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Abstract: In the application of ocean color remote sensing, remote sensing reflectance spectral
(Rrs(λ)) is the most important and basic parameter for the development of bio-optical algorithms.
Atmospheric correction of ocean color data is a key factor in obtaining accurate water Rrs(λ) data.
Based on the QA (quality assurance) score spectral quality evaluation system, the quality of Rrs(λ)
spectral of GOCI (Geostationary Ocean Color Imager) obtained from four atmospheric-correction
algorithms in the Bohai Sea were evaluated and analyzed in this paper. The four atmospheric-
correction algorithms are the NASA (National Aeronautics and Space Administration) standard near-
infrared atmospheric-correction algorithm (denoted as Seadas—Default), MUMM (Management Unit
of the North Sea Mathematical Models, denoted as Seadas—MUMM), and the standard atmospheric-
correction algorithms of KOSC GOCI GDPS2.0 (denoted as GDPS2.0) and GDPS1.3 (denoted as
GDPS1.3). It is shown that over 90% of the Rrs(λ) data are in good quality with a score ≥4/6
for the GDPS1.3 algorithm. The probability of Rrs(λ) with a QA score of 1 is significantly higher
for the GDPS1.3 algorithm (57.36%), compared with Seadas—Default (37.91%), Seadas—MUMM
(35.96%), and GDPS2.0 (33.05%). The field and MODIS measurements of Rrs(λ) were compared with
simultaneous GOCI Rrs(λ), and they demonstrate that the QA score system is useful in evaluating the
spectral shape of Rrs(λ). The comparison results indicate that higher QA scores have higher accuracy
of the Rrs band ratio. The QA score system is helpful to develop and evaluate bio-optical algorithms
based on the band ratio. The hourly variation of QA score from UTC 00:16 to 07:16 was investigated
as well, and it demonstrates that the data quality of GOCI Rrs(λ) can vary in an hour scale. The
GOCI data with high quality should be selected with caution when studying the hourly variation of
biogeochemical properties in the Bohai Sea from GOCI measurements.

Keywords: remote sensing reflectance; GOCI; QA score; Bohai Sea; atmospheric correction

1. Introduction

With the development of ocean color remote sensing, satellite sensors with high sam-
pling frequency and high space coverage play an important role in studying the bio-optical
properties and biogeochemical parameters of seawater [1]. For the coastal water areas with
complex bio-optical properties, the diurnal variation dynamics are relatively high due to
the complex components, such as phytoplankton, suspended particles, and Chromophoric
Dissolved Organic Matter (CDOM) [2]. For a long time, the major ocean color observa-
tion sensors were mounted on polar-orbiting satellites, such as SeaWiFS (Sea-viewing
Wide Field Sensor), MODIS (Moderate-Resolution Imaging Spectroradiometer), MERIS
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(Medium-Resolution Imaging Spectrometer), VIIRS (Visible Infrared Imager Radiometer
Sensor), OLCI (Ocean and Land Color Instrument), and COCTS (Chinese Ocean Color
and Temperature Scanner). They all generally covered the world once every 1–2 days or
more, which made them unsuitable for studying the temporal and spatial variation of
short time series on the coast. COMS (Communication Ocean and Meteorological Satellite),
the first geostationary oceanic satellite of the world, was launched in 2010, and GOCI
(Geostationary Ocean Color Imager) is the main sensor on it [3]. Compared with traditional
polar-orbiting ocean water color satellites, the GOCI can provide 8 observations per day,
while the second GOCI(GOCI-II) can provide 10, making it possible to observe hourly
variations in biogeochemical parameters [4]. In addition, it can help monitor short-term
changes in water quality, red tides, green tides, etc., in the nearshore waters [5,6]. Re-
cently, many researchers used GOCI data to retrieve water environmental parameters,
such as chlorophyll, suspended particle matter (SPM), water transparency, CDOM, sea ice,
etc. [7–11].

The so-called spectral remote sensing reflectance Rrs(λ) data of waters are defined
as the ratio of water-leaving radiance to downwelling irradiance above the sea surface,
and are a crucial parameter to retrieve optical properties and biogeochemical parameters
of seawater. For ocean color remote sensing, about 90% of the total signal received by the
sensor is contributed from the atmosphere, while the water-leaving radiance of seawater
contributes less than 10%. Therefore, atmospheric correction is preformed firstly to
remove the atmospheric signals and obtain water-leaving radiance or Rrs(λ) [12]. Gordon
et al. proposed an atmospheric-correction algorithm for clear oceanic waters, where
the assumption of zero water-leaving radiance at the NIR bands is valid (also known
as ‘black-pixel’) [13]. However, this black-pixel assumption is invalid for turbid case-2
water bodies [14–18]. To counter this, some researchers proposed several atmospheric-
correction algorithms which account for the fact that the water-leaving radiance of
case-2 water bodies is not zero in the NIR bands. These algorithms can be summa-
rized as follows: (1) use of SWIR bands [17,19,20] or use of blue or UV bands [21,22];
(2) assuming/modeling the contributions of NIR aerosol or water [18,23–27]; (3) correct-
ing/modeling of the non-negligible ocean in the NIR [14,28,29]; (4) based on a neural
network method [30–32] or optimization method [33–35]. The traditional and commonly
used method for evaluating the quality of ocean color data (including Rrs(λ) data) is
to compare the satellite measurements with field measurements with statistical analy-
sis. This provides important information on the overall quality of various ocean color
observation data [36–40]. However, it has been shown that the actual meaning of the
single band contrast scatter plot cannot clearly express the quality of the complete Rrs(λ)
spectrum [36,39]. Many bio-optical algorithms are based on the Rrs(λ) spectrum to derive
biogeochemical parameters, such as the band ratio algorithm for chlorophyll concentra-
tion, which requires more precise quality assurance of the full Rrs(λ) spectrum [41,42].
Wei et al. [43] established a QA (quality assurance) system that could objectively evaluate
the spectral quality of Rrs(λ) based on large numbers of high-quality field hyperspectral
reflectance data. It could objectively evaluate the spectral quality of Rrs(λ). A further
test on the QA system used the NOMAD (NASA bio-Optical Marine Algorithm Dataset)
remote sensing reflectance dataset and satellite remote sensing reflectance data from
coastal and oceanographic regions. The results show that the QA evaluation system can
identify problems or possibly erroneous Rrs(λ) spectra.

GDPS (GOCI Data Processing System) is a data analysis and processing software
specially designed for GOCI sensor data. The development of the initial version of GDPS
began in 2003 and was completed in 2008. GDPS provides two different modes of op-
eration: the server (real-time) mode, which is used at the GOCI data-processing facility
for real-time generation of oceanic color data and information, and the interactive mode,
which is open to the scientific community. Up to now, Korea Ocean Satellite Center (KOSC)
has provided GDPS1.1, GDPS1.2, GDPS1.3, GDPS1.4, GDPS1.4.1, and GDPS2.0 for global
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users [3,27,44,45]. Recently, NASA’s SeaDAS software also included specific modules to pro-
cess GOCI’s data, making the application of alternative processing algorithms easy [46–48].

GOCI’s frequent measurements provide an important data source for the monitoring
and research of daily changes in water quality. The evaluation and analysis of GOCI Rrs(λ)
spectral quality are also particularly important. In this study, the QA score system is
used to evaluate the GOCI Rrs(λ) spectrum in the Bohai Sea. We select four atmospheric-
correction algorithms, the default atmospheric-correction algorithm by SeaDAS (denoted
by Seadas—Default in this study), MUMM (denoted by Seadas—MUMM), the standard
atmospheric-correction algorithms of KOSC GDPS2.0 (denoted by GDPS2.0), and GDPS1.3
(denoted by GDPS1.3) to process GOCI L1B data to generate Rrs(λ) spectrum. The QA
scores of the four algorithms are calculated. Then, the GOCI Rrs(λ) are compared with
in situ and MODIS measurements to analyze the QA score system in evaluating the
Rrs(λ) spectrum in the Bohai Sea and the quality of the Rrs(λ) spectrum from different
algorithms. At last, the hourly variation of GOCI Rrs(λ) QA score from UTC 00:16 to 07:16
is analyzed.

2. Data and Algorithm
2.1. Study Area

This study is focused on the Bohai Sea, China’s northernmost coastal waters, which is
a nearly enclosed inland sea. According to topography and landforms, the Bohai Sea can
be divided into five parts: Liaodong Bay, Bohai Bay, Laizhou Bay, Bohai Sea, and Bohai
Strait (Figure 1). This sea area is the confluence of many rivers, including the famous
Yellow River. Bohai Strait is the only channel for the exchange of water in the Bohai Sea
with the Yellow Sea. The surrounding coastal land area is called the Bohai Rim Economic
Circle; it is characterized by intense human activity, causing the rapid degradation of the
Bohai Sea’s ecosystem and a decline in primary productivity [49]. The real-time dynamic
monitoring of the water quality and ecological conditions of this complex sea area is thus
of great significance.
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2.2. Data
2.2.1. GOCI Data

GOCI is the main sensor on South Korea’s COMS Satellite. Launched in July 2010,
COMS is the world’s first geostationary ocean color satellite. It covers China’s Bohai
Sea, Yellow Sea, and parts of the East China Sea and captures eight images per day from
8 am to 3 pm in local time, one image per hour. The sweep width of the GOCI image is
2500 km × 2500 km, the orbital altitude is 35,837 km, the spatial resolution is 500 m, and
the band range is 412–865 nm (6 visible bands and 2 near-infrared bands, as shown in
Table 1). The GOCI L1B data of 27 August 29 to 2015, and September 2015, with a total of
264 images, were used in this paper, as obtained from: http://kosc.kiost.ac.kr/, accessed
on 15 June 2021.

2.2.2. MODIS/Aqua Data

Aqua is a solar synchronous polar-orbiting satellite. Moderate-resolution Imaging
Spectroradiometer (MODIS) is one of the main sensors mounted on Aqua. Its sweep width
is 2330 km, its spectral band range is 140–1440 nm, and it has 36 spectral bands. In this
paper, Aqua MODIS L2 daily Rrs data of September 2015, with a total of 30 images, were
applied. We obtained those MODIS Rrs data from the NASA Ocean Biology Processing
Group (OBPG, http://oceancolor.gsfc.nasa.gov/, accessed on 15 June 2021), which were
processed with the most recent updates in calibration and algorithms.

Bands settings of GOCI and MODIS are as follows (Table 1).

Table 1. Common bands of MODIS and GOCI.

Band MODIS Wavelength (nm) Band GOCI Wavelength (nm)

1 412 1 412
2 443 2 443
3 469 3 490
4 488 4 555
5 531 5 660
6 547 6 680
7 555 7 745
8 667 8 865
9 678

10 748
11 859
12 869

2.2.3. In Situ Data

From 27 to 29 August 2015, we conducted an in situ experiment of Marine optics in the
Yellow Sea and Bohai Sea. The upward radiance profile data and downward irradiance pro-
file data were measured with a hyperspectral radiometer, Profiler II, whose manufacturer
is Satlantic. Its downward irradiance data, Ed(λ, z), and upward radiance data, Lu(λ,z), can
be expressed as:

Ed(λ, z) = Ed(λ, 0−) exp[Kd(λ)× z] (1)

Lu(λ, z) = Lu(λ, 0−) exp[KL(λ)× z] (2)

where Ed(λ, 0−) and Lu(λ, 0−) are the downward irradiance and upward radiance just below
the sea surface, respectively. Kd(λ) and KL(λ) are diffuse attenuation coefficients of down-
ward irradiance and upward radiance, respectively. According to Equations (1) and (2), the
measured data of Ed(λ, z) and Lu(λ, z) were fitted to obtain Ed(λ, 0−), Lu(λ, 0−), Kd(λ), and
KL(λ). Then, Rrs(λ) can be obtained by Equation (3) [1].

rrs(λ) = Lu(λ, 0−)/Ed(λ, 0−),Rrs(λ) = 0.52× rrs(λ)/(1− 1.7× rrs(λ)) (3)

http://kosc.kiost.ac.kr/
http://oceancolor.gsfc.nasa.gov/
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2.3. Algorithm
2.3.1. Atmospheric-Correction Algorithms of GDPS

The operational algorithm of atmospheric correction for GDPS to process GOCI data
adopts the bright pixel method, which is implemented by improving the iterative model
for calculating NIR water-leaving reflectance based on the standard SEAWIFS algorithm.
Because of the absence of SWIR band in GOCI, GDPS1.3 used the empirical relation
between the red band and NIR water-leaving reflectance to calculate the NIR reflectance ρw
(Equations (4) and (5)) [44]. GDPS1.4 mainly updates the modularization of the software
based on GDPS1.3 and fixes some minor problems of modularization. The atmospheric-
correction algorithm of GDPS1.3 and GDPS1.4 are identical, and the Rrs(λ) obtained from
them were the same [44].

ρw(745) =
6

∑
n=1

jnρn
w(660) (4)

ρw(865) =
2

∑
n=1

knρw(745) (5)

The atmospheric correction of GDPS2.0 makes use of the SRAMS (spectral relation-
ships in the aerosol multiple-scattering reflectance) among different wavelengths to directly
calculate the contribution of near-infrared multiple-scattering reflectance. Then, the re-
flectance contribution of the near-infrared band to the visible band of the aerosol model
is estimated by the SRAMS spectrum [27]. The spectral relation between the reflection
spectra of multi-scattered aerosols and different wavelengths is established by a polynomial
function (Equation (6)):

ρw(λ2) =
D

∑
n=1

cnρn
w(λ1) (6)

For GOCI data, the spectral relations of each GOCI spectral segment are summarized
in Table 2. D represents the calculation order.

Table 2. Spectral relations of each GOCI spectral band.

λ1 (nm) 555 555 555 745 745 745 865

λ2 (nm) 412 430 490 555 660 680 745

D 4 4 4 4 3 3 2

Compared with the atmospheric-correction algorithm of GDPS1.1 and GDPS1.2,
GDPS1.3 adds the calculation order of the empirical relation of the water-leaving reflectance.
The atmospheric-correction algorithm of GDPS2.0 is different from the previous version.
Then, the default atmospheric-correction algorithms of GDPS1.3 and GDPS2.0 were used
in this paper to conduct atmospheric correction on GOCI L1B data. The corrected remote
sensing reflectance spectral (Rrs(λ)) data were obtained.

2.3.2. Atmospheric-Correction Algorithms of SeaDAS

SeaDAS provides a variety of atmospheric-correction algorithms for users in the
atmospheric correction of remote sensing data. In this paper, the default atmospheric-
correction algorithm of SeaDAS 7.5 (i.e., NASA standard atmospheric-correction algorithm,
denoted as Seadas—Default in this paper) and MUMM atmospheric-correction algorithm
(denoted as Seadas—MUMM in this paper) are used to conduct atmospheric correction
on GOCI data. Then, we can obtain the corrected remote sensing reflectance spectral
(Rrs(λ)) data.
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The default atmospheric-correction algorithm for SeaDAS was originally developed
by Gordon and Wang [13] in 1994, and in 2003, Stumpf et al. [28] extended its application
to case-2 waters. Bailey et al. revised it in 2010, also exhibiting good performances
for complex optical water bodies [50]. This algorithm assumes that the remote sensing
reflectance with the removal of the reflection of atmospheric molecules is either only related
to aerosols or only related to waters. First, ρw at 443 nm, 490 nm, and 555 nm are retrieved
based on the black-pixel assumption. Then, based on the bio-optical model (Equation (7)),
the absorption of particles and CDOM in the red band is determined. Additionally, the
particulate backscattering in the red band and NIR band can be computed. At last, ρw in
the NIR bands are generated.

ρw(λ) = f (λ, Chl) (7)

The MUMM atmospheric-correction algorithm was proposed by Ruddick in 2000 [24].
The assumptions of this algorithm consist of two parts:

(1) The aerosol multiple-scattering reflectance ratio of the two near-infrared bands of
each pixel has a fixed value, defined as ε(745,865), then:

ε(745, 865) =
ρA(745)
ρA(865)

, (8)

where ρA includes both Rayleigh and aerosol scatterings, as well as the interaction
between them.

(2) The ratio between reflectance and atmospheric transmission at the two near-infrared
bands (α(745,865)) is constant and equal to 1.945.

α(745, 865) =
ρw(745)/t(745)
ρw(865)/t(865)

= 1.945, (9)

where ρw is the water-leaving reflectance, and t is the diffuse transmittance from the
sun to the ocean atmosphere.

Then, using the set value of α and the estimated values of ε, Equations (10) and (11)
are defined. The values of ρA(745) and ρA(865) are estimated to select appropriate aerosol
models. Finally, the aerosol models are reentered into the black-pixel assumption, and ρw
data are obtained.

ρA(865) =
αρrc(865)− ρrc(745)

α− ε(745, 865)
(10)

ρA(745) = ε(745, 865)(
αρrc(865)− ρrc(745)

α− ε(745, 865)
) (11)

2.3.3. QA Score System

QA score system is based on the clustering analysis of optical water types, which is
also the core point of the QA system. The steps for the establishment and application of the
QA system are as follows:

Firstly, the reference Rrs spectra were normalized by their respective root of the sum of
squares to obtain nRrs.

nRrs(λ) =
Rrs(λ)[

N
∑

i=1
Rrs(λi)

2
]1/2 (12)

where N represents the total number of wavelengths equal to 9. λi corresponds to the
wavelengths of 412, 443, 488, 510, 531, 547, 555, 667, and 678 nm. The nRrs spectra vary
over the range between 0 and 1, while they retain the ‘shapes’ pertaining to the original
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Rrs spectra, i.e., the band ratios of nRrs(λ) remain the same as Rrs(λ). If the Rrs(λ) data were
measured at other wavelengths, it is needed to find the closest wavelength from the nine
bands. Finally, the gap method was used to determine the optimal number of clustering
k = 23, which was exactly consistent with the number of optical water types.

Secondly, we obtained the spectra of normalized remote sensing reflectance of 9 bands
of 23 kinds of optical waters. Through the nRrs spectrum, the upper boundary and lower
boundary values of each band’s nRrs spectrum of each water can be obtained, as well as
the average value of the nRrs spectrum. Thus, the average value of the nRrs spectrum, the
upper boundary of the nRrs spectrum, nRrs

U, and the lower boundary of the nRrs spectrum,
nRrs

L, form the key part of the QA evaluation system [43].
Thirdly, we can give a target Rrs*(λ′) and evaluate it with the QA system. First, we

must figure out whether the target Rrs*(λ′) band matches that of nRrs(λ). If the spectral
bands of Rrs*(λ′) are more than those of nRrs(λ), only the bands with the same wavelength
as nRrs(λ) are selected for further analysis. If the spectral bands of Rrs*(λ′) are fewer
than those of nRrs(λ) (i.e., the total number of bands is less than nine), the nRrs(λ′) subset
corresponding to λ′ and the corresponding nRrs

U(λ′) subset and nRrs
L(λ′) subset need to

be extracted from nRrs(λ). Then, nRrs*(λ′) is obtained after the normalization of Rrs*(λ′)
with Equation (12). According to the similarity equation of SAM spectrum proposed by
Kruse [51] (Equation (13)), we can assign a water type for nRrs*(λ′).

cos α =

N
∑

i=1
[nR∗rs(λ) · nRrs(λ)]√

N
∑

i=1
[nR∗rs(λ i)]

2 N
∑

i=1
[nRrs(λ i)]

2

(13)

where α is the angle formed between the reference spectrum, nRrs, and the normalized
target spectrum, nRrs*. SAM can determine the spectral similarity by taking them as the
space vector whose dimension is equal to the band number N, and the spectral water type
corresponding to the maximum cosine value is determined as the water type of the target
spectrum, nRrs*.

Finally, the QA score is estimated by comparing the upper and lower boundary values
of the target spectrum nRrs* with the spectra of water types (Equation (14)).

Ctot =
C(λ1) + C(λ2) + . . . + C(λN)

N
(14)

C(λi) is the score for a particular wavelength, and N is the total number of bands in
nRrs*. If the value of nRrs*(λi) is not in the range of nRrs

U(λi) and nRrs
L(λi), the wavelength

score will be assigned 0, that is, C(λi) = 0; otherwise, C(λi) = 1. As can be seen from
Equation (14), the total score of nRrs* varies within the range of [0, 1]. Additionally, a higher
score means better data quality.

3. Results
3.1. Statistical Analysis of the Rrs(λ) QA Score

The total QA score of all the six GOCI bands is expressed as n/6 (n = 0,1,2,3,4,5,6),
and n is the total number of bands where the score of the specific band is 1. Figure 2
shows the frequency distribution of GOCI Rrs(λ) QA scores in the Bohai Sea in Sep. 2015,
obtained from the atmospheric-correction algorithms of Seadas—Default, Seadas—MUMM,
GDPS2.0, and GDPS1.3, and Table 3 lists the values of the frequencies. More than 48 million
data were counted, with about 12.2+ million available pixels for Seadas—Default, 12.2+
million available pixels for Seadas—MUMM, 11.7+ million available pixels for GDPS2.0,
and 11.8+ million available pixels for GDPS1.3. It can be seen that the frequency increases
with scores, especially for scores from GDPS1.3. A total of 57.36% of the Rrs(λ) data from the
GDPS1.3 has a QA score of 1, while for the other three atmospheric-correction algorithms,
less than a half of the Rrs(λ) data have a score of 1, i.e., 37.91% for Seadas—Default, 35.96%
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for Seadas—MUMM, and 33.05% for GDPS2.0. If we take the score of 4/6 (~0.67) as a
relatively high score, about 93% of the Rrs(λ) data are of good quality with a score no less
than 4/6 for the GDPS1.3 algorithm. For the other three atmospheric-correction algorithms,
about 81–88% of the Rrs(λ) data has a relatively high quality. Therefore, the frequency
distribution of the QA score reveals that GOCI Rrs(λ) data have good quality in the Bohai
Sea, and the atmospheric-correction algorithm embedded in GDPS1.3 is more suitable.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

from the atmospheric-correction algorithms of Seadas—Default, Seadas—MUMM, 
GDPS2.0, and GDPS1.3, and Table 3 lists the values of the frequencies. More than 48 
million data were counted, with about 12.2+ million available pixels for Seadas—Default, 
12.2+ million available pixels for Seadas—MUMM, 11.7+ million available pixels for 
GDPS2.0, and 11.8+ million available pixels for GDPS1.3. It can be seen that the frequency 
increases with scores, especially for scores from GDPS1.3. A total of 57.36% of the Rrs(λ) 
data from the GDPS1.3 has a QA score of 1, while for the other three atmospheric-
correction algorithms, less than a half of the Rrs(λ) data have a score of 1, i.e., 37.91% for 
Seadas—Default, 35.96% for Seadas—MUMM, and 33.05% for GDPS2.0. If we take the 
score of 4/6 (~0.67) as a relatively high score, about 93% of the Rrs(λ) data are of good 
quality with a score no less than 4/6 for the GDPS1.3 algorithm. For the other three 
atmospheric-correction algorithms, about 81–88% of the Rrs(λ) data has a relatively high 
quality. Therefore, the frequency distribution of the QA score reveals that GOCI Rrs(λ) 
data have good quality in the Bohai Sea, and the atmospheric-correction algorithm 
embedded in GDPS1.3 is more suitable. 

 
Figure 2. Statistical results of QA score of GOCI Rrs(λ) data processed by four atmospheric-
correction algorithms in the Bohai area. 

Table 3. Probability statistical table of QA score distribution of Rrs(λ) data obtained from each 
atmospheric-correction algorithm over the whole Bohai area. 

QA Score 
Frequency 

Seadas—Default Seadas—MUMM GDPS2.0 GDPS1.3 
0 2.48% 0.65% 0.34% 0.29% 

1/6 3.98% 1.67% 1.28% 0.66% 
2/6 5.51% 4.28% 3.50% 1.68% 
3/6 6.68% 8.56% 6.32% 4.42% 
4/6 13.05% 16.65% 16.36% 9.63% 
5/6 30.39% 32.24% 39.17% 25.96% 
1 37.91% 35.96% 33.05% 57.36% 

The study region is separated into the ‘Three Bays’ and the ‘Bohai Sea’ (Figure 1). The 
Three Bays refers to the Bohai Bay, Liaodong Bay, and Laizhou Bay, where the optical 

Figure 2. Statistical results of QA score of GOCI Rrs(λ) data processed by four atmospheric-correction
algorithms in the Bohai area.

Table 3. Probability statistical table of QA score distribution of Rrs(λ) data obtained from each
atmospheric-correction algorithm over the whole Bohai area.

QA Score
Frequency

Seadas—Default Seadas—MUMM GDPS2.0 GDPS1.3

0 2.48% 0.65% 0.34% 0.29%
1/6 3.98% 1.67% 1.28% 0.66%
2/6 5.51% 4.28% 3.50% 1.68%
3/6 6.68% 8.56% 6.32% 4.42%
4/6 13.05% 16.65% 16.36% 9.63%
5/6 30.39% 32.24% 39.17% 25.96%

1 37.91% 35.96% 33.05% 57.36%

The study region is separated into the ‘Three Bays’ and the ‘Bohai Sea’ (Figure 1).
The Three Bays refers to the Bohai Bay, Liaodong Bay, and Laizhou Bay, where the optical
properties of seawater are influenced by human activities. The Bohai Sea refers to the
central parts of the region where the seawater is relatively cleaner than the bays. Figure 3
shows the frequency distribution of the QA score at the Three Bays and the Bohai Sea,
respectively. Table 4 lists the values of the frequencies. It is obvious that the QA score
for the Three Bays is higher than that for the Bohai Sea using any atmospheric-correction
algorithm. About 90% of the Rrs(λ) data has a QA score ≥4/6 for the Three Bays, while for
the Bohai Sea, only the Rrs(λ) from GDPS1.3 has about 90% of the data with a score ≥4/6.
The results indicate the atmosphere correction algorithms are more valid in the coastal
areas of the Bohai Sea region.
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Table 4. Probability statistical table of QA score distribution of Rrs(λ) data obtained from each
atmospheric-correction algorithm over the different areas of Bohai.

Area QA Score
Frequency

Seadas—Default Seadas—MUMM GDPS2.0 GDPS1.3

Three Bays

0 1.36% 0.488% 0.241% 0.22%
1/6 1.24% 1.100% 0.621% 0.44%
2/6 1.74% 2.155% 1.474% 1.54%
3/6 4.45% 6.034% 3.784% 4.39%
4/6 12.41% 15.407% 15.612% 9.30%
5/6 34.78% 35.613% 42.780% 25.33%

1 44.02% 39.203% 35.487% 58.78%

Bohai Sea

0 3.60% 0.81% 0.43% 0.35%
1/6 6.73% 2.23% 1.94% 0.87%
2/6 9.28% 6.41% 5.52% 1.82%
3/6 8.91% 11.08% 8.85% 4.46%
4/6 13.69% 17.89% 17.10% 9.96%
5/6 26.00% 28.86% 35.56% 26.60%

1 31.79% 32.72% 30.60% 55.95%

3.2. Comparison of Rrs(λ) with Measured In Situ Data

We can consider that the QA score system is developed for evaluating the quality
of an individual Rrs(λ) spectrum. The in situ measurements of Rrs(λ) were used to
compare with GOCI Rrs(λ) derived from the four atmospheric-correction algorithms
with different QA scores. Due to the frequent cloud cover in the study area, the region
for the match-up of in situ and GOCI Rrs(λ) data was extended to the neighboring
North Yellow Sea [49]. The spatial and temporal windows of match-up were relaxed
to 300 m and 3 h, respectively. Finally, there are seven sets of match-up data in to-
tal, and their locations are marked in Figure 1 (red dots). Although the number of
match-up data is small, the here is to illustrate the advantage of the QA score system
in measuring the spectral shape of GOCI Rrs(λ), where seven sets of match-ups is ac-
ceptable. Three examples of in situ and GOCI Rrs(λ) spectra are shown in Figure 4
with captions of QA scores. It was found that the spectra shape of the Rrs(λ) from



Remote Sens. 2022, 14, 1075 10 of 21

GDPS1.3 agrees very well with that of in situ Rrs(λ), with the highest QA score of 4/6
or 3/6. However, the magnitude of single-band Rrs(λ) from GDPS1.3 is not always in
the best agreement with the in situ data. The QA score is a good indicator for evaluat-
ing the spectra shape of Rrs(λ). This is obviously shown in Figure 4c. The QA scores
of the Rrs(λ) from GDPS1.3 and Seadas—Default are both 4/6, but their magnitudes
differ significantly. The Rrs(λ) from Seadas—Default agrees with the in situ Rrs(λ)
very well.

Since the QA score is more valid in measuring Rrs(λ) spectra shape, it is interesting
to evaluate the band ratio of GOCI Rrs(λ) by the QA score system. NASA OC2M-HI [42]
is a widely used algorithm for retrieving chlorophyll concentration, using the band ratio
of Rrs(469)/Rrs(555). Figure 5 exhibits the values of GOCI and in situ match-up Rrs at
469 and 555 nm, as well as the values of the band ratio. Because GOCI does not have
a band similar to the wavelength of 469 nm, the value of Rrs(469) was generated by a
linear interpolation model from the existing GOCI bands. Table 5 shows the averaged
unbiased percentage difference ε, which is defined as Equation (15), the root mean
square error RMSE, and the average QA score. It is clear that although the values
of GOCI Rrs(λ) at 469 and 555 nm from GDPS1.3 (Figure 5 red circles) do not agree
well with the in situ data (black circles), the value of the band ratio Rrs(469)/Rrs(555)
is close to the value of in situ data. As seen from Table 5, for GDPS1.3, the value
of ε is 59.26% and 51.01% for Rrs(469) and Rrs(555), respectively, while the value of
Rrs(469)/Rrs(555) decreases to 10.34%. Accordingly, the average value of the QA score of
GDPS1.3 is the highest, i.e., ~0.64. The GDPS2.0 algorithm generates the lowest QA score
of Rrs(λ), i.e., ~0.31, and the percentage difference ε of the band ratio Rrs(469)/Rrs(555)
between the in situ and GDPS2.0 is the largest, i.e., 43.04%. However, for a single
wavelength, the ε between the in situ and GOCI Rrs(λ) from GDPS2.0 is the smallest,
i.e., 15.84% at 555 nm. Therefore, if the band ratio of Rrs(λ) spectrum needs to be
applied in the development of the bio-optical algorithm, it is suggested to carry out
comprehensive quality evaluation using the QA score system to select the most suitable
atmospheric-correction algorithm.

ε =
1
n
·

n

∑
1

[
Rrs-goci − Rrs-in_situ

]
/
[
Rrs-goci + Rrs-in_situ

]
∗ 200% (15)
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Table 5. The parameter values of the four GOCI atmospheric-correction algorithms in Rrs(469),
Rrs(555), and Rrs-chla = Rrs(469)/Rrs(555) compared with in situ data.

Rrs
Atmospheric

Correction Algorithms ε RMSE Mean of QA Score

Rrs(469)

Seadas—Default 30.31% 0.00091 0.595
Seadas—MUMM 76.59% 0.00309 0.476

GDPS2.0 54.59% 0.00172 0.310
GDPS1.3 59.26% 0.00198 0.643

Rrs(555)

Seadas—Default 11.13% 0.00031 0.595
Seadas—MUMM 50.26% 0.00212 0.476

GDPS2.0 15.84% 0.00048 0.310
GDPS1.3 51.01% 0.00192 0.643

Rrs(469)/Rrs(555)

Seadas—Default 22.96% 0.26533 0.595
Seadas—MUMM 29.82% 0.32298 0.476

GDPS2.0 43.04% 0.50643 0.310
GDPS1.3 10.34% 0.10863 0.643

3.3. Hourly Variation of the GOCI Rrs(λ) QA Score from UTC 00:16 to 07:16

The spatial distribution of the GOCI hourly Rrs QA score in the Bohai Sea on
13 September 2015 is presented in Figures 6–9 for different atmospheric-correction
algorithms. In general, the QA score of GOCI Rrs(λ) spectral data was extremely lower
close to the Bohai Strait, especially for the algorithms of GDPS2.0, Seadas—Default and
Seadas—MUMM. The QA score of the Rrs generated from GDPS1.3 is high at the eight
observation times, except for the data at UTC time 06:16 (Local Time 14:16). Only the
score from GDPS2.0 at UTC 06:16 is relatively high. There is a small hourly variation
of GOCI spectral quality when we use the atmospheric correction of GDPS2.0. It was
noted that the hourly Rrs(λ) measurement of GOCI at different times has a different
spectral quality. The quality of the GOCI Rrs(λ) spectra exhibits obvious hourly variations
for the Seadas—Default and Seadas—MUMM algorithms. In general, the QA score of
GOCI Rrs(λ) is high for the measurements between UTC 02:00 and 04:00. The same
characteristic was found in GOCI measurements on 07 September, 19 September, and
20 September 2015 (not shown here).
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Considering that the Bohai Strait plays an important role in the water exchange
between the Bohai Sea and the Yellow Sea, its waters’ environment and optical properties
are more complicated. The QA score of the GOCI Rrs(λ) spectra obtained by different
atmospheric-correction algorithms in the Bohai Strait on 13 September 2015 was calculated.
Figure 10 shows the average values of the score at eight observation times. The quality
of Rrs(λ) spectral from GDPS1.3 is good except for the observation at UTC 06:16. The
QA scores of Rrs(λ) from GDPS2.0 are relatively high at the eight observation times. For
GDPS2.0 and Seadas MUMM algorithms, the QA scores of Rrs(λ) obtained by them were
relatively consistent from UTC 02:16 to 07:16. When using GOCI measurements for the
study of hourly variation from UTC 00:16 to 07:16 in the Bohai Strait, the Rrs(λ) spectral
data derived by GDPS1.3 or GDPS2.0 are helpful.
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3.4. Cross-Comparison between GOCI and MODIS Rrs Data

MODIS data have been extensively used in various ocean studies. Shang et al. [49]
validated MODIS Rrs(λ) data by in situ measurements in the Bohai Sea. They showed that
MODIS Rrs(λ) is in good agreement with the in situ data, with a percentage difference in a
range of 9–31% for different bands. In this study, the MODIS L2 product of Rrs(λ) was used
to compare with GOCI Rrs(λ) for statistical analysis in order to overcome the limitation of
fewer in situ measurements.

Only the MODIS Rrs(λ) data with a QA score of 1 were used here to ensure the spectral
quality of MODIS Rrs(λ). The match-up scheme between MODIS and GOCI data is that
the temporal window is no more than 30 min, and the spatial window is no more than
200 m. Finally, a total of 8581 sets of match-up data were obtained in Bohai in September
2015. Figure 11 illustrates the scatter plots of MODIS and GOCI match-ups at 412, 469,
and 555 nm, as well as the band ratio of Rrs(469)/Rrs(555). The MODIS L2 Rrs(λ) were
processed with the default atmospheric-correction algorithm, the same as Seadas—Default
for GOCI. The correlation coefficient r, root mean square error RMSE, the defined averaged
unbiased percentage difference ε, and the average QA score are given in Tables 6 and 7 for
statistical analysis.

As seen in Table 6, the QA scores are high for all four algorithms, i.e., >0.9. Similarly,
the errors of band ratio between GOCI and MODIS are also small, ~10% (Table 7). However,
Figure 11 and Table 6 show that the error and correlation between GOCI and MODIS
Rrs are variable with wavelength. For the blue bands, i.e., 412 and 443 nm, the errors
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between GOCI and MODIS Rrs from the SeaDAS algorithms (Default and MUMM) are
relatively smaller than those from the GDPS algorithms (GDPS1.3 and GDPS2.0). The
Seadas—Default atmospheric-correction algorithm at 412 nm and 443 nm bands are better
than those of the other three algorithms. With a wavelength increase, the relative errors
from the GDPS algorithms become smaller. For example, ε is less than 10% for GDPS2.0
and GDPS1.3 at 490, 531, and 555 nm. The correlation between GOCI and MODIS Rrs is
good except for that from the Seadas—MUMM algorithm at 412 nm.
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Figure 11. The scatter diagram of data comparison between GOCI and MODIS at 412 nm, 469 nm,
555 nm, and Rrs-chla (Rrs-chla = Rrs(469)/Rrs(555)). The abscissa represents MODIS Rrs data obtained
from OBPG, and the ordinate represents GOCI Rrs data matching MODIS obtained from the four
atmospheric-correction algorithms.
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Table 6. The parameter values of the data-comparison scatter diagram between GOCI and MODIS at
each band of the four atmospheric-correction algorithms.

Band (nm) Atmospheric
Correction Algorithms r ε RMSE QA Score

412

Seadas—Default 0.832 27.53% 0.00133 0.938
Seadas—MUMM 0.580 38.72% 0.00199 0.922

GDPS2.0 0.847 73.07% 0.00364 0.921
GDPS1.3 0.800 56.70% 0.00247 0.967

443

Seadas—Default 0.932 15.96% 0.00129 0.938
Seadas—MUMM 0.817 19.14% 0.00186 0.922

GDPS2.0 0.939 26.39% 0.00181 0.921
GDPS1.3 0.904 19.61% 0.00136 0.967

490

Seadas—Default 0.971 20.78% 0.00201 0.938
Seadas—MUMM 0.939 19.70% 0.00230 0.922

GDPS2.0 0.978 7.12% 0.00087 0.921
GDPS1.3 0.962 9.38% 0.00126 0.967

531

Seadas—Default 0.985 16.24% 0.00197 0.938
Seadas—MUMM 0.974 15.46% 0.00220 0.922

GDPS2.0 0.986 5.29% 0.00091 0.921
GDPS1.3 0.980 7.24% 0.00113 0.967

555

Seadas—Default 0.988 13.91% 0.00180 0.938
Seadas—MUMM 0.979 13.32% 0.00204 0.922

GDPS2.0 0.989 5.65% 0.00096 0.921
GDPS1.3 0.982 7.68% 0.00112 0.967

660

Seadas—Default 0.982 30.57% 0.00129 0.938
Seadas—MUMM 0.967 29.01% 0.00158 0.922

GDPS2.0 0.983 10.04% 0.00063 0.921
GDPS1.3 0.977 24.88% 0.00105 0.967

Table 7. The parameter values of the four GOCI atmospheric-correction algorithms in Rrs(469),
Rrs(555), and Rrs-chla compared with MODIS data. Rrs(469) was generated by linear interpolation
model from the existing GOCI bands. Rrs-chla = Rrs(469)/Rrs(555).

Rrs
Atmospheric

Correction Algorithms ε RMSE QA Score

Rrs(469)

Seadas—Default 23.91% 0.00212 0.938
Seadas—MUMM 22.62% 0.00248 0.922

GDPS2.0 9.42% 0.00102 0.921
GDPS1.3 11.98% 0.00153 0.967

Rrs(555)

Seadas—Default 13.91% 0.00180 0.938
Seadas—MUMM 13.32% 0.00204 0.922

GDPS2.0 5.65% 0.00096 0.921
GDPS1.3 7.68% 0.00112 0.967

Rrs-chla

Seadas—Default 10.65% 0.08833 0.938
Seadas—MUMM 10.79% 0.08751 0.922

GDPS2.0 10.81% 0.09669 0.921
GDPS1.3 9.70% 0.08674 0.967

Although the QA score is quite good for any atmospheric-correction algorithm, the
difference of Rrs(λ) between GOCI and MODIS may be large at a single band (Table 7). For
example, the error at 469 nm is in a range of 9.42–23.91% for different atmospheric-correction
algorithms, while the error at 555 nm is smaller than that at 469 nm, i.e., 5.65–13.91%.
However, the error of the band ratio of Rrs(469)/Rrs(555) is high in a range of 9.70–10.81%.
The comparison of Rrs(λ) between GOCI and MODIS also indicates that the QA score
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system is helpful in measuring the spectral shape of Rrs(λ) and evaluating the band ratio
for developing bio-geochemical algorithms.

4. Discussion

It is traditional to validate ocean color measurements of Rrs(λ) by comparing them
with field measurements. In 2019, Huang et al. [37] used in situ measured Rrs to statistically
analyze the suitability of four atmospheric-correction algorithms for GOCI data in the
Yellow Sea. This is useful to evaluate the accuracy of retrieval of Rrs(λ) at a single band.
However, it does not evaluate the whole spectrum as a unified spectral curve. The QA
score system overcomes the limitation of lack of in situ match-up data and measures the
whole Rrs(λ) spectrum. The research results of our study have indicated that even if the Rrs
value of a single band is closer to the in situ measured value, there may be a big difference
in the band ratio between the ocean color and the in situ measurements, which means a
large difference in the Rrs(λ) spectral shape. Therefore, it is of great significance to evaluate
the quality of the whole spectrum using the QA score system in developing a bio-optical
algorithm. Based on the analysis of this study (Sections 3.1 and 3.4), the Seadas—Default
atmospheric-correction algorithm would be recommended to process GOCI L1B data if
only the Rrs values at 412 nm and 443 nm are used in the Bohai Sea areas. The GDPS2.0
atmospheric-correction algorithm would be better when using the Rrs values at 490 nm,
531 nm, 555 nm, and 660 nm. However, if the band-ratio of Rrs(λ) are applied for the
development of bio-optical models in the Bohai Sea areas, the GDPS1.3 (or GDPS1.4*)
atmospheric-correction algorithm can be considered.

In this study, MODIS L2 Rrs(λ) data were used as the data set to evaluate the spectral
quality of GOCI Rrs(λ), rather than operational Rrs(λ) products of other ocean color sensors.
Firstly, in 2016, Shang et al. [49] clearly showed that in the Bohai Sea, MODIS L2 Rrs data
provided by OBPG have good consistency with the measured in situ Rrs data (refer to
Figures 2 and 3 of their paper) by comparing 20 sets of in situ measurements with the
match-up MODIS satellite data. Secondly, the atmospheric-correction algorithm used by
NASA OBPG to obtain MODIS L2 Rrs includes an optical model for turbidity and optically
complex waters, which makes MODIS L2 Rrs data valid in this area [50]. In this study, there
are only seven sets of GOCI and in situ match-up measurements in total. However, this is
enough for illustrating that the QA score system is more helpful in evaluating the spectral
data. A greater amount of field measurements is much better for further statistical analysis.

5. Conclusions

The remote sensing reflectance spectrum is of great importance in the retrieval of
bio-geo-optical parameters of seawater from ocean color remote sensing. GOCI can provide
eight observations of the Rrs(λ) spectra every day. In practical work, atmospheric correction
is the key factor to obtaining accurate spectral data of Rrs(λ). In this study, the adaptability
of four atmospheric-correction algorithms for deriving GOCI Rrs(λ) measurements in the
Bohai Sea were evaluated and analyzed based on the QA score spectral quality evaluation
system. The results demonstrate that in any area of the Bohai Sea, the probability that
the QA score of Rrs(λ) equals 1 is higher when using the GDPS1.3 atmospheric-correction
algorithm instead of the other three atmospheric-correction algorithms. Over 90% of the
Rrs(λ) data are of good quality with a score ≥4/6 for the GDPS1.3 algorithm. For any
atmospheric-correction algorithm, the QA score is higher in the Three Bays (i.e., Bohai Bay,
Liaodong Bay, and Laizhou Bay) than that in the central parts of the Bohai Sea.

The comparison of GOCI Rrs(λ) with in situ and MODIS measurements of Rrs(λ)
indicates that the QA score system is valid in measuring Rrs(λ) spectral shape. Therefore,
the QA score has a higher correlation with the accuracy of Rrs band ratio rather than the
accuracy of Rrs at a single band. For example, the in situ match-up data illustrate that the
Rrs(λ) from GDPS1.3 with a high QA score are not always in the best agreement with the in
situ Rrs(λ) at a single band. At the same time, the error of the Rrs(λ) band ratio is the smallest.
The actual meaning of scatter plots of GOCI vs. MODIS Rrs(λ) data at a single band cannot
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express the quality of the complete Rrs(λ) spectrum clearly. It is necessary to evaluate and
analyze the spectral quality overall. According to the result of this study, it is suggested
that the GDPS1.3 (or GDPS1.4*) atmospheric-correction algorithm be used when using
the band ratio of Rrs(λ) for the development of bio-optical models in the Bohai Seas. The
results of this study also provide a new idea for the selection of the atmospheric-correction
algorithms. The hourly variation of QA score between UTC 00:16–07:16 demonstrates that
the data quality of GOCI Rrs(λ) can vary on an hour scale. When using GOCI measurements
at eight observation times to study the variation of dynamical changes, the GOCI data with
high quality should be selected with caution.
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