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Abstract: Spaceborne passive microwave sounding instruments are important for monitoring tropical
cyclones (TCs) over oceans. However, previous studies have found large retrieval errors at TCs’ inner
region at the lower troposphere where heavy precipitation occurs. In this study, the background error
covariance matrix used in the variational retrieval algorithm is designed to vary with atmospheric
conditions. It is found that the errors of retrieved temperature and humidity profiles are significantly
reduced under the TC conditions, when they are compared with those from using a static covariance
matrix. The retrieval errors of temperature and humidity are about 1.5 K and 10–20%, respectively,
in the troposphere. Moreover, the influence of different observation operators on the retrievals are
also investigated. It is shown that ARMS (Advanced Radiative Transfer Modeling System) used as
an observation operator can produce a higher retrieval accuracy, compared to CRTM (Community
Radiative Transfer Model). For the relative humidity profile, the error can be reduced by up to 5%
from ARMS. The reason may be attributed to the more comprehensive handling of the scattering from
various hydrometeors in ARMS, which results in a higher retrieval accuracy under cloudy conditions.

Keywords: passive microwave sounding instruments; one-dimension variation; scene-dependent;
tropical cyclone

1. Introduction

Satellite observations are one of the most important methods for observing Tropical
Cyclones (TCs) over oceans. As the infrared (IR) or visible imagers onboard the geosta-
tionary satellites have a high spatial and temporal resolution, many techniques have been
developed in the past decades to estimate the intensity of TCs over oceans, including the
well-known Dvorak technique [1,2]. However, it is difficult to rely on visible or infrared
data to derive the TCs’ vertical thermal and dynamic structure within clouds [3]. Thus,
many observational studies on the vertical structure of TC are based on aircraft dropsonde
data [4,5]. Currently, while aircraft observations over Eastern Pacific (EP) oceans and the
Atlantic (ATL) oceans are made operational for TCs, the in situ observations of TCs’ vertical
structure are very limited over other oceanic areas such as the Western North Pacific where
typhoons frequently happen.

Microwave (MW) radiometers onboard satellites receive the scattering and emitting
radiation from clouds and precipitation and provide the data for detecting TCs’ structure
underneath the clouds. The passive MW sounding instruments, such as the AMSU-A
(Advanced Microwave Sounding Unit-A [6]) and the ATMS (Advanced Technology Mi-
crowave Sounder [7]), can detect temperature and water vapor information in different
atmospheric layers with its oxygen and water vapor absorption bands, which have been
used in retrieving TCs’ thermal structures in many previous studies. With the statistical
regression algorithms, Knaff et al. [8] retrieved a reasonable warm core structure, as well
as a thermal wind balanced wind structure, for TCs based on AMSU-A. However, these
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results were questioned by some researchers for the large retrieval error in the lower at-
mosphere [9]. Stern and Nolan [9] attributed this problem to the fact that the resolution of
AMSU is too coarse to resolve the thermal structures in the case of strong scattering. While
ATMS has a higher resolution, compared with AMSU, it still shows an unexpected cold
anomaly at TCs’ low layers [10,11]. Wang and Jiang [12] indicated that the 13 channels
from AMSU are inadequate to resolve a realistic TC warm core structure. However, after
combining AMSU with infrared hyperspectral data, a large temperature error greater than
2.5 K remained near 850 hPa compared with the flight dropsonde data. More recently, with
a cloud-dependent regression coefficient, Niu et al. [13] retrieved a more reasonable TC
warm core structure based on MWTS, which means that using different retrieval methods
for different scattering scenes helps to improve the retrieval results.

The regression algorithm only performs for a single variable retrieval. Other vari-
ables, though critically affecting microwave radiative transfer, are not taken into account.
Alternatively, using the radiative transfer model as the observation operator in the one-
dimensional variational (1DVAR) retrieval algorithm, temperature, water vapor, and clouds
can be simultaneously retrieved [14]. However, the temperature derived from 1DVAR
under TC conditions still has large errors in the lower levels [15] and could be presumably
attributed to strong precipitation scattering, which is not well simulated from the forward
model. Recently, Refs. [16,17] found that using cloud-dependent background profiles and
error covariance matrices in 1DVAR could significantly improve the temperature profiles
under TC conditions, especially at low layers of inner TC regions. In order to improve
the retrieval accuracy of MIRS (Microwave Integrated Retrieval System [18]) under TC
conditions, [19] proposed an atmospheric background field that changes with the distance
from the TC center. These conclusions reveal that the use of the atmospheric background
field that dynamically changes with the scattering scenes in the variational retrieval can
effectively improve the accuracy of the temperature and vertical humidity profile retrieved
under TC conditions.

Though the scene-dependent (SD) background error covariances can reduce the re-
trieval error to some extent, the temperature and humidity errors could be well beyond
2 K and 20%, respectively, in low TC layers [16]. As the covariance between atmospheric
variables varies under different convective conditions, and the strength of convection has a
certain correlation with the atmospheric scattering conditions, the atmospheric background
error covariance should also vary with different scattering conditions. However, the use
of SD background covariances and their influence on 1DVAR retrievals have seldomly
been conducted in the past. Moreover, a newly released fast radiative transfer model
ARMS (Advanced Radiative Transfer Modeling System [20]) contains a new solver for the
radiative transfer equation [21] and takes the scattering from spherical and nonspherical
hydrometeor particles into account [22]. However, how the new observation operator
performs in the variational retrieval under cloudy conditions has not been fully addressed.

The purposes of this study are twofold: (1) Based on [16], the SD background error
covariance is introduced into the variational retrieval algorithm, and its influence on the
retrieval accuracy under TC conditions is discussed. (2) The influences of SD background
covariances on the retrieval accuracy of different observation operators are compared.
Section 2 describes the data used in this study. In Section 3, the SD 1DVAR algorithm is
introduced, and the effect of using SD background covariance is evaluated using the flight
dropsonde observations. The performance in 1DVAR of the newly developed fast radiative
transfer model (ARMS) is discussed in Section 4. The final section summarizes the major
conclusions of this study.

2. Data
2.1. Fengyun-3D MW Sounding Data

This study used the data from Fengyun-3D (FY-3D) MW sounding instruments as
inputs to test the influence of the SD background covariances and the radiative transfer
models on the variational retrieval algorithm. The FY-3D satellite carries onboard the MW
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Temperature Sounder (MWTS [23,24]) with a low-frequency oxygen absorption band at
frequencies around 50–60 GHz, the MW Humidity Sounder (MWHS) with a high-frequency
oxygen absorption band at frequencies around 118.75 GHz, and a water vapor absorption
band at a frequency of 183.31 GHz. Two window channels at frequencies around 89 and
150 GHz are also included in MWHS. Detailed information of each channel of MWTS and
MWHS can be found in Table 1. It has been shown from previous studies [16] that using
all MWTS and MWHS channels could retrieve a TC’s thermal structure better than that
from using a subset of channels. In each orbit, MWHS contains about 2400 scanlines, about
twice that of MWTS scanlines. The sample density of MWHS’s field-of-view (FOV) is much
higher than that of MWTS. Therefore, the FOVs of MWHS are projected onto the nearest
MWTS’s FOVs for collocation of both instrument data.

Table 1. Channel comparison between FY-3D MW sounding instruments MWTS (left) and
MWHS (right).

MWTS Channel Center Frequency
(GHz) Polarization Beam Width

(Deg) MWHS Channel Center Frequency
(GHz) Polarization Beam Width

(Deg)

1 50.3 QH 2.2 1 89 QV 2
2 51.76 QH 2.2 2 118.75 ± 0.08 QH 2
3 52.8 QH 2.2 3 118.75 ± 0.2 QH 2
4 53.596 QH 2.2 4 118.75 ± 0.3 QH 2
5 54.4 QH 2.2 5 118.75 ± 0.8 QH 2
6 54.94 QH 2.2 6 118.75 ± 1.1 QH 2
7 55.5 QH 2.2 7 118.75 ± 2.5 QH 2
8 57.29 QH 2.2 8 118.75 ± 3.0 QH 2
9 57.290 ± 0.2170 QH 2.2 9 118.75 ± 5.0 QH 2

10 57.290 ± 0.322 ± 0.048 QH 2.2 10 150 QV 1.1
11 57.290 ± 0.322 ± 0.022 QH 2.2 11 183.31 ± 1.0 QH 1.1
12 57.290 ± 0.322 ± 0.010 QH 2.2 12 183.31 ± 1.8 QH 1.1
13 57.290 ± 0.322 ± 0.0045 QH 2.2 13 183.31 ± 3.0 QH 1.1

14 183.31 ± 4.5 QH 1.1
15 183.31 ± 7.0 QH 1.1

2.2. Hurricane Data

This study focused on the retrieval of hurricane thermal structures over the Atlantic
(ATL) and East Pacific (EP) oceans, as the operational flight dropsonde observations are
available for assessment in these regions. The best-track dataset of TCs from the National
Hurricane Center [25] was utilized to obtain the basic TC information, including the time,
location, and intensity of the storm (known as HURDAT2, available online at www.nhc.
noaa.gov/data/#hurdat, accessed on 27 December 2021). As FY-3D started its formal
operation in 2018, the cases from 2018 to 2020 were selected for the retrieval test and
evaluation. Note that only those hurricane records with its center observed by MWTS over
the ocean were selected, and those cases whose centers were captured by the MWTS FOVs
at large scan angles at the first and last 10 scan positions were eliminated. In addition, the
storms with no available flight observations were deleted. Finally, 41 hurricanes (12 from
the EP and 29 from the ATL) with 489 records in total were selected.

The flight dropsonde data used for validation were obtained from the Hurricane
Research Division (HRD) online at www.aoml.noaa.gov/hrd/data_sub/dropsonde.html
(accessed on 27 December 2021). Only the dropsondes with their location centered within
the MWTS FOV and the difference between the observation time of the dropsonde and the
FOV less than 1.5 h were selected for assessment. Finally, a total number of 695 dropsondes
were collocated with the retrieved MWTS FOVs in this study.

3. SD 1DVAR Algorithm for FY-3D MW Sounding Instruments

The purpose of the variational retrieval algorithm is to find the atmospheric variables
x corresponding to the minimum value of the cost function J(x), which represents the
constraint relationship between the atmospheric background field and the observation
data. Based on the Bayes theorem and the assumption of Gaussian distribution for the

www.nhc.noaa.gov/data/#hurdat
www.nhc.noaa.gov/data/#hurdat
www.aoml.noaa.gov/hrd/data_sub/dropsonde.html
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differences between observation and background variables (O-B), the 1DVAR cost function
J(x) can be written as follows:

J(x) = (x − xb)
T B−1(x − xb) +

(
H(x)− yobs

)T
(O + F)−1

(
H(x)− yobs

)
(1)

where x and xb represent the retrieved and background variables, respectively; B is the back-
ground covariance matrix; H(x) is the forward observation operator using x as the input;
yobs is the observed brightness temperature (BT); O and F represent the error covariances
of the instrument and forward operator, respectively.

3.1. SD Background Fields and Covariances

The SD background field includes the three-dimensional atmospheric temperature,
humidity, and hydrometeors, as well as the surface pressure and the surface temperature
field, etc. It has been shown that using SD background fields could significantly reduce
the temperature and humidity retrieval errors under TC conditions [16,17]. However,
those works were preliminary, and only one climatology background profile was given
for every scattering scene. In this study, we expand the SD background field to global
usage. All variables in the ERA5 five-year (2014–2018) data are monthly averaged for
different weather conditions (clear sky, stratiform, convections) to represent the mean
SD background field. ERA5 is the fifth-generation European Centre for Medium-Range
Weather Forecasts hourly reanalysis dataset, which has a horizontal resolution of 0.25◦ and
37 pressure levels from 1000 to 1 hPa. For the hydrometeor backgrounds, the cloud water
(representing no precipitation conditions), rain water (representing liquid precipitation
particles), and graupel water (representing ice precipitation particles) are produced offline
from the WRF (Weather Research and Forecasting) model outputs under different weather
conditions and then averaged to obtain the mean profiles.

Figure 1 displays the surface pressure SD background fields in June as an example, with
Figure 1a–c representing the background under clear, stratiform, and convective weather
conditions, respectively. Meanwhile, the background difference between stratiform and
clear, convective and stratiform, and convective and clear are also shown in Figure 1d–f,
respectively. The reason we choose surface pressure as an example is that, according to
the hydrostatic balance equation, surface pressure is a physical variable and reflects the
information of the temperature and humidity of the entire atmospheric layer. It can be seen
that there are significant differences in the atmospheric background field under different
weather conditions. The stronger the convection, the lower the surface pressure. Moreover,
other variables such as temperature and humidity vary more obviously with weather
conditions, which have been explained in [16]. Therefore, the use of the SD background
field is more in line with the real physical laws, indicating that its contribution to improving
retrieval accuracy has a theoretical basis.

The background covariance matrix B represents the constraint relationship between
various atmospheric parameters and varies from different weather conditions. The convec-
tion processes exhibit larger correlations between atmospheric variables in the troposphere.
As the purpose of this study is to test the retrieval accuracy under TC conditions, the SD
background covariance matrices are generated over oceans for three different weather
scenes (clear, stratiform, and convective) in the same way as the background field. In
addition, five atmospheric variables are taken into account in generating our SD back-
ground covariance matrices of temperature (T), humidity (Q), cloud water (CW), rain water
(RW), and graupel water (GW). Considering that this study focuses on the retrieval under
tropical cyclones conditions, the covariances of T and Q are calculated based on the ERA5
reanalysis dataset at low latitudes (30◦S–30◦N), while the covariances of hydrometeor
variables are calculated based on the WRF simulation results of typhoon LEKIMA between
6th and 8th August in 2019 during which the TC’s intensity varied from 25 m/s to 50 m/s
(with a model horizontal resolution of 27 km and vertical model top at 1 hPa). The ERA5
profiles are classified into three categories (clear, stratiform, or convective) according to
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the CLWP (cloud liquid water path) and CIWP (cloud ice water path) in order to obtain
the subset of profiles under different scenes, which is consistent with that used by [16]. As
precipitation-related parameters could be obtained in the WRF outputs, the profiles with
rain rates less than 0.1 mm/h are defined as the clear profiles, while the profiles with the
maximum reflectivity greater than 35 dBZ are defined as the convective profiles, while the
rest are stratiform profiles.
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Figure 1. The surface pressure SD background fields in June. (a–c) Surface pressure under clear,
stratiform, and convective weather conditions, respectively. (d–f) The difference between stratiform
and clear, convective and stratiform, and convective and clear, respectively.

Figure 2 shows the SD background covariance matrices for clear (a), stratiform (b),
and convective (c). Note that the covariances are transformed to correlation coefficients to
achieve a straightforward interpretation. It is clear that with the enhancement of convection,
the correlation coefficients of parameters in the troposphere increase, especially for T and Q.
The background covariance matrix without considering weather scenes is also illustrated in
Figure 2d, which is used as a control experiment to prove the impact of the SD background
covariance matrix on retrieval accuracy.
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Figure 2. The SD correlation coefficient for different weather conditions based on background
covariances. (a–c) represent the relationship under clear, stratiform, and convective conditions,
respectively, and (d) displays the correlation coefficient based on background covariances without
considering weather conditions. Both the x- and y-axis represent the arrangement of different
variables, as labeled beside the coordinate, from the top to the bottom layers, whose specific layers
are shown at the top of this figure.

3.2. Scene Detection

The scene detection method is the basis for the SD 1DVAR algorithm. In this study,
we only focus on cloud scene detection as the purpose is to retrieve the TCs’ structure
over oceans. As the MWTS does not have 23.8 and 31.4 GHz channels that are sensitive
to the cloud water path [26], new cloud detection methods were considered for FY-3D
MW sounding instruments. Researchers have tried to detect the cloud scenes based on the
bias-corrected observations-minus-backgrounds (O-B) of 50.3 GHz brightness temperature
(BT) [13]. However, this method relied on atmospheric reanalysis data for the radiative
transfer simulation to calculate the background BT [27], and the significance of performing
the retrieval of atmospheric parameters on the premise that the reanalysis data are already
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available will be reduced. A comprehensive microwave sounder (CMWS) product was
used in [16], which combined the MWTS and MWHS and simulated the missing 23.8 and
31.4 GHz channels based on the random forest model [28], and the cloud detection was
performed similar to ATMS methods. However, the quality of this cloud detection method
will depend on the accuracy of the simulated BT for the missing channels.

As this study was to retrieve the fusion data of the FY-3D MWTS and MWHS, the
cloud emission and scattering index (CESI) based on the paired dual oxygen absorption
bands located near 60 GHz and 118 GHz can be used for cloud detection [29]. The CESI can
be briefly introduced as follows:

CESI = TBobs
H − TBreg

H = TBobs
H −

(
b0 + b1TBobs

T

)
, (2)

where TBobs
T and TBobs

H are the observed BT of paired MWTS and MWHS channels, respec-
tively; TBreg

H is the regressed brightness temperatures of corresponding MWHS channels
under clear conditions; b0 and b1 are the regression coefficients. In this study, we inherit
the three groups of paired dual oxygen absorption bands from [29] representing the CESI
at low (MWTS CH03 + MWHS CH07), middle (MWTS CH05 + MWHS CH06), and high
(MWTS CH06 + MWHS CH05) layers. The regression coefficients b0 and b1 are generated
based on four months’ (January, April, July, and October in 2018) clear condition fitting.
The CESI is used to identify the weather conditions of FOVs into three categories: clear,
stratiform, and convective scenes, to match the background fields and covariance matrices
in SD 1DVAR. The thresholds for the classification are as follows:

CESIlow ≥ −1.0 and CESImid ≥ 2.0 Clear
CESImid ≤ −2.0 and CESIhigh ≤ 0.5 Convective

Others Strati f orm
, (3)

where CESIlow, CESImid, and CESIhigh represent the CESI calculated based on paired dual
oxygen absorption bands for low, middle, and high layers [29], respectively. Figure 3
shows an example of cloud detection results at near 6:00 UTC on 14 September 2018,
when Typhoon Mangkhut was active on the ocean east of the Philippines. Figure 3a,b
display the scene detection results from ATMS based on the algorithm described in [16]
and MWTS+MWHS based on CESI, respectively. Figure 3c shows the true color image from
the VIIRS (Visible Infrared Imaging Radiometer Suite) onboard the Suomi NPP satellite
at the same time. Although the cloud scenes identified by CESI have some clutters in
low-latitude regions (may be caused by the incomplete uniformity of the spatial pixel
observation positions when MWTS and MWHS are collocated), its clear and cloudy areas
are basically the same as those in Figure 3a. In addition, the inner core structure and
spiral rain band of Typhoon Mangkhut can be clearly depicted in Figure 3a,b, and the
cloud system distribution is basically consistent with the VIIRS observations. These results
indicate that with CESI method, FY-3D MW sounding instruments could achieve the cloud
scene detection with a similar quality to those from the ATMS, even though the MWTS
does not have 23.8 and 31.4 GHz channels.
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(a) and FY-3D MWTS+MWHS (b), with blue, grey, and white dots representing clear, stratiform,
and convective scenes, respectively. (c) True color image at the same time from VIIRS onboard
NPP satellite.

3.3. Bias Correction

Similar to [16], the bias correction method used in this study is also based on [30]. The
specific scheme is as follows:

∆Tb = A0exp
{
−1

2
[(θs − A1)/A2]

2
}
+ A3 + A4θs + A5θ2

s (4)

where ∆Tb is the biases of BT at each channel, defined as the radiative transfer model
simulated BT minus observed BT; θs is the zenith angle; coefficients A0 − A5 are fitted
using the least squares method based on ∆Tb and θs. The ERA5 reanalysis dataset on the
2nd of every month from June 2018 to May 2019 is utilized as the input of the radiative
transfer model to calculate the simulated BT. To investigate the influence of the observation
operator, both CRTM and ARMS are used as radiative transfer models, and the bias
correction coefficients A0 − A5 are fitted for each model. Figure 4 takes MWTS Channel 5
at 54.4 GHz (a) and MWHS Channel 1 at 89 GHz (b) as examples to show the performances
of our bias correction method. The systematic bias from the radiative transfer model, and
the angle-dependent bias related to the instrument itself [30], can be corrected at the same
time. The corrected bias is basically distributed around 0 and changes little with the local
zenith angle. Meanwhile, the observation operator error, defined as the standard deviation
of O-B, is not affected by the bias correction, as shown in the red and blue shaded areas in
Figure 4.
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function of satellite zenith angle, respectively. Red and blue shaded areas represent the range of one
standard deviation centered on the corrected and original O-B mean value as a function of satellite
zenith angle, respectively.

4. Results
4.1. Effects of SD Background Covariance Matrices on 1DVAR Retrieval

Two experiments are set to test the effects of SD background covariance matrices
on the retrieved TC’s thermal structures, as shown in Table 2. In EXP_noSDCov, the
background covariance matrix without considering the cloud scenes (Figure 2d) is used in
1DVAR retrieval, while the SD background covariance matrices (Figure 2a–c) are used in
EXP_SDCov retrievals. Note that both of these experiments use the SD background fields
as introduced in [16] and Section 3.1, and all channels from MWTS and MWHS are used in
the 1DVAR retrievals. ARMS is used as the observation operator in this study.
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Table 2. Description of experiments for different background covariance matrices.

EXP. NAME Description

EXP_noSDCov 1DVAR retrieval based on static background covariance matrix
EXP_SDCov 1DVAR retrieval based on SD background covariance matrices

As stated in Section 2.2, we retrieve 489 records of 41 TCs from 2018 to 2020. In order
to visually display the retrieved TC vertical thermal structures, we select four records of
different intensity levels as examples, whose minimum center surface pressures are 992,
978, 951, and 938 hPa, specifically. Figures 5 and 6 show the results from EXP_SDCov
and EXP_noSDCov, respectively, with subplots a-d and e-h representing the retrieved
TC anomalies of temperature and humidity, respectively. Following [9], the temperature
anomaly is calculated by the difference between the local air temperature and the azimuthal
mean temperature (averaged in the 550–650 km annulus from the storm center) at each
corresponding layer. The scattering-related unexpected cold anomaly errors in the lower
layers, as appearing in some previous studies [10,11], are eliminated in both EXP_SDCov
and EXP_noSDCov, and the warm core center warms up with the TC intensity, which is con-
sistent with theoretical studies [9] and previous observation results [11,12]. The retrieved
humidity distributions are also reasonable in both EXP_SDCov and EXP_noSDCov, with
the large humidity appearing at lower layers and decreasing with height. The humidity is
also higher in the inner region of TCs, which is also consistent with the theoretical results
as the strong convection is more likely to appear in the inner region, leading to a larger
water content in this area.
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Figure 6. Same as Figure 5, except for temperature anomaly (a–d) and humidity (e–h) structures
retrieved from EXP_noSDCov.

All the retrieval experiments reveal reasonable temperature and humidity structures
for any stages of TC and are consistent with [16]. Using only the SD background field could
result in a good thermal structure of TCs. However, spotted differences are shown between
EXP_SDCov and EXP_noSDCov, especially for the humidity fields, which might be the
result of the SD background covariance matrices. At this stage, it is difficult to judge the
results in Figures 5 and 6. Thus, the validation against direct observations of a large sample
size is given in the following section to obtain the quantitative statistical conclusions.

Temperature and humidity profiles retrieved from both EXP_SDCov and EXP_
noSDCov are compared with flight dropsonde observations. As the specific humidity
changes significantly with height, we use the relative humidity for better illustration.
Figure 7 displays the vertical distribution of mean bias (defined as flight observed pro-
files minus 1DVAR retrieved profiles, blue curves) and RMSE (root-mean-squared error,
red curves) from both EXP_SDCov (solid curves) and EXP_noSDCov (dashed curves).
Figure 7a,b represent the results for temperature and humidity, respectively. Note that
dropsonde data in the inner-region of TCs are only available below 700 hPa, resulting in the
decrease in sample size between 850 and 700 hPa, and the sudden change in temperature
error around 700 hPa (Figure 7a) could also be attributed to the decrease in inner-region
samples where large scattering conditions are more likely to occur.
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Figure 7. Validation results for retrieved temperature (a) and relative humidity (b) products based
on flight dropsonde observations. Blue and red curves represent the mean bias and RMSE results,
respectively. Solid and dashed curves represent validation from EXP_SDCov and EXP_noSDCov,
respectively. The yellow shaded areas corresponding to the top axis represent the number of the
collocated retrieval profiles with the dropsonde observations, which change with vertical layers as
the airplane flight levels vary from observation locations.

Overall, the temperature bias and RMSE are concentrated around 0.5 K and 1.5 K,
respectively, for both EXP_SDCov and EXP_noSDCov, except for higher layers around
300 hPa (layers of warm core area), where the bias of EXP_noSDCov could reach as large
as 1.3 K, which means that the retrieved warm core intensity might be weaker than the true
value. As a comparison with NOAA MiRS retrieval errors of 2–4 K under TC conditions [5],
the temperature accuracy in this study is greatly improved. Meanwhile, using SD back-
ground covariance matrices could reduce the bias and RMSE by around 0.5 K near 300 hPa.
Though the low-layer bias and RMSE are similar between these two experiments, the
errors are also slightly reduced by about 0.2 K after using SD background covariances. The
improvement of humidity accuracy is more significant compared with temperature, which
is consistent with those shown in Figures 5 and 6. As shown in Figure 7b, the RMSE of
humidity is reduced by 10–15% in the layer from 850 to 500 hPa after using SD background
covariances, and the larger bias between these layers is also reduced by 10–20%. As water
vapor content is more concentrated in this region, this improvement is very important for
the accurate monitoring of TC’s water vapor structure.

4.2. Effects of Observation Operator on 1DVAR Retrieval

Considering that ARMS is a newly developed radiative transfer model, it’s the first
time ARMS has been used as an observation operator in variational retrievals. As CRTM is
a commonly used observation operator in retrieval systems such as in [16–18], this study
compares the uses of ARMS and CRTM and understands the influence of different radiative
transfer models on the retrieved accuracy under TC conditions. Meanwhile, analysis of SD
background covariance matrices is also conducted for both operators. Therefore, we design
four sets of experiments, as shown in Table 3. Note that experiments EXP_ noSDCov_ARMS
and EXP_SDCov_ARMS are similar to EXP_noSDCov and EXP_SDCov, respectively, as
described in Section 4.1, and all the experiments use scene-dependent background fields,
as described in [16].
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Table 3. Experiments for different background covariance matrices and observation operators.

EXP. NAME Description

EXP_noSDCov_CRTM 1DVAR retrieval based on static background covariance matrix, using CRTM as observation operator
EXP_noSDCov_ARMS 1DVAR retrieval based on SD background covariance matrices, using ARMS as observation operator

EXP_SDCov_CRTM 1DVAR retrieval based on static background covariance matrix, using CRTM as observation operator
EXP_SDCov_ARMS 1DVAR retrieval based on SD background covariance matrices, using ARMS as observation operator

Figure 8 shows assessments of temperature (a) and humidity (b) profiles retrieved
using static (dashed curves) or SD (solid curves) background covariance matrices. As
with as Figure 7, the upper troposphere temperature errors, as well as the mid- to low-
troposphere relative humidity errors, are reduced after using SD background covariances.
The temperature reduction could reach up to 1 K and 0.5 K for bias and RMSE, respectively.
The humidity error reduction is significantly large, with bias and RMSE reduced by 15%
and 10%, respectively, at mid- to low-troposphere, which is consistent with previous
results using ARMS as the operator. This means that the SD background covariance
matrices algorithm could improve the retrieval accuracy using either CRTM or ARMS as
the observation operator.
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Figure 8. Same as Figure 7, except for validation results for retrieved temperature (a) and relative
humidity (b) products using CRTM as the observation operator.

Differences still exist from using these two radiative transfer models. In Figure 9, the
temperature bias and RMSE are almost the same after replacing CRTM with ARMS as an
observation operator. Considering the small temperature retrieval errors under TC condi-
tions from these two experiments (bias and RMSE are around 0.5 and 1.5–2 K, respectively),
the room for improvement is limited due to the influence of the noise and resolution of the
instruments themselves. Meanwhile, the relative humidity errors show differences between
these two experiments. After using ARMS as an observation operator, the relative humid-
ity error can be further reduced by up to 5% (at layers around 850 hPa) compared with
CRTM results, and the bias is closer to 0 in ARMS results, especially for mid- to high-layers
(Figure 9b). Considering that these two experiments share similar humidity errors when
using the static background covariances matrix (Figure 8b), this indicates that using ARMS
as an observation operator could take full advantage of the SD background covariance
matrices to reduce the humidity retrieval error under strong scattering conditions. As the
nonspherical particles are considered using discrete dipole approximation when training
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MW scattering coefficients in ARMS, the MW-related scattering process is considered more
comprehensive in the forward and adjoint calculation in ARMS compared with CRTM [22].
Considering that water vapor absorption channels of MWHS are located at frequencies near
183 GHz, which are more affected by particle scattering, compared with oxygen absorption
channels at frequencies near 50–60 GHz or 118.75 GHz), the advanced consideration of
scattering effects in ARMS could lead to more accurate forward and adjoint simulations of
water vapor absorption channels, and then to the smaller errors in humidity retrievals, as
shown in Figure 9b.
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Figure 9. Validation results for retrieved temperature (a) and relative humidity (b) products from dif-
ferent observation operators based on flight dropsonde observations using SD background covariance
matrices. Blue and red curves represent mean bias and RMSE results, respectively. Solid and dashed
curves represent validation from EXP_SDCov_ARMS and EXP_SDCov_CRTM, respectively. The
yellow shaded areas corresponding to the top axis represent the number of the collocated retrieval
profiles with the dropsonde observations, which change with vertical layers as the airplane flight
levels vary from observation locations.

In order to compare the differences between ARMS and CRTM under cloudy con-
ditions, we select the MWHS data on the 2nd day of every month from June to October
in 2018 to conduct the forward simulation experiments. The atmospheric parameters for
the radiative transfer model are obtained from the ERA5 reanalysis data, and the cloud
parameters are from the Level 2A GPROF (Goddard Profiling Algorithm) cloud micro-
physics profile product of Global Precipitation Measurement (GPM) Microwave Imager
(GMI) [31], which are temporally and spatially collocated with the MWHS FOVs. Note that
only FOVs over oceans are simulated, and only the GMI products with their pixel centered
within MWHS FOVs and the difference between the observation time less than 15 min
are collocated. Considering the GMI microphysical products contain four hydrometers
(cloud water, cloud ice, rain, and snow), in this study, we only consider liquid and solid
hydrometers, that is, cloud water and cloud ice when there is no precipitation, and rain
and snow when precipitation occurs.

Figures 10 and 11 show the comparison between observed and simulated BT under no
precipitation and precipitation conditions, respectively. Four MWHS channels are chosen
as examples, including two window channels (89 GHz and 150 GHz) and two water vapor
absorption channels (around 183.31 GHz). In addition, the mean bias and the standard
deviation of the observation minus simulations BT (O-B) are also shown in those figures.
As shown in Figure 10, the mean bias and standard deviations of O-B from ARMS and
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CRTM are close under nonprecipitation cloudy conditions. The simulation accuracy of
the two models decreases due to the effect of heavy precipitation particle scattering under
precipitation conditions (as shown in Figure 11), but some differences can be spotted
between these two models. ARMS-simulated O-B tend to have a smaller bias and standard
deviation for most channels compared with CRTM results, except for the 89 GHz channel,
and the improvement is more pronounced in the water vapor absorption channels. This
further explains the improved accuracy of water vapor retrievals after using ARMS as the
observation operator, as shown in Figure 9.
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5. Discussion and Conclusions

This study proposes a scene-dependent (SD) variational retrieval method with the
background profiles and their covariance matrices varying with atmospheric scattering
conditions. The algorithm effectiveness is demonstrated through uses of the FY-3D mi-
crowave (MW) sounding instruments under tropical cyclone (TC) conditions. Assessments
based on flight dropsonde observations show that the temperature and humidity errors
are around 1.5 K and 10–20%, respectively, throughout the troposphere. After using the
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SD background covariance matrices, both the temperature and relative humidity errors
are reduced up to 0.5 K and 15%, respectively. The most improved temperature layers are
near 300 hPa, where the TC warm core center is often located, while the humidity errors
significantly decrease at mid- to low-troposphere layers where the water vapor content is
mostly concentrated. These results indicate that SD background covariances can resolve
warm core and humidity more accurately, compared to the previous studies.

The influences from observation operators on variational retrieval errors are also
analyzed in this study. The assessment results show that the SD variational method could
improve the retrieval accuracy using either CRTM or ARMS as an observation operator.
Benefiting from the more comprehensive calculation of MW-related scattering processes
in ARMS, the accuracy of the retrieved humidity under TC conditions is improved after
replacing the observation operator from CRTM to ARMS. The bias of humidity error is closer
to 0, and the RMSE is reduced by up to 5% after using ARMS in variational retrievals. These
results indicate that the comprehensive consideration of the scattering effect of nonspherical
particles in the radiative transfer model could improve the application of MW data under
cloudy and precipitation conditions, especially for high-frequency MW data, in variational
calculations. This is important for the development of the radiative transfer model, as well
as for variational retrieval and data assimilation of MW sounding instruments.

In addition to temperature and humidity, the SD variational inversion algorithm also
relies on the background field and background covariance matrix of different hydrometeors.
The hydrometeor profiles including cloud water (CW), rain water (RW), and graupel water
(GW) are generated from WRF model outputs. However, as WRF hydrometeor profiles are
dependent on microphysical schemes, the impact of the hydrometeor background fields
and background covariance matrices used in our 1DVAR algorithm on the final products is
subject to more investigation. In fact, in order to improve the simulation accuracy of the
radiative transfer model under cloudy conditions, the hydrometeor parameters are mainly
used to characterize the atmospheric scattering conditions in our algorithm. As this article
focuses on the retrieval of TCs’ temperature and humidity structure, the hydrometeors
products are not discussed. Depending on the retrieved high-quality temperature and
humidity profiles from this work, our next step will focus on the retrieval of hydrometeor
profiles under cloudy and rainy conditions, as well as the influence from different cloud
microphysical schemes on the hydrometeor covariance matrices and the retrieval results.
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The level 2A GMI GPROF dataset can be downloaded from the website of NASA STORM (https:
//storm.pps.eosdis.nasa.gov/storm/, accessed on 27 December 2021).
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