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Abstract: Basin water supply, planning, and its allocation requires runoff measurements near an
estuary mouth. However, insufficient financial budget results in no further runoff measurements at
critical in situ stations. This has recently promoted the runoff reconstruction via regression between
the runoff and nearby remotely-sensed variables on a monthly scale. Nonetheless, reconstructing
daily runoff from individual basin-upstream remotely-sensed climatic variables is yet to be explored.
This study investigates standardized data regression approach to reconstruct daily runoff from
the individual remotely-sensed climatic variables at the Mekong Basin’s upstream. Compared to
simple linear regression, the daily runoff reconstructed and forecasted from the presented approach
were improved by at most 5% and 10%, respectively. Reconstructed runoffs using neural network
models yielded ~0.5% further improvement. The improvement was largely a function of the reduced
discrepancy during dry and wet seasons. The best forecasted runoff obtained from the basin-upstream
standardized precipitation index, yielded the lowest normalized root-mean-square error of 0.093.

Keywords: daily runoff forecast; Mekong Basin; GRACE gravimetry; TRMM precipitation; ENSO

1. Introduction

Water resources management requires in situ river discharge measurements for pre-
dicting potential hydrological hazards. The decreasing number of global river discharge
stations have promoted the river discharge reconstruction via linear regression between
remotely-sensed data and in situ river discharge [1]. This reconstruction method has pro-
vided an initiative to complement the decreasing number of in situ river discharge time
series worldwide.

Previous studies regressed in situ river discharge directly with localized passive
remotely-sensed data (e.g., vegetation index, temperature [2,3], estuary dimension [4],
and flood extent mapping [5]) for the river discharge reconstruction, as long as these
remotely-sensed data are well correlated with the in situ river discharge. Nonetheless,
these data are sensitive to land cover types and present no direct causal relationship with
the in situ river discharge. The reconstruction accuracy is also spatially-varying. As a result,
remote-sensed climatic variables should be preferable, since they present direct causal
relations to the in situ river discharge (in particular when it is considered at a basin scale).

Precipitation, water level, and land water storage are the climate variables that can
be remotely measured or inferred from tropical rainfall measuring mission (TRMM) satel-
lite [6], satellite altimetry [7], and satellite gravimetry (e.g., gravity recovery and climate
experiment (GRACE)) [8], respectively. These remotely-sensed climatic variables have
been widely used in hydrologic and climatic studies, including river discharge and/or
runoff reconstruction. For instance, TRMM monthly precipitation was used for hydrologic
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prediction [9,10], drought [11,12] and flood [13,14] monitoring, their climatologies [15],
and their evaluation against in situ precipitation [16–18]. Nonetheless, the potential usage
of daily precipitation inferred from TRMM remain elusive [19,20].

In addition, near-biweekly water level recorded by satellite altimetry (e.g., Sentinel,
Envisat, and Jason-3) was used for monitoring land water bodies, such as small rivers in
Indonesia [21], global continental lakes [22], and dams (or reservoirs) in the upper Mekong
Basin [23]. A power function relation between the recorded water level and the in situ
river discharge [24,25] enables river discharge reconstruction in the Mekong Basin [26].
Similar practices applied to runoff of the basin, this being the river discharge at the estuary
divided by a basin area. Specifically, the monthly basin-averaged land water storage
inferred from GRACE can relate to in situ runoff via the power function [27,28], or via
the water balance equation when precipitation and evapotranspiration are given [29,30].
However, the potential of daily land water storage inferred from GRACE for daily runoff
reconstruction remains unexplored.

Notably, in hydrological practice, linear regression, hydraulic functional relationship,
time series model, and the neural networks (NN) model are the four methods employed
for the runoff reconstruction and forecast. The linear regression and hydraulic functional
relationship are commonly employed for the runoff reconstruction using remotely-sensed
data. For instance, the in situ runoff is related to TRMM precipitation via linear regression,
while it is related to the monthly basin-averaged land water storage (or water level) via
hydraulic functional relationship (e.g., the power function). Furthermore, time series model
and NN model are widely used, in which NN model gives a relatively more accurate
results that of other methods [31]. However, under normal circumstances, data, taking no
account of potential biases, are input directly into the above models. Note also that data are
input into NN model in different orders with several runs that generate different numerical
results during training and testing stage.

Given the disadvantages from the above, a method that reduces the potential biases
with unique numerical result should be advocated. Data standardization, (i.e., numerical
values in the time series subtracted from their mean divided by corresponding standard
deviation) is the method that improves the sensitivity of detecting potential biases when
compared against the averaged time series [32,33]. This method allows partial reduction
of potential biases, and hence better capturing extreme conditions [34] which is why it is
being employed in this study.

Notably, the in situ runoff was seasonally distorted by artificial reservoirs in the
downstream Mekong Basin that releases (traps) the streamflow during dry (wet) season
while keeping annual runoff unchanged [35]. The cascade effect due to all artificial reservoir
operations from the entry of the downstream Mekong Basin to the delta of the river is
found to be systematic for each season every year [36]. Tonle Sap Lake, being a natural
reservoir, also provides similar functionality [37]. This partial systematic effect justifies
the usage of data standardization to mitigate potential biases for a particular data time
period [34]. Hence, the proposed standardized data regression approach is expected to
reduce the peak and trough discrepancies against the in situ one in this study.

This paper aims at regressing upstream standardized remotely-sensed climatic vari-
ables with the standardized in situ runoff on a daily scale, making use of time-lagged
relationship with the downstream water level [38] and/or runoff [39]. Its forecast ability is
assessed by the direct linear regression and the NN-based models, in order to show the
effectiveness of our proposed method. Comparison of the numerical results proposed from
this study against the best achievable monthly and daily [40–42] relative error has also been
made in the recent literature.

2. Study Area

The Mekong Basin is a latitudinal basin across two climate zones, where it is subdi-
vided into upstream (i.e., Lancang river within Yunnan province in China) and downstream
(i.e., from the exit of China transboundary at Manwan to the river delta) area (Figure 1).
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Therefore, Yunnan province in China is a critical upstream area of the Mekong Basin, with
an obvious wet season driven by the Indian monsoon in summer [43,44]. Notice that
occasional events, such as El Niño Southern Oscillation (ENSO), cannot be underestimated
in the Mekong Basin, since it seriously distorts the spatiotemporal precipitation pattern,
and consequently, the runoff [45,46].

Figure 1. The Mekong River Basin (red area) overlapping with Yunnan province of China (dark green
area) covered with the hydrologic stations at the river delta entrance (green dot).

Besides climate, the regulation effect due to Tonle Sap Lake [47] and the tidal backwater
effect causing salt intrusion [48] also provide substantial effects on the water level and runoff
in the river delta. Additionally, human activities, such as sand mining, dike construction,
groundwater extraction, and reservoir operations [49] also amplify the tidal backwater effect
and salt intrusion [50]. Above all, artificial reservoir operation is the main cause of long-term
seasonal runoff alteration, due to a multitude number of artificial reservoirs built during
1990s, particularly when the in situ runoff time series were compared before and after
2002 [51–53]. Notably, most reliable remotely-sensed climatic variables were unavailable
before 2002 (in particular GRACE land water storage. The usage of the two remotely-sensed
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climatic variables after 2002 eliminates the need for assessing the reconstructed runoff
changes before and after 2002.

3. Data
3.1. In Situ Discharge Data

Two in situ discharge stations (i.e., Tan Chau and Chau Doc) situated in the two main
branches (i.e., Tien River and Han River) of the river delta entrance are employed (Figure 1),
since the station pair at the river delta entrance experienced lesser tidal backwater influence
than that of the station pair near the estuary mouth (i.e., Can Tho and My Thuan) [54,55].
These data were purchased from the Mekong River Commission website (http://www.
mrcmekong.org) (accessed on 19 April 2021). Despite water loss to the floodplain diversion
in the river delta, the time series of Tan Chau and Chau Doc (hereinafter called TC-CD)
station were summed up in order to approximately represent the total discharge of the
entire Mekong Basin. To obtain the daily runoff of TC-CD station (in mm/day), the daily
runoff of TC-CD (in m3/s) were divided by the total area of the Mekong Basin with the
unit conversion from meter to millimeter, and from second to day. The daily runoff time
series displays seasonality with irregular peaks and troughs, in particular during 2009–2014
(Figure 2).

Figure 2. Daily runoff time series of TC-CD stations within the river delta during 2003–2006 and
2009–2014.

Due to the time series data availability during 2003–2006 and 2009–2014, the daily
runoff time series of TC-CD station during 2003–2006 were employed for time lag analysis
against the upstream TRMM (GRACE) daily precipitation (land water storage), respectively.
The time series during 2009–2012 and 2013–2014 were used for the reconstruction and
forecast, respectively.

3.2. Two Remotely-Sensed Climatic Variables

Being the third-level TRMM data product, daily quarter-gridded precipitation with
latitude coverage between 50◦N and 50◦S generated from the seventh edition of TRMM
Multi-Satellite Precipitation Analysis (TRMA) product 3B42 datasets during 1998–2014
were employed. These data could be accessible at https://disc.gsfc.nasa.gov/ (accessed
on 6 June 2021). Note that these data might not be independent of the in situ precipitation
from Global Precipitation Climatology Center [6].

Being the second-level GRACE data product, daily 40-degree spherical harmonic
coefficients, equivalent to a spatial resolution of 4.5◦, were computed by Institute of Geodesy
at Graz University of Technology (ITSG) (i.e., ITSG-GRACE2018 [56]). Datasets during
2003–2014 were employed to calculate land water storage. These data can be downloaded

http://www.mrcmekong.org
http://www.mrcmekong.org
https://disc.gsfc.nasa.gov/
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from International Center for Global Earth Models (ICGEM) at http://icgem.gfz-potsdam.
de/series (accessed on 6 March 2019).

3.3. El Niño and Southern Oscilation (ENSO) Indices

ENSO is a large-scale aperiodic event caused by atmosphere-ocean interaction in
the tropical Pacific Ocean. This causes floods and droughts at different places non-
uniformly around the world [45]. Manifested from pressure and sea surface temper-
ature anomalies [57], El Niño (La Niña) yields the warm (cold) phase of the ENSO
events respectively. ENSO indices, including Oceanic Nino Index (ONI) and Multivari-
ate ENSO Index (MEI), were employed to visually examine whether the influence of
a particular ENSO event on the runoff is substantial, in particular for the prolonged
strong La Niña events during 2010–2011 (Figure 3). All indices are available at https:
//www.esrl.noaa.gov/psd/data/climateindices/list/ (accessed on 6 June 2021).

Figure 3. The monthly time series of (a) ONI and (b) MEI. Green, blue, and red bars represent the
neutral parts, the cold phase (La Niña event), and the warm phase (El Niño event), respectively.

4. Methodology

The flow of our methodology, including data post-processing, data standardization
steps, methods for regressing each variable for runoff reconstruction and forecast, and vali-
dation, is illustrated in Figure 4.

Figure 4. The methodology flowchart.

http://icgem.gfz-potsdam.de/series
http://icgem.gfz-potsdam.de/series
https://www.esrl.noaa.gov/psd/data/climateindices/list/
https://www.esrl.noaa.gov/psd/data/climateindices/list/
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4.1. Data Pre- and Post-Processing along with Their Standardizations

In terms of data preprocessing, while TRMM daily precipitation are ready for post-
processing, pre-processing for GRACE daily land water storage data is required. Due to the
low spatial resolution of the daily land water storage data, and the lack of daily geocentric
motion and geoidal surface (representing as the second-degree term, C20, in the GRACE
data in terms of spherical harmonic coefficients) generated from satellite laser ranging,
the data processing steps are different from the regular monthly land water storage inferred
from GRACE. First, the daily geocentric motion data provided by Graz University of
Technology was added to the first-degree spherical harmonic coefficients, while the C20 of
these daily data was retained. Note that the daily land water storage data inferred from
GRACE has been stabilized by regularized constraints with Kalman filtering during the
data generation process, and no spatial filtering is further required for post-processing.

In terms of data post-processing, all remotely-sensed climate variables within Yunnan
province are first spatially averaged to generate a single time series, followed by applying
a two-month moving averaging process. Time-lagged shift between the upstream remotely-
sensed climate variables and the in situ runoff is applied before direct linear regression.
This reconstructed and forecasted runoff served as a baseline result against the proposed
data standardization method.

Non-rainy days yield zero precipitation values, making that precipitation does not
follow normal distribution. Therefore, McKee et al. (1993) [58] standardization process was
employed to calculate the standardized precipitation index (SPI) from TRMM precipitation
data time span during 1998–2014. The standardization process adjusted the data to follow
normal distribution via gamma function [59]. Note that the the-month time scale of SPI
was selected [60].

Since the land water storage should be continuous for non-rainy days, the conventional
form of data standardization used in statistics was employed for GRACE data, except the
daily median values were used to calculate the standardized land water storage [34]
as follows:

SIi,j =
Si,j − median(Sj)

σ(Sj)
(1)

where i and j are the year and day of year (DOY), respectively, Si,j is the land water storage
on the j th day of the year i, median(Sj) and σ(Sj) represent the median value and standard
deviation of the land water storage on j day of each year. Therefore, the processed TRMM
precipitation and its SPI, and GRACE land water storage and its SI are ready for linear
regression analysis.

4.2. Time Lag Determination, Linear Regression Model, and NN-Based Model

Owing to the hysteretic process between the remotely-sensed climatic variables (i.e.,
TRMM precipitation and GRACE land water storage) and the runoff within a river basin,
there exists a time lag between the remotely-sensed climatic variables and the runoff
time series, particularly for the Mekong Basin across different climate zones. Previous
studies have shown that the runoff lagged behind the upstream TRMM precipitation [61,62]
and GRACE land water storage [28] by a month or more, which is controlled by climate,
geomorphology, and hydrogeology [29]. Thus, the time lag between the in situ runoff and
the upstream spatially-averaged TRMM precipitation (or GRACE land water storage) has
to be determined before the linear regression.

To conduct the linear regression, a simple linear model between the in situ runoff and
TRMM precipitation (or GRACE land water storage) is set up as:

Rt = a1Xt−τ + a2 (2)

where Rt and Xt−τ are the in situ runoff and individual upstream TRMM precipitation
(or GRACE land water storage) at day t, respectively, with lagged time τ shifting X forward
when compared to runoff as mentioned from the above; a1 and a2 are the parameters to



Remote Sens. 2022, 14, 999 7 of 19

be empirically estimated via a least-squares solution. The estimated parameters are then
used to reconstruct runoff using the upstream TRMM precipitation (or GRACE land water
storage) time series during 2009–2012.

In order to correlate the standardized precipitation (i.e., SPI) (and the standardized
land water storage (i.e., SI)) inferred from TRMM and GRACE at the upstream, respectively,
with the standardized in situ runoff in this study, the in situ runoff is standardized as

SRi,j =
Ri,j − median(Rj)

σ(Rj)
, (3)

which is analogous to that of Equation (1). Equation (2) is further used to estimate the
corresponding a1 and a2 between the standardized runoff (i.e., SR) and the SPI (or SI)) at
the upstream. These two estimated parameters are then used to compute the corresponding
standardized runoff from SPI and SI, and subsequently, recovering back to the reconstructed
runoff time series via Equation (3). The estimated parameters and same methodology are
also applied to the runoff forecast during 2013–2014.

Meanwhile, we compare our above approach with two NN-based models (i.e., artificial
neural network (ANN) [63] and long short-term memory (LSTM) algorithm belonging
to recurrent neural networks [64]) chosen in this study. Previous study indicated their
excellent performances for both short- and long-term discharge forecasting over the linear
regression, time series analysis, and conceptual models [31].

For the NN-based model settings, the ANN model consists of an input, an output,
and a hidden layer. Two hidden layers with four neurons each layer were set (as this was
tested and determined to be the best choice for this study). Cybenko [65] also concluded
that continuous-valued NN with two hidden layers were sufficient. The upstream TRMM
precipitation and GRACE land water stage (or SPI and SI) were placed in the input layer,
while the in situ runoff (or SR) was placed in the output layer, respectively. A leave-
one-out training-validation-test procedure was applied, similar to that of [66]. A scaled
exponential linear unit [67] was chosen as an activation function and adaptive moment (i.e.,
Adam) optimizer [68] was employed for training. The neural network structure of LSTM
was set the same as that of ANN. After all, LSTM is an improved RNNs that solves the
gradient divergence problem in recurrent neural networks [69]. Random choice of the initial
weights, the members of the validation set, and difference order of sequences employed in
the training process would result in different numerical results for each run [66]. Therefore,
the above two models were run ten times individually. The mean value of each time epoch
was used.

After the above procedures, the runoff time series reconstructed and forecasted from
our approach were compared with the results from the chosen NN-based models in order
to further validate our approach in this study.

4.3. Model Validation Metrics

To evaluate the runoff reconstruction and forecast accuracy against the in situ runoff,
the following unitless metrics, including the normalized root-mean-square error (NRMSE),
the Nash–Sutcliffe efficiency model coefficient (NSEMC), and the Pearson correlation
coefficient (PCC), were adopted due to their conventional usage and representation of
consistency in a relative sense.

The NRMSE represents the relative error of the RMSE [40], which is computed as

NRMSE =

√
1
N ∑N

k=1

(
Yf (k)− Yobs(k)

)2

max(Yobs)− min(Yobs)
(4)
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The NSEMC [70] is widely employed to evaluate the efficiency gain in the performance
of the reconstructed or forecasted runoff against the in situ runoff. It is computed as

NSEMC = 1 −
∑N

k=1

(
Yf (k)− Y0bs(k)

)2

∑N
k=1

(
Yf (k)− Yobs

)2 (5)

The PCC determines the temporal agreement between the reconstructed and forecasted
runoff. It is computed as

PCC =

1
N ∑N

k=1
(
Yobs(k)− Yobs

)(
Yf (k)− Yf

)
√

1
N ∑N

k=1
(
Yobs(k)− Yobs

)2
√

1
N ∑N

i=1

(
Yf (k)− Yf

)2
(6)

where Yobs(i) and Yf (k) are the observed and reconstructed (or forecasted) runoff for day k;
Robs and Yf are the average of Yobs and Yf , respectively, and max(Yobs) and min(Yobs) are
maximum and minimum values of the in situ time series, Yobs, respectively.

5. Results

After spatially averaging over the whole Yunnan Province for a single TRMM daily
precipitation and GRACE daily land water storage time series, the time lag between the
in situ runoff and TRMM precipitation (or GRACE land water storage) at the upstream
during 2003–2006 was calculated for every lagged day up to 90 days (or 30 days), respec-
tively (Figure 5). The maximum PCC between the in situ runoff and TRMM precipitation
(or GRACE land water storage) at the upstream was attained when the lagged time was
66 days (or 16 days), respectively. This is due to the fact that the upstream available water
takes 66 days (or 16 days) for precipitation and land water storage to reach the estuary
mouth. This implies that TRMM precipitation (or GRACE land water storage) at the up-
stream, when available in advance, can be able to forecast the runoff. Hence, the established
empirical relationship should provide an early warning of extreme hydrological events in
the river delta. As a result, the in situ runoff was shifted 66 days (16 days) backward with
respect to precipitation (land water storage), respectively, before the linear regression using
Equation (2).

Figure 5. Pearson Correlation coefficient between the in situ runoff and (a) TRMM precipitation or
(b) GRACE land water storage in Yunnan Province up to 90-day (or 30-day) lagged time.

After shifting the lagged time, Figure 6 displays the time series of TRMM precipitation
and GRACE land water storage at the upstream against the in situ runoff from 2009 to
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2014. In general, seasonal fluctuations of the upstream TRMM precipitation and GRACE
land water storage are consistent with that of the in situ runoff. However, the upstream
GRACE land water storage exhibits a slower storage decrease than that of the in situ
runoff during streamflow recession period. This might be attributable to the hydrogeolog-
ical property of the storage-discharge relation of the upstream different from that of the
downstream. In addition, a further time shift of GRACE land water storage is observed
in 2014. This might be attributable to poor quality data from GRACE satellite during the
end-of-mission phase, amid the negligible ENSO effect during the period (as shown in
Figure 3). In summary, the similarity between the in situ runoff and the upstream TRMM
precipitation (or GRACE land water storage) provides a good basis for the direct usage of
Equation (2) for reconstructing runoff.

Figure 6. Time series of (a) TRMM daily precipitation (i.e., P) (66 lagged days) and (b) GRACE daily
land water storage (i.e., S) (16 lagged days) spatially averaged over Yunnan Province at the upstream
Mekong Basin against the in situ runoff during 2009–2014.

We then examined the performances of the reconstructed (during 2009–2012) and
forecasted (during 2013–2014) runoff time series using the upstream TRMM precipitation,
GRACE land water storage, and their standardized forms, generated from the linear
regression, ANN, and LSTM models. For the runoff time series reconstructed and forecasted
from the upstream TRMM precipitation and GRACE land water storage, the runoff time
series resulting from three different methods are similar (Figures 7 and 8).

We observe that the peaks of runoff reconstructed and forecasted from the upstream
TRMM precipitation by the linear regression (Figure 7a) are generally the same as that of
ANN (Figure 7b) and LSTM (Figure 7c). Except that the reconstructed peak value in 2010
is higher than that of the in situ runoff, the peaks for the other year are basically lower.
This is particularly apparent in 2011. This should be attributable to the strong La Niña
event in 2011 (Figure 3) which distorts the normal conditions of climatic variables between
the upstream and the downstream (and which will be qualitatively explained below).
Meanwhile, similar troughs resulting from the three different methods are observed.

Unlike runoff time series reconstructed and forecasted from the upstream TRMM
precipitation, the runoff time series reconstructed and forecasted from GRACE land water
storage (Figure 8) decreases slower than the in situ runoff in autumn and winter (i.e.,
streamflow recession period) in 2010, 2012, 2013, and 2014 when compared to that in
Figure 7. The reason for this might be the fact that the hydrogeological property of the
storage-discharge relation of the upstream is different from that of the downstream. Other
characteristics of the runoff time series reconstructed and forecasted from the upstream
GRACE land water storage are similar to that of the upstream TRMM precipitation.
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Figure 7. The reconstructed (during 2009–2012) and forecasted (during 2013–2014) runoff using the
upstream TRMM precipitation (i.e., P-runoff) based on (a) linear regression, (b) ANN, and (c) LSTM
models.
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Figure 8. The reconstructed (during 2009–2012) and forecasted (during 2013–2014) runoff using the
upstream GRACE land water storage (i.e., S-runoff) based on (a) linear regression, (b) ANN, and (c)
LSTM models.
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In any occasion, runoff time series reconstructed and forecasted by NN-based models
account for less than 0.5% improvement when compared to that of the linear regression
(Table 1). Overall, the reconstructed runoff based directly on the upstream TRMM pre-
cipitation and GRACE land water storage yield the PCC (NRMSE) of 0.85 (~13%) and
0.80 (~15%), respectively. These evaluation statistics are slightly inferior to the best achiev-
able daily relative error (i.e., 12%) in the recent literature [42], which might be attributable
to different time spans being employed. Nonetheless, the above numerical results are
served as baselines for our proposed standardization approach.

Table 1. Evaluation of runoff reconstruction and forecast.

Data/Index Method
Reconstruction Forecast

NRMSE NSEMC PCC NRMSE NSEMC PCC

TRMM
Precipitation

Linear Regression 0.1296 0.7337 0.8565 0.1085 0.8490 0.9233
ANN 0.1255 0.7502 0.8661 0.1085 0.8489 0.9253
LSTM 0.1258 0.7488 0.8653 0.1078 0.8508 0.9262

GRACE Land
Water Storage

Linear Regression 0.1520 0.6334 0.7959 0.1947 0.5138 0.7363
ANN 0.1477 0.6537 0.8085 0.1909 0.5323 0.7463
LSTM 0.1491 0.6474 0.8046 0.1977 0.4985 0.7404

SPI
Linear Regression 0.1048 0.8257 0.9195 0.0929 0.8892 0.9470

ANN 0.1062 0.8210 0.9209 0.0927 0.8897 0.9474
LSTM 0.1062 0.8211 0.9204 0.0934 0.8880 0.9467

SI
Linear Regression 0.1060 0.8218 0.9170 0.0950 0.8841 0.9448

ANN 0.1107 0.8056 0.9144 0.0960 0.8818 0.9449
LSTM 0.1108 0.8053 0.9135 0.0984 0.8756 0.9428

The reconstructed runoff based on the standardized remotely-sensed climate variables
(i.e., SPI and SI) are shown to have better outcomes than that of the direct linear regression
between the in situ runoff and TRMM precipitation (or GRACE land water storage) at the
upstream (Table 1). In general, the reconstructed runoff based on SPI and SI match the
peaks and troughs better when compared to the in situ runoff, particularly apparent in
capturing the worst estimated peak in 2011 (Figures 9 and 10).

Compared to the result based on the direct linear regression between the in situ runoff
and TRMM precipitation (or GRACE land water storage) at the upstream, the reconstructed
runoff based on SPI and SI is improved by 3% and 5%, while the forecasted runoff based on
SPI and SI is improved by 1.5% and 10%, respectively (Table 1). This is due to the fact that
the standardization can minimize the systematic influences [32]. In addition, the relative
accuracies for both the reconstructed and forecasted runoff are less than 10%, which is
slightly better than the best achievable accuracy in the recent literature (i.e., 12%).
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Figure 9. The reconstructed (during 2009–2012) and forecasted (during 2013–2014) runoff using the
upstream TRMM SPI (i.e., SPI-runoff) based on (a) linear regression, (b) ANN, and (c) LSTM models.
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Figure 10. The reconstructed (during 2009–2012) and forecasted (during 2013–2014) runoff using the
upstream GRACE SI (i.e., SI-runoff) based on (a) linear regression, (b) ANN, and (c) LSTM models.
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6. Discussion

In the presence of the moderate (strong) El Niño (La Niña) event during 2009–2010
(2010–2011), apparent discrepancies in the peaks against the in situ runoff during 2010–2011
are still present, notwithstanding the reconstructed runoff based on SPI and SI. As a result,
the time series of the SPI and SI at the upstream during 2009–2012 were examined against
the in situ SR for further possible reasons (Figure 11).

Figure 11. The time series of the upstream (a) SPI from TRMM and (b) SI from GRACE spatially
averaged in Yunnan Province against the in situ runoff during 2009–2014.

Comparing SPI and SI against the in situ SR during 2009–2014, both the SPI and
SI time series exhibit random patterns against the in situ SR, except for the reverse (i.e.,
anti-phase) temporal pattern against SR between June and September 2010, January and
April 2011, and July 2011 and February 2012. This is attributable to the occurrence of the
moderate (strong) El Niño (La Niña) events during 2009–2010 (2010–2011). Notice that the
effect of the moderately strong ENSO events on the runoff normally comes after six to nine
months [71]. This implies the downstream climatic variables (as manifested from SR) were
dry (humid) while that of the upstream were humid (dry) during the moderate (strong)
El Niño (La Niña) event that distorted the typical precipitation pattern of the upstream
and the downstream Mekong Basin, respectively. We speculate that SPI and SI might
be potentially assisted by ENSO index during linear regression in order to yield a better
reconstructed and forecasted runoff. However, it is challenging to make monthly ENSO
index and its metric unit to be compatible with the daily TRMM precipitation and GRACE
land water storage.

Based on the above result and discussion, the upstream standardized climatic variables
are observed to have a substantial discrepancy against the standardized in situ runoff when
moderately strong ENSO events are taken place. This limits further accuracy improvement
of the runoff reconstruction. Although the standardization approach reduces part of the
inconsistency when a strong La Niña event was present, the discrepancy is still considerably
present (as displayed in Figures 9 and 10). In addition, besides the chosen value of the
difference (i.e., SPI and SI), the chosen mean (or median) value of each day within the year
for the entire time series is also a critical component for the recovery of the standardized
runoff back to the runoff time series, similar to that of datum fixing in a GPS network [72].
These shortcomings represent the limitations of this study.

7. Conclusions

This paper shows the feasibility of reconstructing and forecasting daily Mekong
Basin runoff using daily remotely-sensed climatic variables (e.g., TRMM precipitation and
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GRACE land water storage) at the upstream area. Using results generated from the direct
the linear regression and neural network-based models as the baselines, we present and
examine our standardization approach that reduce the discrepancy against the in situ runoff
data (in particular in the presence of the moderate (strong) El Niño (La Niña) events).

Employing the linear regression, the reconstructed and forecasted runoff based on
the upstream TRMM precipitation (GRACE land water storage) are at the acceptable level,
with PCC larger than 0.85 (0.73) and relative discrepancy less than 13% (20%) in terms of
NRMSE, respectively. The reconstructed and forecasted runoff via neural network-based
models yield around 0.5% improvement over those results from the linear regression. Em-
ploying the presented standardization approach, the reconstructed runoff based on the
standardized precipitation (i.e., SPI) and land water storage (i.e., SI) show the NRMSE
improvement by 3% and 5%, respectively, when compared to the direct linear regression,
while the forecasted ones are improved by 1.5% and 10%, respectively. Overall, the fore-
casted runoff generated from the SPI averaged over the whole upstream area yielded the
lowest relative error in terms of NRMSE (i.e., 0.093 or 9.3%).

However, the discrepancies are still considerably present during the abnormal con-
ditions. Further investigation should consist in examining the chosen mean (or median)
values for different data time spans in the standardization process under normal and abnor-
mal conditions (e.g., under strong ENSO events). Potential incorporation of ENSO and/or
a monsoon index into the linear regression model which assists the runoff reconstruction
and forecast during the abnormal conditions can be further explored, subject to consistent
unit among the explanatory variables (i.e., climatic variables and ENSO and/or monsoon
index) and the response variable (i.e., runoff). This would yield a more detailed research
findings and further substantial improvement in the runoff reconstruction and forecast
using daily remotely-sensed climatic variables at the upstream.
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