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Abstract: Planted forests provide a variety of meaningful ecological functions and services, which is a
major approach for ecological restoration, especially in arid areas. However, mapping planted forests
with remote-sensed data remains challenging due to the similarities in canopy spectral and structure
characteristics and associated phenology features between planted forests and other vegetation
types. In this study, taking advantage of the Google Earth Engine (GEE) platform and taking the
Ningxia Hui Autonomous Region in northwestern China as an example, we developed an approach
to map planted forests in an arid region by applying long-term features of the NDVI derived from
dense Landsat time series. Our land cover map achieved a satisfactory accuracy and relatively low
uncertainty, with an overall accuracy of 93.65% and a kappa value of 0.92. Specifically, the producer
(PA) and user accuracies (UA) were 92.48% and 91.79% for the planted forest class, and 93.88%
and 95.83% for the natural forest class, respectively. The total planted forest area was estimated as
3608.72 km2 in 2020, accounting for 20.60% of the study area. The proposed mapping approach can
facilitate assessment of the restoration effects of ecological engineering and research on ecosystem
services and stability of planted forests.

Keywords: planted forests; long-term change trend features; Landsat time series; Google Earth
Engine; random forest; NDVI

1. Introduction

Afforestation and reforestation are widely applied to restore disturbed ecosystems,
to combat desertification and soil erosion, and to mitigate carbon emissions [1,2]. To
restore the disturbed ecosystems, China has implemented a series of ecological programs,
such as the Three-North Shelterbelt Program (since 1978), the Grain for Green Program
(since 1999), and the Natural Forest Conservation Program (since 2000) [3,4]. Owing to
the ecological programs, greening has been observed in northern China [5]. However, the
contribution of afforestation is ambiguous, as planted forests are distributed dispersedly
and cannot be separated from natural forests at large scales [6]. Natural and planted forests
provide different aspects of ecosystem services [7]. A precise map of both forest types can
explicitly locate the planted forest expansion and natural forest loss [8]. In contrast, forest
assessments without distinguishing planted from natural forests may underestimate forest
change [9,10]. Therefore, fine-resolution mapping of planted forests is essential to not only
assess ecosystem service and stability, but also evaluate the restoration effects of ecological
programs [11].

Remote sensing is widely employed in land cover mapping, especially for forest
monitoring [12,13]. Many studies have explored the feasibility of Landsat images in
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planted forest mapping [10,14], mostly based on the following three types of characteristics:
multispectral features [15,16], canopy texture [17,18], and phenological insights [19–21].
From spectral, structural, and temporal perspectives, planted forests are characterized by
faster growth, single-species monocultures, and shorter harvest rotation periods, compared
to the counterparts of natural forests, respectively [22,23]. These characteristics function
well in separating planted economic trees from natural forests. However, two challenges
remain for planted forests identification in ecological restoration regions. First, the spectral
and structural signatures of planted forests are similar to those of other vegetation types at
different growing stages. For example, young or sparse forests are similar to cropland and
grasslands regarding to spectral signatures, and mature plantations are similar to natural
forests [6,22,24]. Second, phenology-based features cannot discriminate plantations from
natural forests when plantations contain similar species to those in natural forests. The
implementation modes of ecological engineering and characteristics, such as the species,
soil backgrounds, and disturbances result in high diversity and variability of planted
forests, which cannot be characterized based on universally identifiable phenological
features [25,26].

The long-term growth metrics and change event characteristics of time series are
promising for planted forest identification, which has been highlighted in extracting pine
and rubber plantation [10,23]. Tree plantation is a process ranging from non-forested
to forested areas, followed by continuously growing process in subsequent years, dur-
ing which, their vegetation activity, as reflected by the vegetation index (VI), steadily
increases [27]. In this sense, the subsequent VI of newly planted forests are slightly higher
than those in previous years. In contrast, the VI of natural vegetation types fluctuate
throughout the different seasons over time [22,24]. Including the long-term trend character-
istics into planted forest identification is helpful to tackle above challenges.

In this paper, we took a semiarid ecological restoration region in the Ningxia Hui
Autonomous Region in northwestern China as an example, and employed long-term
change trend features derived from dense Landsat time series and random forest classifi-
cation on the Google Earth Engine (GEE) platform to provide new insights into planted
forest mapping.

2. Materials and Methods

There are four major steps in our mapping approach: (a) data preprocessing, (b) multi-
faceted feature extraction, (c) reference sample collection, and (d) classification, validation
and accuracy assessment (Figure 1).

2.1. Materials
2.1.1. Study Area

The study was conducted in a semiarid region in South Ningxia, with a longitude of
105◦12′–106◦57′E and a latitude of 35◦15′–36◦57′N, and a total area of 17,452 km2. The area
is at the southern mountainous and loess hilly area in the central-western part of the Loess
Plateau (Figure 2). The area is of a typical temperate continental monsoon climate, with
annual mean temperature ranging from −9 ◦C to 24 ◦C, annual precipitation ranging from
180 mm in the north to 800 mm in the south (80% of which was precipitated in summer
and autumn) and annual surface evaporation of 1250 mm. The Chinese government
implemented a series of policies and programs to manage the serious ecological problems
encountered within this region [13]. However, high aridity, extensive human activities, and
long-term soil erosion have resulted in ecological vulnerability and sensitivity, which make
the survival and growth of planted forests difficult [28].
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Figure 1. Framework for mapping the planted forests in this study: (a) data preprocessing,
(b) multifaceted feature extraction, (c) reference sample collection, and (d) classification, valida-
tion and accuracy assessment. GLCM denotes the gray-level cooccurrence matrix, µ and σ denote the
mean and standard deviation of the time series, and cv denotes the coefficient of variation of the time
series. The various vegetation indices (VIs) are listed in Table A1 (Appendix A).

2.1.2. Landsat Time Series Processing

All available Landsat 5, 7, and 8 surface reflectance data from 1986 to 2020 were com-
piled and processed on the GEE platform. Systematic atmospheric and terrain corrections
were conducted to produce a Level-1 precision product [29]. In total, 460 Landsat scenes
with less than 30% cloud cover were assembled, with an average of 13 images per year
(Figure 3a). Observations of individual pixels were processed with the CFmask algorithm,
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which can identify clouds and cloud shadows [30]. To get the consistent data among
Landsat sensors, we harmonized Landsat TM and ETM+ data into OLI data according to
Roy et al. (2016) on the GEE platform [31] (https://developers.google.com/earth-engine/
tutorials/community/landsat-etm-to-oli-harmonization, accessed on 10 August 2021).
Several vegetation indices (VIs) were calculated and applied as input features for classi-
fication (see the full list in Table A1, Appendix A). Among these indices, the normalized
difference vegetation index (NDVI) was employed to calculate the long-term change trend
and textural metrics [32].
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2.2. Multifaceted Feature Extraction

The change rate, change magnitude, mean (µ), standard deviation (σ), and coefficient
of variation (cv) of the NDVI over a long time series (from 1986 to 2020) were employed
to illustrate the long-term change trend features (Figure 1b). Although planted forests
exhibit similar features to those of natural forests and other vegetation types, the long-term
change trend characteristics provide the potential to distinguish planted forests from other
vegetations. Changes in land cover, such as the conversion of barren land to grassland and
farmland reclamation, may exhibit different dynamics in NDVI from that of tree growth
of the planted forests. The NDVIs change sharply in the second year after the conversion
of barren land to grassland or farmland reclamation and then remain stable, whilst the
NDVIs of the newly planted forests change continuously [22,24]. Due to the specific growth
process, planted forests exhibited notable variation in the change rate, mean (µ), standard
deviation (σ) of long-term NDVI time series (Figure 4a,c,d). Additionally, mainly due to the
recent national forestation campaigns implemented, planted forests are characterized by
relatively young age and sparse distribution [33]. In contrast, natural forests attain higher
mean NDVI values than other vegetation types (i.e., newly planted forests and croplands)
over long periods [20]. Consequently, standard deviation (σ) and coefficient of variation
(cv) of the NDVI could be determined to discriminate planted forests from other vegetation
types, as their values should be higher for planted forests. Planted forests and other three
vegetation types could be easily distinguished according to the long-term trend features
of the reference samples (Figure 4). In addition to long-term change trend features, we
calculated other widely considered features, including textural and terrain metrics, in the
following sections.
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(a) change rate, (b) change magnitude, (c) mean (µ), (d) standard deviation (σ), and (e) coefficient of
variation (µ/σ) of different vegetation types (planted forest, natural forest, cropland and grassland).

2.2.1. Long-Term Change Trend Features

Based on all available Landsat data on the GEE platform, we analyzed long-term trend
features with the harmonic analysis of time series (HANTS) algorithm. This approach
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is useful to harmonize Landsat time series with the phenological cycles. The HANTS
algorithm not only de-clouds and reconstructs remote sensing time series but also is
advantageous for placing fewer requirements on the input image data, of which the time
interval can be unequal [34]. We assembled about 10–20 (or more) observations in most
years, which were sufficient to fit the harmonic model (Figure 3a). The HANTS algorithm
considers both the seasonal change and characteristics of data to truly reflect the periodic
changes in vegetation during time series reconstruction. We first decomposed the complex
time series signal into a function of individual sine or cosine waves based on the Fourier
series [35]:

f̃t= c0 +
n

∑
i=1

(
ai cos

i2πt
m

+bi sin
i2πt
m

)
(1)

where t is the timestamp value composited by harmonic regression, m is the length of
the seasonal change, and n is the order of the polynomial and approximately equal to the
number of harmonics. Second, ordinary least squares (OLS) regression was employed to
estimate the observations, and a composite Fourier series was adopted to determine the
best-fit model against the original time series values. Then, the estimated coefficients (c0, ai,
and bi) were stored to obtain a fitted harmonic series, seasonal change, and residual errors:

Ft= β0+β1t + β2 cos(2πωt)+β3 sin(2πωt)+et (2)

where Ft is the harmonic fit, β0 and β1 are the linear regression coefficients, β2 and β3 are
coefficients based on the Fourier series,ω is the frequency, and t is the timestep. Finally, the
harmonic series data were substituted into the linear regression model to obtain the change
rate and magnitude. The mean (µ) and standard deviation (σ) of the original long-term
time series of the NDVI were computed pixel by pixel, and the coefficient of variation (cv)
could then be obtained with the following equation:

cv =
σ

µ
(3)

2.2.2. Textural Metrics

We obtained the median cloud-free NDVI imagery for the year 2020, and calculated
the joint probability distribution of pairs of gray levels (Cij) as a function of the gray-level
cooccurrence matrix (GLCM) [36,37], which is defined by the NDVI composite collection
for 2020 using median values:

Cij =

{
Pij

∑G
i,j=1 Pij

∣∣∣∣∣(δ, θ)
}

(4)

where Pij is the count of NDVI occurrences, δ is the distance between two pixels (here,
δ = 1), G is the quantized number of gray levels (here, G = 256), and θ is the orientation
(θ = 0◦, 45◦, 90◦, and 135◦).

We calculated eight widely used texture features based on the GLCM method (Table A2).
We tested the eight metrics under different window sizes, and the top six high-importance
features (considering the sum of the averages under the five window sizes and the correla-
tion at 64 × 64 pixels) of the textural metrics were employed in our method (Figure A1).

2.2.3. Terrain Metrics

The Shuttle Radar Topography Mission V3 product (SRTM Plus) provided by NASA
JPL yielded digital elevation models (DEMs) at a resolution of 1 arc-second (approximately
30 m) [38]. We calculated images containing bands of the elevation, slope, and aspect
according to the terrain DEM as input features in this study.
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2.3. Reference Sample Collection
2.3.1. Field Sampling Data

The required but rarely recorded forest origin information (natural or plantation) in
field measurements is central to the difficulty in planted forest identification [24]. We
determined the forest types that could not be identified from the obtained Landsat and
high-resolution images based on field-sampled data.

One source was the Seventh National Forest Inventory (NFI 7th) surveyed from 2004–
2008, in which attribute information such as land types and forest origins were adopted.
According to the Technical Regulation for the national forest inventory, the position errors
of coordinates of the NFI 7th plot data were less than 15 m at the GPS location. We first
selected natural forests by evaluating the forest origin. After eliminating non-forest pixels
in Landsat and Google Earth images for 2020, 135 natural forest pixels were labeled.

In addition, we conducted a field survey of the forest types on the Loess Plateau from
July to August 2021. LocaSpace Viewer (http://uatwww.locaspace.cn/ (accessed on 10
August 2021)) was applied to collect location information on the sampled planted forests
(695 pixels) and natural forests (120 pixels).

2.3.2. Reference Data Based on Images

We visually assessed the other landcover types via Landsat and high-resolution Google
Earth images for 2020, which is a practical sampling method that can distinguish samples
with a satisfactory accuracy [13]. There were 4500 pixels labeled as reference data for
training and validation purposes in this study (Figure 3b and Table 1).

Table 1. Numbers of reference pixels and their sources for each land cover type.

Land Cover
Types

Field Survey
Data

7th National
Forest

Inventory
Image Data Total Number

Planted forest 695 0 0 695
Natural forest 120 135 0 255

Cropland 0 0 1406 1406
Grassland 0 0 722 722

Unused land 0 0 438 438
Built-up area 0 0 520 520
Waterbody 0 0 464 464

Total number 815 135 3550 4500

2.4. Classification, Validation and Accuracy Assessment

The long-term change trend, VI, texture, and terrain features extracted above were
sequentially fed into random forest (RF) models to classify land cover into seven types,
i.e., planted forest, natural forest, cropland, grassland, unused land, built-up area, and
waterbody (Table A3). To assess the effectiveness of long-term change trend characteristics
and optimize the classification results, we selected VIs and terrain features as input features
first, then sequentially included texture and the long-term change trend and finally jointly
input all these features (Figure 1d).

We divided the 4500 reference pixels into training (80%) and validation (20%) sets
through random splitting. After employing a confusion matrix to compute the user accuracy
(UA), producer accuracy (PA), and overall accuracy (OA) to determine the input feature
performance [39], we obtained land cover results with the optimal input features.

The uncertainty analysis is coupled with an assessment of the classification accuracy at
the overall, class-, and pixel-levels. For probabilistic classifiers, the classification uncertainty
is characterized by the posterior probabilities that a pixel belongs to different land cover
classes [40]. The RF classifier provided information on the pixel-level uncertainty in this
study, which was calculated by 1—Pmax, with Pmax the maximum probability of being
classified as each land cover class [41]. In addition, we applied the ee.pixelArea() function

http://uatwww.locaspace.cn/
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to compute the land cover area on the GEE platform, which considered the difference in
pixel size change with the latitude and longitude (due to projection).

3. Results

After considering long-term change trend metrics, the PA and UA of the planted forest
class improved from both approximately 76% to 86% and 92%, respectively. Similarly, the
PA and UA of the natural forest class improved from approximately 69% and 88% to 100%
and 92%, respectively. When combining the long-term change trend and texture metrics as
input features, the accuracy of the planted forest class improved from approximately 76%
to over 90%. Contrast analysis confirmed that trend features were crucial for planted forest
identification, which improved the separability and guaranteed the classification accuracy
across the different vegetation types (Table 2 and Figures 5a and A2).

Table 2. User accuracy (UA), producer accuracy (PA), and overall accuracy (OA) of the seven land
cover types using the vegetation index (VI), using VI and GLCM-based textural metrics, using VI and
long-term change trend metrics, and using VI, textural metrics, and long-term change trend metrics.
The PA and UA for the planted and natural forest class, OA, and kappa coefficient were illustrated
in bold.

Land Cover
Types

Planted
Forest

Natural
Forest

Crop-
Land

Grass-
Land

Unused
Land

Built-Up
Area

Water-
Body Total PA

Using the vegetation index (VI)

Planted forest 100 4 7 17 1 0 1 130 76.92%
Natural forest 16 37 0 0 0 0 0 53 69.81%

Cropland 4 0 242 10 2 6 0 264 91.67%
Grassland 10 1 2 112 6 0 0 131 85.50%

Unused land 0 0 8 3 68 1 0 80 85.00%
Built-up area 0 0 21 0 1 94 0 116 81.03%
Waterbody 1 0 3 0 2 1 93 100 93.00%

Total 131 42 283 142 80 102 94 OA 85.35%
Kappa 0.82UA 76.34% 88.10% 85.51% 78.87% 85.00% 92.16% 98.94%

Using VI and GLCM-based textural metrics

Planted forest 105 3 8 9 3 0 1 129 81.40%
Natural forest 10 37 1 3 0 0 0 51 72.55%

Cropland 8 2 252 5 6 6 0 279 90.32%
Grassland 8 2 3 131 3 0 0 147 89.12%

Unused land 0 0 5 8 72 1 0 86 83.72%
Built-up area 0 0 10 1 1 106 5 123 86.18%
Waterbody 3 0 5 0 0 0 79 87 90.80%

Total 134 44 284 157 85 113 85 OA 85.73%
Kappa 0.83UA 78.36% 84.09% 88.73% 83.44% 84.71% 93.81% 92.94%

Using VI and long-term change trend metrics

Planted forest 116 4 7 7 0 0 0 134 86.57%
Natural forest 0 42 0 0 0 0 0 42 100.00%

Cropland 8 0 268 0 2 3 0 281 95.37%
Grassland 1 0 2 132 1 0 0 136 97.06%

Unused land 0 0 2 7 79 4 0 92 85.87%
Built-up area 0 0 3 0 0 97 4 104 93.27%
Waterbody 0 0 3 0 0 3 94 100 94.00%

Total 125 46 285 146 82 107 98 OA 93.14%
Kappa 0.91UA 92.80% 91.30% 94.04% 90.41% 96.34% 90.65% 95.92%

Using VI, textural metrics, and long-term change trend metrics

Planted forest 123 1 4 4 0 1 0 133 92.48%
Natural forest 3 46 0 0 0 0 0 49 93.88%

Cropland 5 0 259 0 2 3 0 269 96.28%
Grassland 2 1 2 143 5 0 0 153 93.46%

Unused land 1 0 3 5 75 3 0 87 86.21%
Built-up area 0 0 4 0 1 109 2 116 93.97%
Waterbody 0 0 2 0 1 2 85 90 94.44%

Total 134 48 274 152 84 118 87 OA 93.65%
Kappa 0.92UA 91.79% 95.83% 94.53% 94.08% 89.29% 92.37% 97.70%
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After using VI, textural metrics, and long-term change trend metrics, the OA reached
93.65%. The PA and UA were 92.48% and 91.79% for the planted forest, 93.88% and 95.83%
for the natural forest, and 86.21% and 89.29% for the unused land, respectively. The other
classes attained PA and UA values over 90%. In addition, the kappa coefficient reached
0.92, indicating that the classification method performed well (Table 2).

Natural forests were mainly concentrated in the Liupan Mountain District. Planted
forests were mostly densely distributed around the natural forests in the southern region
and loess hilly region in the central and eastern regions. Croplands were widely distributed
in the central and western regions. Unused land and grasslands were distributed in the
northern part of the study area (Figure 5a). Croplands attained the highest proportion
(5923.99 km2 or 33.89% of the study area), followed by grasslands (4192.97 km2, 23.99%),
planted forests (3608.72 km2, 20.60%), and unused land (2149.20 km2, 12.29%). Natural
forests occupied only 6.58% (1149.43 km2) of the study area (Figure 5b).

4. Discussion
4.1. Uncertainty Analysis

At pixel level, the classification uncertainty of a given pixel belonging to a certain land
cover type was generally low based on the above accuracy evaluation results (Figure 6).
The uncertainty value was less than 0.1 for at least 75% natural forest, unused land, built-up
area, and waterbody pixels, was less than 0.2 and 0.3 for most regions for planted forests
and grasslands. The relative high uncertainty for croplands might have resulted from
orchards or unused land around the croplands [25].
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Other possible sources of uncertainty include sensor inconsistency, the number and
quality of valid observations, and the effect of NDVI reconstruction model. Different
satellite sensors may perform inconsistently for the land cover types. However, previous
studies have already indicated high similarity of the Landsat sensors, and that plantation
mapping can be performed well from the long time series [42,43]. Moreover, the harmonic
regression of dense vegetation index time series could expand the utility of the Landsat [44].
In this study, the interannual change trend of NDVI based on the sensors of TM, ETM+
and OLI has been harmonized on GEE using the harmonic model HANTS. The verification
analysis showed that 95% of root mean square error (RMSE) values of the HANTS fit were
less than 0.1, indicating that the inconsistencies between different satellite sensors could
be negligible.

4.2. Limitations and Direction of Future Studies

Our land cover map achieved a satisfactory accuracy and a relatively low uncertainty.
Planted forests could be distinguished using the long-term change trend derived from dense
Landsat time series and machine learning classification. However, there are limitations and
difficulties in the planted forest classification that should be addressed in future studies.

First, sufficient and representative reference samples are often decisive and remain
a challenge in accurate supervised classification [45]. Nevertheless, spatiotemporally
consistent collection (e.g., yearly or over a large area) of reference samples is expensive in
terms of labor or time, infeasible in practice, and impossible over historical periods [46,47].
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Therefore, it is necessary to develop an automatic land cover classification method for
various time periods based on a small number of reference samples [48].

Second, ecological programs involving afforestation usually convert barren land,
grasslands, or sloping farmlands into forests, with the aim to reduce soil erosion, restore
ecosystem health, and improve local ecosystem quality [49,50]. Meanwhile, various shrub
species, such as Caragana microphylla, are also planted because of their adaptive capacity
to semiarid habitats. However, we did not distinguish planted shrublands from natural
shrublands in our study, which may underestimate the effects of the ecological programs.
It is valuable to provide scientific information on which species to plant by quantifying the
characteristics of different vegetation types (trees or shrubs) [51].

In addition, certain planted forests share a few apparent similarities with grasslands in
the extracted change magnitude and coefficient of variation features (Figure 4b,e) because
relatively young planted forests can be easily confused with grasslands [33]. In this case,
segmentation temporal indicators derived from a subset of time windows and combination
of change detection could be considered in future research.

Our algorithm is aimed at mapping planted forest based on long-term change trend
features in an ecological restoration region, and the method can be reliable in arid and
semi-arid regions with similar climates. As Landsat observations are insufficient in other
regions, we intend to further pursue the time series reconstruction method considering
spatial and temporal fusion. In addition, the effective long-term change trend features
can provide a scientific foundation for automatic mapping of planted forests in other
regions. To be sure, the algorithm is applicable in arid and semi-arid regions, but in humid
subtropical or tropical regions, such as southern China, there are usually herbs or shrubs
before forestation. The NDVI value of these vegetation are usually high, which may affect
the applicability of NDVI change trend features.

5. Conclusions

In this study, by combining long-term change trend features derived from remote
sensing time series and the random forest machine learning model, we developed an
effective approach to identify planted forests. Long-term change trend features are crucial
for planted forest identification, which could improve the accuracy from approximately
76% by using vegetation index only to above 90%. The landcover map achieved a high
classification accuracy, with the overall accuracy of 93.65%, the kappa coefficient of 0.92,
and high producer and user accuracies for both planted and natural forest classes (all above
91.0%). This novel mapping method for planted forest and effective features provide a
scientific foundation for automatic mapping of planted forests at large scales and over
long periods in other regions, for the assessment of multiple ecosystem services and
ecosystem stability of planted forests, and for the evaluation of the restoration effects of
ecological programs.
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Table A1. Vegetation indices considered in this study.

Vegetation Index Equations References

Normalized Difference Vegetation Index
(NDVI) NDVI =ρnir−ρred

ρnir+ρred
[52]

Enhanced Vegetation Index (EVI) EVI = 2.5×
ρnir−ρred

ρnir+6×ρred−7.5×ρblue+1
[53]

Normalized Burn Ratio (NBR) NBR =ρnir−ρswir2
ρnir+ρswir2

[54]
Normalized Difference Built-up Index (NDBI) NDBI =ρswir1−ρnir

ρswir1+ρnir
[55]

Normalized Difference Water Index (NDWI) NDWI =
ρgreen−ρnir
ρgreen+ρnir

[56]

Modified Normalized Difference Water Index
(MNDWI) MNDWI =

ρgreen−−ρswir1
ρgreen+ρswir1

[57]

Normalized Difference Phenology Index
(NDPI)

NDPI =ρnir−(ϕ∗ρred+(1−ϕ)∗ρswir1)
ρnir+(ϕ∗ρred+(1−ϕ)∗ρswir1)
ϕ = 0.74

[58]

where ρblue, ρgreen, ρred, ρnir, ρswir1 and ρswir2 denote the surface reflectances in blue, green, red, near-infrared,
and shortwave infrared 1 and 2 bands, respectively, of the Landsat sensor.

Table A2. Gray level co-occurrence texture features used in this study [37].

Texture Features Equations

Angular second moment (ASM) ASM = ∑
i,j=1

Cij
2

Contrast (CON) CON = ∑
i,j=1

Cij
(
xi−xj

)2

Correlation (COR) COR = ∑
i,j=1

[
(xi−µx)

(
xj−µy

)
Cij

]
/
(
σx∗σy

)
Variance (VAR) VAR = ∑

i,j=1
(xi−µ)2Cij

Homogeneity (HOM) HOM = ∑
i,j=1

Cij/
(

1+
(
xi−xj

)2
)

Sum average (SAVG) SAVG =
2G
∑

k=2
∑

i, j = 1
i + j = k

Cij, k = 2, 3, . . . , 2G

Entropy (ENT) ENT = − ∑
i,j=1

Cij log2 Cij

Dissimilarity (DIS) DIS = ∑
i,j=1

∣∣xi−xj
∣∣Cij

where xi and xj denote the NDVI values of pixel i and its neighbor pixel j, respectively, µ is the mean of the GLCM
matrix, µx and µy and σx and σy are the means and standard deviations, respectively, of the matrix rows and
columns, respectively, and Cij is the probability distribution of pairs of gray levels, as defined in Equation (4).

Table A3. Land cover types and class definitions according to the land use/cover classification
(LUCC) system.

Land Cover Types Description

Planted forest Planted trees, shrubs, bamboo and other forest vegetation.
Natural forest Natural trees, shrubs, bamboo and other forest vegetation.

Cropland
Land for crop planting, including cultivated land, newly
reclaimed land, fallow land, rotation and rest land, and

cereal croplands.
Grassland Dominated by herbaceous vegetation.

Unused land Nonvegetated barren (sand, rock, and soil) areas.

Built-up area Land for industrial activities, mining and vehicles in urban
and rural residential areas.

Waterbody Covered by permanent water bodies and water
conservancy facilities.
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