional Neural Network (Mask RCNN), and obtained a great deal of research
findings in remote sensing applications. For example, Li et al. [20] proposed a novel
Histogram Thresholding Mask Region-Based Convolutional Neural Network (HTMask
R-CNN), which utilized the significant differences between old and new buildings in
grayscale histogram to improve the classification ability of the model. Mahmoud et al. [21]
proposed an adaptive Mask RCNN framework to detect multi-scale objects in optical remote
sensing images. In this method, the standard convolutional neural network in Mask RCNN
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is replaced by ResNet50 to overcome the vanishing gradient problem. Zhao et al. [22]
proposed a method combining Mask RCNN with building boundary regularization, which
could produce better regularized polygons. In addition to building detection, many state-
of-the-art Mask RCNN semantic segmentations have been proposed for other applications.
For example, Bhuiyan et al. [23] developed a high-throughput mapping workflow to
automatically detect and classify ice-wedge polygons (IWPs). Witharana et al. [24] gauged
the influence of spectral and spatial artifacts on the prediction accuracies of CNN models
by using Mask RCNN. Despite this, at present, training is usually carried out using deep
learning methods based on training samples in specific areas, so the portability of the model
remains unclear. In the meantime, the production and manual annotation of sample sets
after earthquakes are very time consuming and laborious, which seriously restricts the
application of such methods in the detection of collapsed buildings.

In conclusion, machine learning methods based on post-earthquake images neither
rely on pre-earthquake data nor require a large number of training samples, so they have
unique advantages in usability and timeliness. In view of the lack of elevation information
in such methods, introducing the double bounce features can provide supplementary
information. Among different scattering contributions present in high-resolution synthetic
aperture radar (SAR) images, the double bounce (which is caused by the corner reflector
assembled by the front wall and its adjacent ground) with linear characteristics indicates
the presence of a building or other artificial target. However, the double bounce features are
influenced by the orientation angle of the buildings and the ground material, as well as the
polarization. Adamo Ferro demonstrated that the double bounce effect has a strong power
signature for buildings which have a wall on the side closest to the sensor almost parallel
to the SAR azimuth direction [25]. In polarized SAR images, the double bounce intensity of
cross polarization is usually weaker than that of co-polarization, and the double bounce
intensity decreases with the increase of the angle between the orientation of the buildings
and the polarized SAR azimuth direction. In the post-earthquake scenario, the collapse
of a building results in a reduction of the ‘ground-wall’ dihedral structure. The main
difference of the scattering mechanism before and after building collapse is the change from
the primary double-bounce scattering mechanism to the primary single-bounce scattering
mechanism. This is embodied in the real post-earthquake SAR data in which the double
bounce generally appears as a bright line parallel to the wall of a non-collapsed building.
In comparison, the double bounce of collapsed buildings is not significant or exhibits
disorderly distributed speckle noise [26]. To this end, by taking SAR and optical satellite
images after an earthquake in Sendai, Japan in 2011 as examples, different manifestations
of the double bounce of collapsed and non-collapsed buildings are displayed in Figure 1.
Therefore, double bounce may indirectly reflect the elevation information and improve the
accuracy of collapsed building detection.

However, SAR images inevitably have problems, such as lack of spectral information,
complex noise, and blur degradation, so it is not reliable to detect collapsed buildings
by only relying on SAR images. Meanwhile, the spectral and spatial details contained in
high-resolution optical images are favorable for accurate location and profile extraction of
buildings. Therefore, based on the combination of post-earthquake high-resolution optical
and SAR images, traditional visual features of optical images such as spectra, texture and
morphology features can be combined with double bounce features. This can provide a
new technical path for accurately and reliably detecting collapsed buildings with a lack of
elevation information. In particular, in complex environments such as urban areas, many
scattering contributions from small structures with possibly different materials interfere,
which are not considered in the currently reported theoretical models.
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Figure 1. The optical images and the corresponding SAR images: (a) optical images of non-collapsed 
buildings; (b) SAR images of non-collapsed buildings; (c) optical images of collapsed buildings; (d) 
SAR images of collapsed buildings. (In (b,d), green boxes represent double bounce of non-collapsed 
buildings, while red boxes indicate double bounce of collapsed buildings.) 
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multi-source data means that the annotation of training samples is more time consuming 
and laborious. Therefore, a reliable effectiveness measure is needed to fully mine and se-
lect representative training samples, so as to improve the detection efficiency and accu-
racy of collapsed buildings. 

In view of the above challenges, a non-deep learning method for collapsed buildings 
combining post-earthquake high-resolution optical and SAR images was proposed in this 
research. Firstly, a strategy of optical and SAR object set extraction based on inscribed 
center (OpticalandSAR-ObjectsExtraction) was designed to provide unified analysis ele-
ments for the subsequent feature modeling and detection of collapsed buildings. The in-
scribed center represents the center of the circle with the largest radius inside the bound-
ary of the object. Based on this, a quantitative representation of collapse semantic 
knowledge in double bounce (DoubleBounceCollapseSemantic) was constructed accord-
ing to spatial distribution of double bounce. After that, feature modeling of collapsed 
buildings was performed based on traditional visual features and double bounce features. 
Finally, the samples were refined based on a category uncertainty index (CUI) between 
the samples to be tagged and the tagged samples to optimize the active learning process, 
thus detecting collapsed buildings. 

The novel contributions of the proposed method are shown as follows: (1) The pro-
posed OpticalandSAR-ObjectsExtraction overcame imaging differences between heterol-
ogous images and extracted a unified object set from optical and SAR images. (2) The 
proposed DoubleBounceCollapseSemantic provided a way to quantitatively extract dou-
ble bounce features from SAR images, which could significantly improve the accuracy of 
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Figure 1. The optical images and the corresponding SAR images: (a) optical images of non-collapsed
buildings; (b) SAR images of non-collapsed buildings; (c) optical images of collapsed buildings;
(d) SAR images of collapsed buildings. (In (b,d), green boxes represent double bounce of non-
collapsed buildings, while red boxes indicate double bounce of collapsed buildings).

To achieve the complementary advantages of high-resolution optical and SAR im-
ages, it is prioritized to establish a unified object set from multi-source data. However,
due to a great difference in imaging mechanisms between optical and SAR images, the
same object may have significantly different manifestations in two types of data, so it is
difficult to extract profile pairs belonging to the same object from heterologous images.
In addition, at present, there are few quantitative representations and analysis methods
for collapse semantic knowledge contained in double bounce. Finally, the combination of
multi-source data means that the annotation of training samples is more time consuming
and laborious. Therefore, a reliable effectiveness measure is needed to fully mine and select
representative training samples, so as to improve the detection efficiency and accuracy of
collapsed buildings.

In view of the above challenges, a non-deep learning method for collapsed buildings
combining post-earthquake high-resolution optical and SAR images was proposed in this
research. Firstly, a strategy of optical and SAR object set extraction based on inscribed center
(OpticalandSAR-ObjectsExtraction) was designed to provide unified analysis elements for
the subsequent feature modeling and detection of collapsed buildings. The inscribed center
represents the center of the circle with the largest radius inside the boundary of the object.
Based on this, a quantitative representation of collapse semantic knowledge in double
bounce (DoubleBounceCollapseSemantic) was constructed according to spatial distribution
of double bounce. After that, feature modeling of collapsed buildings was performed based
on traditional visual features and double bounce features. Finally, the samples were refined
based on a category uncertainty index (CUI) between the samples to be tagged and the
tagged samples to optimize the active learning process, thus detecting collapsed buildings.

The novel contributions of the proposed method are shown as follows: (1) The pro-
posed OpticalandSAR-ObjectsExtraction overcame imaging differences between heterol-
ogous images and extracted a unified object set from optical and SAR images. (2) The
proposed DoubleBounceCollapseSemantic provided a way to quantitatively extract double
bounce features from SAR images, which could significantly improve the accuracy of
collapsed building detection. (3) The CUI was put forward to improve the training process
of active learning support vector machines (SVMs), which was conducive to fully mining
and selecting representative training samples.
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2. Methodology

The proposed method mainly included four steps: building the unified optical-SAR
object set based on OpticalandSAR-ObjectsExtraction; extracting double bounce features
based on DoubleBounceCollapseSemantic; extracting traditional visual features based
on morphological attribute profiles (MAPs); and detecting collapsed buildings based on
improved active learning SVMs. The specific realization process is displayed in Figure 2.
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2.1. Construction of the Unified Optical-SAR Object Set Based on OpticalandSAR-ObjectsExtraction

To construct the unified optical-SAR object set, the proposed OpticalandSAR-Objects
Extraction was mainly divided into three steps, namely image segmentation, establishment
of a coarse registration-based affine transformation equation, and projection of inscribed
center of an object and region growing.

2.1.1. Image Segmentation

Firstly, two images were segmented, and the inscribed center of the object was taken
as a feature point in segmentation results to establish the coarse registration-based affine
transformation equation. The optical image was segmented by utilizing the well-known
business software Ecognition to obtain the object set Ropt of the optical image [27]. The
segmentation was performed using the following parameters: scale parameter, 30; shape,
0.5; compactness, 0.2. Furthermore, an iterated conditional model (ICM) based on Markov
is conducive to better highlighting foreground targets including buildings in SAR image
segmentation, so this method was used to obtain the object set RSAR of the SAR image [28].
The reason why we adopted this method is that, on one hand, the method is an image
segmentation algorithm based on statistics, which is spatially constrained and has fewer
model parameters. On the other hand, this method has been successfully applied to SAR
images with different polarizations, such as single polarimetry, dual polarimetry and full
polarimetry and yields good results.

2.1.2. Establishment of the Coarse Registration-Based Affine Transformation Equation

In Ropt and RSAR, the matched object pairs are searched as a basis for establishing the
affine transformation equation. Because of invariance to translation, rotation and scaling
of moment invariants, the 7th-order Hu moment invariants are taken as measures for
similarity between objects [29]. The specific steps are demonstrated as follows:

Step 1: Based on Equation (1), moment invariants of the ith object in Ropt and jth object
in RSAR are calculated and all possible combinations are traversed.

dij =

√√√√ 7

∑
n=1

(
φi(n)− ψj(n)

)2 (1)

where, φi(n) and ψj(n) represent the nth moment invariant of the ith object in the optical
image and nth moment invariant of the jth object in the SAR image, respectively.

Step 2: An object with the smallest moment invariant is selected from RSAR for each
object in Ropt to construct a set of matched object pairs Ropt−SAR. An object with the
minimum moment invariant is selected from Ropt for each object in RSAR to constitute
another set of matched object pairs RSAR−opt.

Step 3: The same matched object pairs in Ropt−SAR and RSAR−opt are retained as the
final set of matched object pairs Rmatch.

Step 4: Because inscribed circles of each object are bound to exist and locate inside of
the objects, the inscribed centers of each object can be calculated in Rmatch. On this basis,
each matched object pair can obtain a pair of matched inscribed centers (feature points),
thus obtaining the set of matched feature points Pmatch required for establishing the affine
transformation equation.

Step 5: By combining Pmatch and Equation (2), the affine transformation equation
between optical and SAR images can be established.{

x′ = a0 + a1x + a2y
y′ = b0 + b1x + b2y

(2)

2.1.3. Projection of Inscribed Centers of Objects and Region Growing

The objects in the SAR image that match with each object in the optical image are
searched. Based on coarse registration results, the inscribed centers of each object in Ropt
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are directly projected into the SAR image according to the affine transformation equation,
thus obtaining a set of project points in the SAR image. Based on region growing of project
points, the SAR image is divided into connected regions corresponding to each object in
Ropt [30], so as to finally acquire the unified optical-SAR object set Runi.

2.2. Extraction of Double Bounce Features Based on Double Bounce Collapse Semantic

In view of extraction of collapse semantic features contained in double bounce, this
study mainly designed two parts, namely detection of potential double bounce pixels
(PDBPs) and construction of a collapse semantic histogram.

2.2.1. Detection of PDBPs

Since double bounce is shown as a highlighted line in the SAR image, this study
firstly used Hough transform for line detection [31], in which LOG operators were used for
edge detection to obtain a set of initial potential double bounce pixels (IPDBPs). On this
basis, for any one pixel e in IPDBPs, pixels belonging to IPDBPs are searched in its eight
neighborhoods. If there is only one pixel meeting the condition, the pixel e is regarded as
an endpoint. In this case, the pixels belonging to IPDBPs are searched continuously in a
5 × 5 window with e as the center and the overlapped pixels in eight neighborhoods of
these pixels and eight neighborhoods of the pixel e are all taken as PDBPs. Traversing all
pixels, the final set of PDBPs is extracted from the SAR image.

2.2.2. Construction of the Collapse Semantic Histogram

In the SAR image, a visual vocabulary based on collapse semantics was designed and
the collapse semantic histogram was constructed by combining with a spatial relationship
between Runi and PDBPs. When the total number of objects in Runi is N, for any one object
Rc

uni(c = 1, 2, 3, . . . , N), the set of visual words and DoubleBounceCollapseSemantic rules
are defined as follows:

• Pixel set 1 of non-collapsed buildings. Double bounce of non-collapsed buildings
usually appears as a highlighted line at the corner of a building. Therefore, line
segments of double bounce with features of non-collapsed buildings overlap or are
adjacent to profiles of the objects, showing a similar curvature and direction and a
certain length. The specific search and discrimination steps are shown as follows:

Step 1: The blurred line segment L̃ that overlaps or is adjacent to the Rc
uni profile

is firstly searched. From any one pixel g on the profile, PDBPs are searched from eight
neighborhoods of g. If there is a PDBP, defined as r, PDBPs in eight neighborhoods of r are
searched. The newly searched PDBPs and r are retained and the fitting line L̂ is obtained
according to these pixels. On this basis, new PDBPs are searched continuously in the
existing newly searched eight neighborhoods of each PDBP. If they exist, the distance from
this point to L̂ is calculated. When the distance is smaller than w, this PDBP is retained. In
a similar way, all possible pixels are traversed and all retained PDBPs constitute the blurred
line segment L̃.

Step 2: For the next pixel g′ on the profile, a blurred line segment corresponding to
g′ can be obtained by repeating Step 1. All points on the profile are traversed to form a
candidate blurred line-segment set S1. All blurred line segments with the length larger
than Ta are retained to constitute a blurred line-segment set S2.

Step 3: For foot points of two endpoints of any one line segment LS2 in the set S2 on the
profile of the object, the line segment L′S2

of the profile between foot points is intercepted and
the line segment LS2 which simultaneously meets the following two conditions constitutes
a blurred line-segment set S3. (1) The difference in average curvatures of LS2 and L′S2
is calculated and should be smaller than the threshold Tb. (2) LS2 and L′S2

are fitted by
straight lines using the ordinary least squares to calculate the slope difference of the two
straight lines which should be smaller than the threshold Tc. S3 is the constructed visual
word. It should be pointed out that, in order to improve the automation degree of the
proposed method, the following adaptive extraction strategy is adopted for Ta, Tb and Tc.
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Compared with collapsed buildings, double bounce of non-collapsed buildings is usually
longer and more complete. Based on this assumption, an objective function FS3(Ta, Tb, Tc)
is constructed, representing the number of pixels extracted from S3 for an object under
different combinations of Ta, Tb and Tc. Let Ta, Tb and Tc be valued in intervals of [0, t],
[0, 1] and [0, 1] and t indicate the length of the diagonal of the bounding rectangle for
object Rc

uni. When FS3 is the maximum, Ta, Tb and Tc constitute the optimal parameter
combination.

• Pixel set 1 of locally collapsed buildings. In S1, blurred line segments with the length
smaller than or equal to Ta are retained, namely the constructed visual word.

• Pixel set 1 of completely collapsed buildings. Except for PDBPs which have been
defined as visual words, the other PDBPs located on the Rc

uni profile or within one
pixel outside the profile are the constructed visual word.

• Pixel set 2 of non-collapsed buildings. Within pixels in Rc
uni profile, a candidate blurred

line-segment set inner meeting conditions is searched from any one pixel u. Except for
different starting points and scopes of search, other steps are exactly the same as S1
above. Because the blurred line segments in inner are located inside Rc

uni, the inner is
directly regarded as the constructed visual word.

• Pixel set 2 of locally collapsed buildings. In Rc
uni, PDBPs without being defined as

visual words are defined as PDBPres and the ratio of the number of PDBPres to the
total number of pixels is ϕ. Furthermore, the ratio of the total number of PDBPs in the
SAR image to the total number of pixels is defined as ϕSAR. If ϕ ≤ ϕSAR, PDBPres is
the constructed visual word.

• Pixel set 2 of completely collapsed buildings. In Rc
uni, PDBPs without being defined as

visual words are the constructed visual word.

Based on the above six-dimensional visual words, the collapse sematic histogram Icsh
of the double bounce of Rc

uni can be obtained.

2.3. Extraction of Traditional Visual Features Based on MAPs

The area, diagonal, normalized moment of inertia (NMI) and standard deviation in
MAPs have been proven to have strong discrimination ability in the detection of buildings.
To this end, the traditional visual features in optical and SAR images are extracted based
on the four attributes through the proposed automatic building detection from high-
resolution remote sensing images based on joint optimization and decision fusion of MAPs
(detailed steps can refer to previous studies [32]). On this basis, the multi-scale MAPs sets
corresponding to optical and SAR images are obtained, including MAPsopt and MAPsSAR.
In MAPsopt, the mean gray values of Rc

uni in each attribute profile (AP) are calculated, thus
obtaining the visual histogram Iosh of optical images corresponding to Rc

uni. Similarly, the
visual histogram Issh of SAR images can be obtained.

2.4. Detection of Collapsed Buildings Based on Improved Active Learning SVMs

In the classification stage, Runi is classified into non-collapsed buildings, collapsed
buildings and others by using active learning SVMs. The decision-making function of each
SVM classifier is shown as follows:

f (hk) = sign

(
M

∑
m=1

ymαmK(xm, hk) + b

)
(3)

Furthermore, when annotating samples by active learning SVMs, it is difficult to
annotate samples that are always on the category boundary with the greatest uncertainties.
Therefore, this study proposed the CUI, and the calculation process is demonstrated
as follows:
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Step 1: The probabilities of the samples hk to be annotated belonging to annotated
positive samples wp

l and annotated negative samples vq
l are separately calculated:

D
(

wp
l /hk

)
=

P
∑

p=1

〈hk ,wp
l 〉

‖hk‖‖w
p
l ‖

P
(4)

D
(

vq
l /hk

)
=

Q
∑

q=1

〈hk ,vq
l 〉

‖hk‖‖v
q
l ‖

Q
(5)

where, wp
l indicates the p(p = 1, 2 · · · P)th sample in the lth category of positive samples;

vq
l represents the q(q = 1, 2 · · ·Q)th sample in the lth category of negative samples.

Step 2: On this basis, the CUI of hk on the lth classifier is calculated by the following formula:

CUI
(

wp
l , vq

l

)
= 2[(D2

(
wp

l /hk

)
− 1)× (D2

(
vq

l /hk

)
− 1)] (6)

where, the larger the CUI is, the greater the classification uncertainty of the sample hk.
Step 3: Based on this, the categorical decision function fl(hk) of the sample hk is

calculated in accordance with Equation (3). When CUI is the minimum and fl(hk) is the
maximum, the sample hk is annotated. The annotated samples are added into the training
samples to re-train the model. By repeating the above steps, the samples are refined to
obtain the final detection results of collapsed buildings.

3. Experiments and Evaluation
3.1. Study Area and Dataset Description

The study area is located in Sendai, Japan. An earthquake (Mw 9.0) occurred on 11
March 2011. The epicenter was located in the Pacific Ocean to the east of Miyagi Prefecture,
Japan, with a focal depth of 20 km. Sendai is one of the cities that were most seriously
hit by the earthquake. The earthquake and tsunami damaged lots of buildings, including
9877 collapsed buildings.

The post-earthquake high-resolution optical images adopted in this study are IKONOS
satellite images in Sendai, Japan, which were collected on 24 March 2011 and showed a
spatial resolution of 1 m, as displayed in Figure 3a. Post-earthquake high-resolution
SAR images were TerraSAR-X satellite images for the area, collected on 23 March 2011
with the spatial resolution of 3 m. The images were acquired in HH polarization in
stripmap mode, as demonstrated in Figure 3b. In the experiments, for the difference in
resolution between optical and SAR images, the images with the lower resolution were
re-sampled in this research, so that multi-source images had the same resolution. On this
basis, this study selected three representative regions for experiments. Dataset 1 is located
in an industrial zone where buildings were large and sparsely distributed, as shown in
Figure 4a. Compared with the industrial zone, the residential area is usually the most
severely affected, and is usually the primary target of post-earthquake emergency response
and post-disaster reconstruction. To this end, the constructed Datasets 2 and 3 are both
located in the residential area, as displayed in Figure 4b,c. Buildings in this area are usually
densely distributed and neatly arranged. Due to the significant radiometric and geometric
differences between optical and SAR data, their exact registration and high geometric
precision correction are not only very complex but also difficult to obtain the desired results.
In addition, since each object is extracted separately in optical and SAR images in this
paper, only the matching set of objects need to be found in both datasets. For this reason,
the following strategy was adopted for producing the datasets: taking the cropped and
segmented optical image as a reference, we cropped the corresponding area in the SAR
image which could completely cover all the objects in the optical image according to the
visual interpretation.
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3.2. Experimental Settings and Methods for Comparison

In the experiments, four different advanced methods were selected for comparison.
The first is the detection method of optical images based on sparse dictionary (SD-OPT).
The spatial context information is further introduced by constructing the same and different
pairs of words with this method, so as to construct multi-visual features to model collapsed
buildings [33]. The second is the detection method of SAR images based on multi-texture
feature fusion (RF-SAR). In this method, texture features are extracted by comprehen-
sively utilizing the gray-level histogram, gray-level co-occurrence matrix (GLCM), local
binary pattern (LBP) and Gabor filtering, and then post-earthquake collapse information
of buildings is obtained by Random Forest [34]. This third method is a deep learning
method based on object context and boundary enhanced loss (OCR-BE). In this method, a
novel loss function, BE loss, is designed according to the distance between pixels and the
boundary, forcing the network to pay more attention to learning of boundary pixels [35].
The fourth method is a deep learning method based on UNet 3+ (UNet 3+). UNet 3+ takes
advantage of full-scale skip connections and deep supervisions to make full use of the
multi-scale features [36]. Among the four methods, the first two are single-source imaging
methods based on traditional machine learning. By comparing them, complementarity
and combined advantages of two data sources (optical and SAR images) in the detection
of collapsed buildings can be verified. The latter two methods belong to deep learning
methods combining multi-source data. Comparing them, it is conducive to analyze the
difference in performances between the proposed method and deep learning methods in
the detection of collapsed buildings, especially under small sample conditions.

All experiments are based on the three datasets in Section 3.1. In order to ensure consis-
tency of evaluation indexes for accuracy across different methods, semantic segmentation
results obtained by OCR-BE and UNet 3+ were converted into object-level detection results
according to the proportion of pixels belonging to different categories. In the experiments,
Matlab 2018 was taken as a simulation platform in all traditional machine learning methods.
The two deep learning methods were based on PyTorch-1.3.1 framework and implemented
in Ubuntu 16.04.
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3.3. General Results and Analysis

Based on the three datasets, the detection results of collapsed buildings by different
methods are demonstrated in Figures 5–7. In addition, the true ground map made through
visual interpretation is regarded as a basis for accuracy evaluation, in which white, gray and
black represent the collapsed buildings, non-collapsed buildings and others, respectively.
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As shown in the above figures, the detection results obtained by the proposed method
are significantly superior to those of the four methods for comparison as a the whole.
As traditional machine learning methods, SD-OPT adopts optical images, while RF-SAR
uses SAR images. Compared with the proposed method, SD-OPT and RF-SAR separately
have prominent false negatives (FNs) and false positives (FPs) because they only rely
on single-source data, as displayed in (c) and (d) in Figures 5–7. As two deep learning
methods, OCR-BE and UNet 3+ need massive training samples to fully train a deep network;
otherwise, it is difficult to obtain ideal detection effects. In the experiments, the sample
sizes of the three datasets are 1880, 2036 and 2058, and the proportions of the sample sizes
of collapsed buildings in the total number of samples are only 9.2%, 10.6% and 12.8%.
This results in serious over-fitting and poor generalization effects of the model on the test
set. This is the main reason why the detection accuracies of collapsed buildings using
OCR-BE and UNet 3+ are significantly lower than that of the traditional machine learning
methods. It is considered that with the increase of the sample size of collapsed buildings,
the accuracy of the deep learning methods gradually improves until the model converges.
In addition, for plants with a large size and low detection difficulty in the industrial zone
(Figure 5), except for the RF-SAR method with a lot of FNs and FPs, other methods have
good detection effects on buildings with large sizes. For densely distributed small buildings
that are difficult to detect in the residential area (Figures 6 and 7), the proposed method
and SD-OPT method are significantly superior to other methods regarding the FN rate and
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FP rate. This indicates that rich spatial details provided by optical images are favorable
for accurate characterization of collapsed buildings in the complex context compared with
SAR images.
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Figure 6. Detection results of collapsed buildings based on Dataset 2: (a) reference map; (b) proposed
method; (c) SD-OPT; (d) RF-SAR; (e) OCR-BE; (f) UNet 3+.

Furthermore, six evaluation indexes, including overall accuracy (OA), FP rate and FN
rate as well as detection accuracies of non-collapsed buildings (Pnb), collapsed buildings
(Pcb) and others (Po) were used for quantitative accuracy evaluation, and the results are
shown in Table 1, Table 2 and Table 3. In the three experiments, OAs of the proposed method
separately rise to 82.39%, 80.60% and 78.61%. Particularly, Pcb concerned here reaches more
than 73.94%, showing the best performance in all experimental methods and consistent
conclusions with visual analysis. In comparison with the proposed method, SD-OPT and
RF-SAR only depend on single-source data and their FN rates and FP rates increase by more
than 3.77% and 6.94%, respectively. As deep learning methods, OCR-BE and Unet 3+ can
only obtain better detection effects of non-collapsed buildings than the proposed method
under small sample sizes, while other accuracy indexes reduce significantly, especially
with the Pcb being the lowest at only 9.43%. Nevertheless, the detection effects of the two
deep learning methods will be greatly improved under the condition of sufficient training
samples. Therefore, the strategy of combining optical and SAR images proposed in this
research is necessary, feasible and effective in the detection of collapsed buildings and can
achieve ideal effects under small sample conditions.
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Table 1. Detection accuracy based on Dataset 1.

Method/
Indicator OA (%) FP (%) FN (%) Pnb (%) Pcb (%) Po (%)

Evaluation
Criteria

The Higher
the Better

The Lower
the Better

The Lower
the Better

The Higher
the Better

The Higher
the Better

The Higher
the Better

Proposed
method 82.39 9.65 17.61 52.92 74.57 88.55

SD-OPT 75.85 14.59 25.15 41.35 46.82 92.62
RF-SAR 63.99 21.96 36.01 25.29 44.51 73.17
OCR-BE 78.46 13.31 15.35 78.94 29.48 90.10
UNet 3+ 77.28 15.80 19.96 80.21 14.45 92.52

Table 2. Detection accuracy based on Dataset 2.

Method/
Indicator OA (%) FP (%) FN (%) Pnb (%) Pcb (%) Po (%)

Evaluation
Criteria

The Higher
the Better

The Lower
the Better

The Lower
the Better

The Higher
the Better

The Higher
the Better

The Higher
the Better

Proposed
method 80.60 10.74 19.40 50.22 73.94 85.68

SD-OPT 74.66 14.51 26.34 17.77 47.22 87.14
RF-SAR 63.41 22.39 36.59 24.38 29.63 74.02
OCR-BE 77.14 12.49 22.20 76.03 22.30 87.26
UNet 3+ 76.80 11.87 24.59 50.00 21.76 89.73
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Table 3. Detection accuracy based on Dataset 3.

Method/
Indicator OA (%) FP (%) FN (%) Pnb (%) Pcb (%) Po (%)

Evaluation
Criteria

The Higher
the Better

The Lower
the Better

The Lower
the Better

The Higher
the Better

The Higher
the Better

The Higher
the Better

Proposed
method 78.61 12.80 22.69 55.08 75.47 83.51

SD-OPT 66.81 19.90 33.19 45.72 41.13 77.17
RF-SAR 59.23 25.60 40.77 22.73 27.55 74.77
OCR-BE 76.39 13.92 22.89 63.98 33.32 85.04
UNet 3+ 75.11 14.43 25.55 65.24 9.43 92.88

3.4. Visual Comparison of Representative Patches

For further detailed visual analysis and discussion, representative patches were se-
lected in the three datasets, as shown in Figures 8–10. Yellow and red boxes separately
represent the collapsed buildings and non-collapsed buildings.
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The above figures demonstrate that buildings in the industrial zone are easy to detect
because of their large sizes and sparse distribution, so better detection effects of collapsed
buildings can be acquired by all experimental methods. However, only UNet 3+ (yel-
low box in Figure 8g) shows FNs and SD-OPT presents FPs (yellow box in Figure 8e).
For non-collapsed buildings in the industrial zone (red boxes in Figure 8), the proposed
method and the two deep learning methods do not incur FPs, while SD-OPT and RF-SAR
separately show FPs (red box in Figure 8d) and FNs (red box in Figure 8e). In the resi-
dential area with neatly arranged and densely distributed buildings, only the proposed
method yields completely correct detection results for collapsed buildings (yellow boxes in
Figures 9 and 10). By contrast, RF-SAR (yellow box in Figure 10e) and OCR-BE (yellow box
in Figure 10f) present FPs, while SD-OPT (yellow box in Figure 9d) and UNet 3+ (yellow
boxes in Figures 9g and 10g) show FNs. For non-collapsed buildings, the visual analysis
results are similar to that of the industrial zone and good effects are reached by different
methods. However, only SD-OPT and RF-SAR have obvious FPs and FNs. In conclusion,
the detection effects of non-collapsed buildings by the five methods are good, while the
proposed method has higher Pcb and less FPs and FNs by combining with optical and SAR
images, which is consistent with the quantitative analysis results.

4. Discussion
4.1. Validity Analysis of Combined Optical and SAR Images

To further verify the validity of combined optical and SAR images, experiments based
on single-source data (optical or SAR images) were conducted by using the proposed
method. The accuracy evaluation of experimental results obtained by combining optical
and SAR images, based on the optical image and based on the SAR image, are separately
shown in Table 4.

On this basis, after combining optical and SAR images, the OA in experiments based
on three datasets increases by 6.31~7.71% and Pcb rises by 12.56~19.03% compared with
that under single-source data. Therefore, earthquake damage characteristics of buildings
were depicted from multiple perspectives by combining optical and SAR images after the
earthquake, and the extracted complementary information could significantly improve the
detection accuracy of collapsed buildings. Particularly, double bounce in the SAR image
provides key evidence support for judging whether buildings collapse or not, so Pcb in the
experiment based on the SAR image is always significantly higher than that based on the
optical image only with traditional visual features.
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Table 4. Comparison of detection accuracies of combining optical and SAR images with those based
on single-source data.

Datasets
Method/Indicator OA (%) FP (%) FN (%) Pnb (%) Pcb (%) Po (%)

Evaluation
Criteria

The Higher
the Better

The Lower
the Better

The Lower
the Better

The Lower
the Better

The Higher
the Better

The Higher
the Better

Dataset 1
Optical and SAR 82.39 9.65 17.61 52.92 74.57 88.55

Optical 66.49 30.56 27.12 40.86 46.59 75.79
SAR 74.68 14.49 23.32 50.19 57.23 81.10

Dataset 2
Optical and SAR 80.60 10.74 19.40 50.22 73.94 85.68

Optical 64.62 20.76 30.38 38.43 47.66 72.24
SAR 74.71 14.48 25.29 45.04 54.91 83.33

Dataset 3
Optical and SAR 78.61 12.80 22.69 55.08 75.47 83.51

Optical 65.40 19.95 31.65 69.79 50.57 67.02
SAR 72.30 16.07 25.70 45.45 62.91 79.76

In addition, two representative patches were selected for further visual analysis, as
shown in Figures 11 and 12. For collapsed buildings with fragmented distribution in both
images (yellow boxes in Figure 11), correct results can be obtained by the three methods. For
collapsed buildings with well-preserved roofs in optical images (yellow boxes in Figure 12),
correct judgement can be made by only the proposed method and the method based on
SAR images because the double bounce in SAR images shows the typical collapse semantic
features. However, FPs appear when using the method based on optical images (yellow box
in Figure 12d). Non-collapsed buildings shown in red boxes in Figure 11 illustrate complete
profile and single texture in optical and SAR images, so correct results are obtained from the
three methods. For non-collapsed buildings with intact roofs in optical images but regional
fragmentation distribution in SAR images, only the proposed method and that based on
optical images can make correct judgements, while the method based on SAR images
have obvious FPs. Therefore, it is feasible and effective to improve Pcb by complementing
advantages of optical and SAR images.
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Table 5. Validity analysis of DoubleBounceCollapseSemantic.
√

and – separately represent that a
feature is added and not added.

Datasets

Method/Indicator OA (%) FP (%) FN (%) Pnb (%) Pcb (%) Po (%)

Evaluation Criteria The Higher
the Better

The Lower
the Better

The Lower
the Better

The Higher
the Better

The Higher
the Better

The Higher
the Better

Dataset 1
√

DoubleBounceCollapseSemantic 82.39 9.65 17.61 52.92 74.57 88.55
– DoubleBounceCollapseSemantic 78.83 11.86 20.81 48.64 67.63 85.52

Dataset 2
√

DoubleBounceCollapseSemantic 80.60 10.74 19.40 50.22 73.94 85.68
– DoubleBounceCollapseSemantic 77.26 12.44 23.01 46.28 64.46 84.48

Dataset 3
√

DoubleBounceCollapseSemantic 78.61 12.80 22.69 55.08 75.47 83.51
– DoubleBounceCollapseSemantic 74.69 15.29 25.40 42.25 68.68 81.47

As illustrated in the above table, the OA in the case of adding DoubleBounceCol-
lapseSemantic increases by 3.34~3.92%, while FP rate and FN rate decrease by 1.7~1.49%
and 2.71~3.61% compared with those in the case without adding DoubleBounceCollaps-
eSemantic. Pcb rises by 6.49%, 9.48% and 6.79%, respectively. Therefore, the proposed
DoubleBounceCollapseSemantic is effective. On this basis, six collapsed buildings and
six non-collapsed buildings were selected from the three datasets and histogram statistics
were created on pixels of double bounce belonging to different visual words, as displayed
in Figure 13a,b.
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Figure 13. Histograms of pixels of double bounce belonging to different visual words for (a) col-
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Therefore, the histogram of collapsed buildings shows similar distribution, with low 
intra-class separability. Meanwhile, the proportion of the pixels of collapsed buildings is 
significantly higher than that of the non-collapsed ones, so it is conducive to obtaining 
correct identification results. For non-collapsed buildings, the proportions of pixels of col-
lapsed to non-collapsed are contrary to collapsed buildings. Therefore, collapsed and non-
collapsed buildings have good inter-class separability in the above histograms. Further-
more, for pixels of locally collapsed buildings, their proportion in collapsed buildings is 
significantly higher than that in non-collapsed buildings, so this is favorable for enhancing 
inter-class separability between collapsed and non-collapsed buildings. 
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Figure 13. Histograms of pixels of double bounce belonging to different visual words for (a) collapsed
buildings and (b) non-collapsed buildings.

Therefore, the histogram of collapsed buildings shows similar distribution, with low
intra-class separability. Meanwhile, the proportion of the pixels of collapsed buildings is
significantly higher than that of the non-collapsed ones, so it is conducive to obtaining
correct identification results. For non-collapsed buildings, the proportions of pixels of
collapsed to non-collapsed are contrary to collapsed buildings. Therefore, collapsed and
non-collapsed buildings have good inter-class separability in the above histograms. Fur-
thermore, for pixels of locally collapsed buildings, their proportion in collapsed buildings is
significantly higher than that in non-collapsed buildings, so this is favorable for enhancing
inter-class separability between collapsed and non-collapsed buildings.

4.3. Validity Analysis of CUI

To verify the validity of CUI, comparative experiments were conducted by adding or
not adding CUI to the active learning SVMs, and the accuracy was evaluated. The results
are shown in Table 6.

Table 6. Validity analysis of CUI.
√

and – separately represent that an index is added and not added.

Datasets
Method/Indicator OA (%) FP (%) FN (%)

Evaluation
Criteria

The Higher
the Better

The Lower
the Better

The Lower
the Better

Dataset 1
√

CUI 82.39 9.65 17.61
– CUI 81.58 9.81 18.33

Dataset 2
√

CUI 80.60 10.74 19.40
– CUI 79.07 12.45 20.01

Dataset 3
√

CUI 78.61 12.80 22.69
– CUI 76.90 13.27 23.78

As listed in Table 6, OAs in the three experiments increase by 0.81%, 1.53% and 1.71%,
while FP rate and FN rate reduce by 0.16~1.71% and 0.61~1.09%, respectively. Therefore,
this suggests that the proposed CUI is conducive to selecting more representative samples
for model training, which can significantly improve the classification accuracy.
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4.4. Analysis of Effects of the Number of Initial Training Samples

In order to verify the performance of improved active learning SVMs proposed in this
study under different numbers of initial training samples, the number of initial training
samples in each category is valued in the interval [5, 50] at the step length of 5. The change
trend of the OA with the increase of the number of training samples is shown in Figure 14.
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Therefore, with the increase of the number of initial training samples, the OA rapidly
rises in the interval [0, 20] and then tends to be stable. The OAs under Datasets 1 and 2
reach the peak (83.05% and 81.43%) when the sample size is 45. The OA under Dataset 3
reaches the peak of 79.14% when the sample size is 50. Although the peak OA rises by
0.53~0.83% compared with that under the sample size of 20, the number of the training
samples required is more than doubled. In accordance with the above analysis, the number
of training samples in each category is suggested to be 20.

5. Conclusions

With a lack of pre-earthquake data, the detection method for collapsed buildings
relying on post-earthquake high-resolution optical and SAR images was proposed. To
solve the challenge for accurately judging whether buildings collapse or not due to the
lack of elevation data, the elevation information of buildings was indirectly acquired with
this method by mining the double bounce features in SAR images. Moreover, automated
detection of collapsed buildings was reached through combining multi-source traditional
visual features. To this end, this research firstly designed the OpticalandSAR-Objects
Extraction strategy to construct the unified optical-SAR object set. Based on this, the
DoubleBounceCollapseSemantic was constructed, thus bridging the semantic gap between
double bounce and collapse features of buildings. In the classification stage, the CUI was
put forward, which was conducive to selecting more representative samples to optimize
active learning SVMs and finally automatically detect collapsed buildings. Through multi-
group comparative experiments on post-earthquake remote sensing images in different
regions, the proposed method shows excellent performances compared with visual and
quantitative analysis. The OA and Pcb can reach 82.39% and 75.47% at most, so the proposed
method is superior to multiple methods for comparison. However, the proposed model
does not dig into the influence of factors such as orientation angle of the building and
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polarization on double bounce intensity. In the future, we will focus on these issues to
develop more complicated and advanced models.
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