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Abstract: Land surface temperature (LST) is an important parameter indispensable for studying the
substance and energy exchanges between the land surface and the atmosphere, climate changes,
and other related aspects. However, due to cloud cover, there are many null values in MODIS
(Moderate Resolution Imaging Spectroradiometer) LST data, which prevents such data from being
widely used. Therefore, an LST reconstruction method is proposed by combining data decomposition
with data prediction—SSA (Singular Spectrum Analysis) and BiLSTM (Bidirectional Long Short-Term
Memory). This method consists of two major processes, namely, rough LST reconstruction based
on the SSA model and refined LST reconstruction based on the BiLSTM model. The accuracy of the
proposed method is verified through “removal–reconstruction–comparison” using remote sensing
data and measured data. The verification results show that when the rate of original missing values
in the LST time series for the study area is lower than 10%, the RMSE is smaller than 1.1 K, and the
correlation coefficient is more significant than 0.98. Even when the rate of missing data is 40% and
50%, the proposed method remains accurate, the values of RMSE are 1.8331 K and 2.2929 K, and
the importance of R2 are 0.9856 and 0.9800, respectively. The proposed method is compared with
other existing LST reconstruction methods. The results of the comparative analysis indicate that
the proposed method is superior to other methods in terms of reconstruction accuracy and stability.
Moreover, the LST data reconstructed using the proposed method are highly consistent with the
measured data, which further proves the accuracy of this method in LST reconstruction. The research
findings provide a new technique and idea for accurate LST reconstruction.

Keywords: land surface temperature (LST); SSA; BiLSTM; reconstruction; MODIS; data decomposition

1. Introduction

Land surface temperature (LST) is an essential parameter for studying surface en-
ergy balance and land surface processes [1] and a key factor relevant to climate changes,
vegetation, and ecological monitoring of cities. It plays a vital role for research on global
climate changes. MODIS (Moderate Resolution Imaging Spectroradiometer) data have
gradually become an important means to obtain LST due to its comprehensive coverage
and long observation period. However, the space-time continuity of MODIS LST data
may be seriously impaired by clouds and cloud shadows. In 2019, Mao et al. [2] found in
their research that about 65% of the world’s land surface was always covered by clouds,
resulting in a large number of missing values in thermal infrared remote sensing images,
and the specific number of missing values varied by region. This problem seriously affects
the wide use of MODIS LST data. Therefore, LST reconstruction is a precondition for the
effective use of LST data in research on climate changes, urban heat islands, and other
related aspects.
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In recent years, LST reconstruction methods have attracted wider attention from schol-
ars. A series of research achievements have been made in the last two decades. These
LST reconstruction methods can be classified into three categories. 1. LST reconstruction
methods based on spatial-domain information [3]. These methods perform interpolation
based on the spatial correlation between missing pixels and adjacent clear-sky pixels and
include the spline function method [4], regression tree analysis method [5], and Kriging [3].
Such methods do not need other auxiliary information and are easy to realize, but they have
certain deficiencies, such as the lack of clarity and precision of reconstructed images. For
this reason, these methods are applicable only when there are a small number of missing
pixels in the spatial domain. 2. LST reconstruction methods based on time-domain informa-
tion [6]. These methods reconstruct the missing pixels based on LST changes on the same
time axis. Such methods mainly include harmonic analysis method [7], multi-temporal
robust regression method [8], singular spectrum analysis method [9], daily temperature
cycle model [6], physical modeling [10], and SG (Savitzky Golay Filter) method [11]. For
these methods, the reconstruction of LST based on the time series decomposition algorithm
mainly involves two strategies. One strategy is to obtain several different subseries with
varying cycles, characteristics, and rules of change through data decomposition, perform
prediction for each subseries, and finally find the sum of predicted results to obtain recon-
structed data. The other strategy is to perform data decomposition, remove the residuals,
keep the subseries containing information on the trend of changes in data, and then find
the sum of the values simultaneously in these subseries to obtain the interpolated values.
However, these methods perform interpolation based on the trend of changes in LST in the
time domain. As a result, the smoothing of data series will be inevitable, resulting in the
loss of abruptly changing LST information. Therefore, these methods are applicable only
when there are a small number of missing pixels in the time domain. 3. LST reconstruction
methods are based on the information in both the spatial and time domains [12–14]. These
methods achieve data reconstruction first performing interpolation in the time domain
and then in the spatial domain. Because the information in both the time domain and the
spatial domain is used at the same time, these methods can accurately reconstruct the data
in areas with many missing pixels. Still, they are greatly affected by the high heterogeneity
of LST over space and time.

In summary, when there are a large number of missing values in LST data, tradi-
tional LST reconstruction methods will no longer be applicable, and the accuracy of data
reconstructed with traditional methods will be insufficient to meet the requirements of
practical application. In recent years, LST reconstruction methods based on deep learning
have been used in LST reconstruction to solve the problem mentioned above [15–17]. Such
methods are characterized by strong learning ability, high robustness, and no need for
complex models with clear catalytic expressions and fully consider the heterogeneity of
LST over space and time. The models are built based on the relationship between LST and
environmental variables for most of these methods. Therefore, the accuracy of the models is
greatly affected by the number and type of training samples, and the features contained in
the time series data are neglected. For this reason, the accuracy of reconstructed data cannot
meet the needs of practical application. The research findings of research in recent years
indicate that hybrid models combining data decomposition models with certain predictive
models perform better than ordinary models in prediction [18]. Hybrid models have been
widely used in various fields. Compared with the Empirical Mode Decomposition (EMD)
method and other data decomposition algorithms [19], the Singular Spectrum Analysis
(SSA) method can identify the potential cycle and trend features of data more adequately
and obtain more abundant data features. Compared with other predictive algorithms based
on deep learning, the Bidirectional Long Short-Term Memory (BiLSTM) network can better
learn the short-term features in the entire time series, thus preventing the abruptly changing
information from being smoothed easily and delivering more accurate prediction results.

In this paper, an LST reconstruction method combining data decomposition and
data prediction is proposed—SSA-BiLSTM. This method firstly performs rough LST data
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reconstruction by extracting the long-term features and change trends of the data using the
SSA model and then complete refined LST data reconstruction by learning the short-term
features of the data using the BiLSTM model. Experimental results prove the proposed
method’s good performance and high robustness in LST reconstruction.

In Section 2, the products and data used for analysis and the works related to data
preprocessing are described. In Section 3, the basic principles of SSA and BiLSTM are
introduced, and the reconstruction method based on the SSA-BiLSTM model is described
in detail. In Section 4, the accuracy of the proposed method in LST reconstruction is
analyzed qualitatively and quantitatively using remote sensing data and measured data.
The advantages and disadvantages of the proposed method are summarized in Section 5.

2. Study Area and Data
2.1. Study Area

The study area is located in the Hotan region in the southern part of Xinjiang, North-
west China. The center of the study area is at 79.92◦E, 37.12◦N. The terrain is low in the
north and high in the south. The study area borders the Tarim Basin in the north and the
Kunlun Mountains in the south. Gobi deserts and oases are widely distributed in the part of
the Hotan region to the north of the Kunlun Mountains. The significant types of landforms
of this area are mountains and basins. The area of mountains accounts for 33.3%, the area
of Gobi deserts accounts for 63%, and that of oases accounts for only 3.7%. This area has
a typical continental climate dominated by abundant heat and very little precipitation
throughout the year. It is one of the regions in China where sandstorms are most common.
Steam and clouds have little impact on the sensors during the scanning of this area, and
the quality of LST data collected by the sensors is relatively high. Therefore, selecting this
area as the study area makes it possible to better evaluate the accuracy and reliability of the
LST reconstruction method proposed in this paper.

2.2. Data and Data Preprocessing
2.2.1. Research Data

In this paper, the MODIS MYD11A2 LST 8-day composite data products at 1 km
resolution are used as the research data. Since the missing amount of MODIS 8-day
synthetic data are smaller than that of daily data, the reconstruction experiment using 8-day
synthetic data can better evaluate the accuracy of the proposed method. LST reconstruction
experiments were conducted using the LST data collected at 1:30 a.m. from 2015 to 2020.
The data products were obtained by taking an average of the LST data of eight days under
clear sky conditions. The daily LST data were collected by the MODIS sensor onboard the
Aqua satellite. The MODIS sensor can provide global LST data with high observation time
frequency and wide spatial coverage. In addition, the effectiveness of the proposed method
was verified using the LST data measured at Yutian Station, Cele Station, Hotan Station,
Luopu Station, Moyu Station, and Pishan Station in the study area (the locations of these
weather stations are shown in Figure 1) in 2020. The measured data are obtained hourly
from the Forain Weather System, with a measurement error of 0.1 K.
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2.2.2. Data Preprocessing

The MODIS data products used for this study are HDF files. The original images need
to be stitched, cropped and re-projected using the MRT (MODIS Projection Tool) provided
by NASA. A 10◦ × 10◦ area of the stitched LST data after midnight with Hotan, Xinjinag
as the center point was selected, cropped, and re-projected as Geographic Lat/Lon. For
measured data at weather stations, the average of data measured at 1:00 a.m. and 2:00 a.m.
was taken as the measured data at 1:30 a.m., the 8-day mean value was calculated, and
then the data consistent with the time of MYD11A2 were generated for verification.

3. LST Reconstruction Method

In this paper, an LST reconstruction method combining data decomposition and data
prediction is proposed—SSA-BiLSTM. This method consists of two major processes, namely,
rough LST reconstruction based on the trend features of the data extracted using the SSA
model and refined LST reconstruction based on the short-term features of the data learned
by BiLSTM model. The detailed process of the proposed method is shown in Figure 2.

3.1. Rough LST Reconstruction Based on the SSA Model
3.1.1. SSA Algorithm

SSA is a powerful method that has emerged in recent years to study nonlinear time
series data features. It converts the observed time series data into a trajectory matrix,
decomposes and reconstructs the trajectory matrix, and extracts various signals representing
the different components of the original time series, such as long-term trend signals,
periodic signals and noise signals, and then completes the grouping and reconstruction of
the time series data.

The basic idea of SSA is to convert the observed one-dimensional time series data into
its trajectory matrix:

X =
(
xij
)L,K

i,j=1 =


y1 y2 · · · yK
y2 y3 · · · yK+1
...

... · · ·
...

yL yL+1 · · · yT

 (1)
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where T stands for time, L is the selected window length, and K = T− L + 1. XXT is
calculated, and then singular value decomposition is performed to obtain an L number
of characteristic values and the corresponding feature vectors. The new time series is
reconstructed by analyzing and combining the signal represented by each characteristic
value. In a nutshell, SSA can be divided into four processes, namely, the construction
of trajectory matrix, SVD, grouping, and reconstruction. The purpose of collection is to
separate the target signals from other signals and thereby create a new target series.
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The data product used for this study has 46 values in one year. Therefore, the window
length of the SSA model is set to 46. After the time series of each pixel is decomposed
using the SSA model, a 46× 46 two-dimensional subseries matrix can be obtained. Each
subseries has different data features, and each subseries consists of 46 values. When the
data are complete without defect, SSA can better decompose the long-period and trend
characteristics of the data. The more subseries used for reconstruction, the higher the
correlation between the reconstructed data and the original data. However, in practice,
there are a large number of missing values in the land surface temperature time series,
and the subseries decomposed by SSA will be affected by the missing value information.
At this time, the number of subsequences used for data reconstruction should be selected
according to the correlation between the reconstructed data and the original data. In this
paper, the experiment is carried out. Two groups of complete surface temperature time
series: data1 and data2 are selected in the study area to produce 10%, 20%, 30%, 40%, and
50% data loss rates, respectively, and ensure that the data loss time and value continuity of
the two groups of data in the time domain are different. The optimal number of subseries
is found by analyzing the correlation between the reconstructed data composed of the
addition of the number of different subseries and the original data. The results are shown
in Table 1. It can be seen from the table that the selection of the number of optimal subseries
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of the same data is also different due to the different amount of data missing. In addition, it
can also be seen that due to the difference of missing values of different pixels in the time
domain, the selection of the number of optimal subseries of different data is also different.
Therefore, this algorithm needs to decompose each pixel one by one and determine the
optimal number of subseries according to the principle of the highest correlation. Hence,
the SSA model can effectively extract the trend features of the original data, thus making
rough LST reconstruction (i.e., the first interpolation) possible. In summary, the selection of
the number of subseries used for reconstruction can be summarized as follows:

Zn =
n

∑
i=1

(z1+z2 + · · ·+ zn) · · · · · · (n = 1 : 46) (2)

Dopt = max
[
r2(Zn, Dini)

]
· · · · · · (n = 1 : 46) (3)

where, Zn represents the reconstructed data composed by adding different numbers of
subseries, zn represents different subseries decomposed by SSA, n represents the number of
decomposed subseries, Dopt represents the optimal reconstructed data, and Dini. represents
the original data.

Table 1. Correlation between different reconstruction items and the original series (R2).

Rate of Missing
Values

First 3
Items

First 5
Items

First 7
Items

First 9
Items

First 11
Items

First 13
Items

First 15
Items

First 20
Items

10%
data1 0.9483 0.9800 0.9870 0.9923 0.9966 0.9977 0.9979 0.9979
data2 0.9490 0.9800 0.9867 0.9919 0.9972 0.9983 0.9987 0.9987

20%
data1 0.9485 0.9800 0.9867 0.9917 0.9961 0.9972 0.9972 0.9972
data2 0.9489 0.9796 0.9862 0.9914 0.9961 0.9972 0.9975 0.9975

30%
data1 0.9484 0.9788 0.9857 0.9903 0.9954 0.9963 0.9963 0.9963
data2 0.9478 0.9778 0.9842 0.9883 0.9926 0.9933 0.9931 0.9927

40%
data1 0.9291 0.9162 0.9340 0.9356 0.9378 0.9365 0.9362 0.9354
data2 0.9466 0.9775 0.9834 0.9870 0.9904 0.9910 0.9907 0.9900

50%
data1 0.8925 0.8199 0.8124 0.8196 0.8174 0.8199 0.8199 0.8181
data2 0.9383 0.9491 0.9403 0.9397 0.9326 0.9325 0.9319 0.9319

3.1.2. Rough LST Reconstruction Method Based on the SSA Model

The process of rough LST reconstruction based on the SSA model is shown in Figure 2.
The detailed process is given below. First, the time series LST data with missing pixels are
decomposed using the SSA model to obtain subseries data containing different features.
Second, the correlation between the sums of different numbers of subseries data and the
original LST data is analyzed, and the most correlative results are selected and used as the
data for reconstruction. Due to the difference in the number of missing values for different
pixels in the time domain, this algorithm needs to perform SSA decomposition of each
pixel and determine the optimal number of subseries based on the principle of highest
correlation. Finally, the original zero-value data in the missing pixels are replaced with the
reconstructed data and rough LST reconstruction is completed to provide input data for
refined LST reconstruction based on the BiLSTM model.

3.2. Refined LST Reconstruction Based on the BiLSTM Model
3.2.1. Principle of the BiLSTM Model

The BiLSTM model has been developed based on LSTM networks, including forward-
pass and backward-pass LSTM networks. LSTM networks are a recurrent neural network
proposed by Hochreiter and Schmidhube [20] in 1997 to over the vanishing gradient
problem in RNNs. Some neurons in the hidden layers of RNNs are replaced with LSTM
neurons, effectively solving the vanishing gradient problem in traditional RNNs. An LSTM
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network includes “three gates”, namely, the forget, input, and output gates. The “gate”
structure and “cell status” selectively allow the obtained information to act on the status in
the RNN at each point in time. The “forget”, “update”, and “output” mechanism enables
the entire network to determine in a more effective way which information should be kept
and which information should be forgotten [17]. The structure of the LSTM neural network
is shown in Figure 3.
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In Figure 4, i is the input gate, o is the output gate, f is the forget gate, g is the hidden
status, ct is the cell status at time t, and the blocks represent the neural network layers. The
Equations below are used to calculate the parameters of various gates:

ft = σ
(

W f × [Ct−1, ht−1, xt] + b f

)
(4)

it = σ(Wi × [Ct−1, ht−1, xt] + bi) (5)

Ot = σ(Wo × [Ct−1, ht−1, xt] + bo) (6)

Ct = ft × Ct−1 + (1− ft) ∗ Ct (7)

ht = ot ∗ tanh(Ct) (8)

where W is the weight matrix, b is the bias matrix, subscripts “i, f, o, and g” denote the i, f,
and o gates and the hidden status, and σ is the neural network’s activation function. The
volume of data transmitted from the previous time to the current time can be obtained
through the forget gate, and the volume of data transmitted from the current time to the
subsequent time can be obtained through the output gate. g can be obtained from the input
value at the current time and the status at the previous time.
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Due to its ability to read data bidirectionally, the model BiLSTM can better capture
the features of data and information, thus overcoming the deficiency of LSTM networks
that can only acquire information from the forward direction and cannot learn future data
features. Bidirectional recurrent neural networks can produce more accurate prediction
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results because they use the information in the past and in the future at the same time and
perform network training in both positive and negative directions. The network structure
of the BiLSTM model used for this study is shown in Figure 4. In this model, the output
process of forward-propagation neurons is independent from that of backward-propagation
neurons (the calculations are done using Equations (9)–(11)).

→
a
〈t〉

= ϕ1(W→
a
[x〈t〉; a〈t−1〉] + b→

a
) (9)

←
a
〈t〉

= ϕ2(W←
a
[x〈t〉; a〈t+1〉] + b←

a
) (10)

ŷ〈t〉 = ϕ2(Wy[
→
a
〈t〉

;
←
a

t
] + by) (11)

where ϕ represents the activation function, b represents the offset term, W represents the

weight coefficient, t represents the time, ŷ represents the final output,
→
a
〈t〉

and
←
a
〈t〉

denote
the results of calculation in the positive and negative directions. However, the BiLSTM
model needs to obtain the entire input series before predicting. As mentioned earlier, the
missing data are roughly reconstructed using the SSA model, which preliminarily meets
the requirements of the BiLSTM model for data completeness.

3.2.2. Refined LST Reconstruction Method Based on the BiLSTM Model

The process of refined LST reconstruction based on the BiLSTM model is shown in
Figure 2. The detailed process is given below. The roughly reconstructed LST data are input
into the standard BiLSTM model, the first 90% of the data are selected and used for training,
and the last 10% of the data are used for testing. BiLSTM initialization parameter settings
are shown in Table 2. Secondly, based on the BiLSTM model, the iterative prediction
method is used for the fine reconstruction of surface temperature. In the time series, the
surface temperature of the missing point is predicted according to the sequence of the
missing time. Every time the surface temperature data of a missing point are predicted
and the input data are updated, it is called an iteration. If there are n missing points
in the time series, it needs to be iterated n times to realize the fine reconstruction of the
surface temperature. The specific implementation process is as follows: Depending on the
sequence of time of missing data, the trained BiLSTM model is used to predict the LST
at the first missing data point, the rough reconstruction result corresponding to the first
missing data point is replaced with the prediction result, and complete the updating of
input data. At this point, the first iteration of the refined LST reconstruction process is
complete. Then, the result of the first iteration is used as the input data to predict the LST at
the second missing data point, and the original rough reconstruction result is replaced with
the prediction result. At this point, the second iteration of the refined LST reconstruction
process is complete. Iterations and predictions are performed repeatedly according to
the procedure described above until the refined reconstruction of all the missing pixels
in the time series is completed. In the model training process, the model parameters
are optimized continuously depending on the reconstruction accuracy of the test sets to
increase the accuracy of reconstruction results.

Table 2. BiLSTM initialization parameter setting.

Number of LSTM
Layers

Number of Training
Cycles

Number of Nodes in
Hidden Layers Learning Rate Ratio of Input Parameters to

Output Parameters

2 100 20 0.005 10:1

3.3. Evaluation Criteria

Three typical evaluation indices, namely, root mean square error (RMSE), mean abso-
lute percentage error (MAPE), and correlation coefficient (R2), are used to evaluate recon-
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struction accuracy. The performance of various methods in LST reconstruction is evaluated
by comparing the values after reconstruction with the original values. Equations (12)–(14)
are the mathematical expressions of the three evaluation indices.

(1) Root Mean Square Error (RMSE):

RMSE =

√
1
N ∑N

i=1

(
ĥ(i)− h(i)

)2
(12)

(2) Mean Absolute Percentage Error (MAPE):

MAPE =
1
N ∑N

i=1

∣∣∣ĥ(i)− h(i)
∣∣∣

h(i)
× 100% (13)

(3) Correlation Coefficient (R2):

R2 =
∑N

i=1

(
ĥ(i)− ĥ

)(
h(i)− h

)
√

∑N
i=1

(
ĥ(i)− ĥ

)2
√

∑N
i=1

(
h(i)− h

)2
(14)

where N is the total number of missing values in LST time series data, h(i) is the original
value, ĥ(i) is the LST after reconstruction, h is the average value of the original LST, and ĥ
is the average value of the reconstructed LST.

4. Results and Discussion

The accuracy of the method proposed in this paper was analyzed quantitatively and
qualitatively using remote sensing data and measured data. In addition, the proposed
method was compared with other three LST reconstruction methods, including the LST
reconstruction method based on SSA, the LST reconstruction method based on SG filter,
and the LST reconstruction method based on SSA-LSTM. The LST reconstruction method
based on SSA relies on data decomposition and iterative prediction for LST reconstruction.
The LST reconstruction method based on SG filter performs least squares data fitting using
higher order polynomials and completes data reconstruction through a weighing filter. The
only difference between the third and proposed method is in the size of predictive models
used. The verification results indicate that the prediction results produced by the BiLSTM
model are more accurate than those produced by the LSTM model.

4.1. Quantitative Analysis

Firstly, a comparative analysis was performed using the “removal–reconstruction–
comparison” process to analyze the performance of various methods in LST reconstruction
involving varying rates of missing data. The principle of this analysis method is to remove
some existing data randomly from the complete time series, reconstruct the missing data
using different reconstruction methods, and compare the original values of missing pixels
with reconstructed data. Therefore, the LST data with 500 pixels in six consecutive years
in the study area were randomly selected, some existing data were removed randomly to
achieve missing rates of 10%, 20%, 30%, 40%, and 50%, and the results of LST reconstruction
using the methods above were analyzed statistically (The statistical results of average
accuracy are shown in Figure 5). It can be seen from Figure 5 that the proposed method is
superior to other methods in terms of overall accuracy in LST reconstruction at varying
missing rates. For the proposed method, the maximum coefficient of correlation between
the original values of missing data points and reconstructed data is 0.9942, the minimum
value of RMSE is 1.1069, and the minimum value of MAPE is 0.3210. The method based
on SG filter has the lowest accuracy in LST reconstruction, its reconstruction error at 50%
missing rate is more significant than 4 K, and its reconstruction accuracy is 2.4 K lower
than that of the proposed method. In addition, a group of data are randomly selected
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from the above 500 pixels to analyze the correlation before and after reconstruction, so as
to more clearly show the difference between the reconstructed LST data and the original
value. The analysis results are shown in Figure 6. It can be seen from figure that when
the missing rate is high, compared to other methods, the correlation between the LST data
reconstructed with the proposed method and the original data is the highest. In comparison,
the correlation between the LST data reconstructed the LST reconstruction method based
on SG filter and the original data is the lowest, and there are great differences at some
missing data points before and after reconstruction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 17 
 

 

remove some existing data randomly from the complete time series, reconstruct the miss-
ing data using different reconstruction methods, and compare the original values of miss-
ing pixels with reconstructed data. Therefore, the LST data with 500 pixels in six consec-
utive years in the study area were randomly selected, some existing data were removed 
randomly to achieve missing rates of 10%, 20%, 30%, 40%, and 50%, and the results of LST 
reconstruction using the methods above were analyzed statistically (The statistical results 
of average accuracy are shown in Figure 5). It can be seen from Figure 5 that the proposed 
method is superior to other methods in terms of overall accuracy in LST reconstruction at 
varying missing rates. For the proposed method, the maximum coefficient of correlation 
between the original values of missing data points and reconstructed data is 0.9942, the 
minimum value of RMSE is 1.1069, and the minimum value of MAPE is 0.3210. The 
method based on SG filter has the lowest accuracy in LST reconstruction, its reconstruc-
tion error at 50% missing rate is more significant than 4K, and its reconstruction accuracy 
is 2.4K lower than that of the proposed method. In addition, a group of data are randomly 
selected from the above 500 pixels to analyze the correlation before and after reconstruc-
tion, so as to more clearly show the difference between the reconstructed LST data and 
the original value. The analysis results are shown in Figure 6. It can be seen from figure 
that when the missing rate is high, compared to other methods, the correlation between 
the LST data reconstructed with the proposed method and the original data is the highest. 
In comparison, the correlation between the LST data reconstructed the LST reconstruction 
method based on SG filter and the original data is the lowest, and there are great differ-
ences at some missing data points before and after reconstruction. 

10% 

   

20% 

   

30% 

   

40% 

   

0.9829

0.9549

0.9882

0.9942

0.8 0.85 0.9 0.95 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

2.8084

3.1498

1.6162

1.1069

0 1 2 3 4

SSA

SG

SSA-LSTM

SSA-BiLSTM

0.6574

0.8919

0.4748

0.3201

0 0.2 0.4 0.6 0.8 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

0.9756

0.9351

0.9887

0.9913

0.8 0.85 0.9 0.95 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

2.3318

3.4524

1.5583

1.3611

0 1 2 3 4

SSA

SG

SSA-LSTM

SSA-BiLSTM

0.7001

0.9801

0.4538

0.3809

0 0.2 0.4 0.6 0.8 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

0.9733

0.9464

0.9878

0.9916

0.8 0.85 0.9 0.95 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

2.5212

3.148

1.6505

1.7878

0 1 2 3 4

SSA

SG

SSA-LSTM

SSA-BiLSTM

0.7475

0.8998

0.4684

0.4531

0 0.2 0.4 0.6 0.8 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

0.9735

0.938

0.9849

0.9856

0.8 0.85 0.9 0.95 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

2.5146

3.4846

1.8415

1.8331

0 1 2 3 4

SSA

SG

SSA-LSTM

SSA-BiLSTM

0.7456

0.5194

0.5004

0 0.2 0.4 0.6 0.8 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

50% 

   
 R2 RMSE(K) MAPE 

Figure 5. Comparison of the accuracy levels of different LST reconstruction methods at varying 
missing rates. 

0.9302

0.8964

0.9697

0.9800 

0.8 0.85 0.9 0.95 1

SSA

SG

SSA-LSTM

SSA-BiLSTM

2.8569

4.7072

3.8392

2.2979

0 1 2 3 4 5

SSA

SG

SSA-LSTM

SSA-BiLSTM

1.0844

1.2401

0.8167

0.6131

0 0.5 1 1.5

SSA

SG

SSA-LSTM

SSA-BiLSTM

y = 0.8852x + 31.651
R² = 0.9488

250

260

270

280

290

250 270 290

or
ig

na
l  

LS
T(

K
)

y = 0.8493x + 41.604
R² = 0.9444

250

260

270

280

290

250 270 290

y = 0.8178x + 49.865
R² = 0.9418

250

260

270

280

290

250 270 290

y = 0.8503x + 40.895
R² = 0.9439

250

260

270

280

290

250 270 290

y = 0.9038x + 26.578
R² = 0.922

250

260

270

280

290

250 270 290

or
ig

in
al

 L
ST

(K
)

y = 0.8963x + 28.674
R² = 0.9379

250

260

270

280

290

250 270 290

y = 0.9022x + 26.869
R² = 0.94

250

260

270

280

290

250 270 290

y = 0.8922x + 29.812
R² = 0.9441

250

260

270

280

290

250 270 290

y = 0.9467x + 14.458
R² = 0.9002

250

260

270

280

290

250 270 290

or
ig

in
al

  L
ST

(K
)

y = 0.9417x + 16.205
R² = 0.95

250

260

270

280

290

250 270 290

y = 0.9447x + 15.394
R² = 0.952

250

260

270

280

290

250 270 290

y = 0.9414x + 16.07
R² = 0.9536

250

260

270

280

290

250 270 290

y = 0.922x + 21.54
R² = 0.8825

250

260

270

280

290

250 270 290

or
ig

in
al

  L
ST

(K
)

y = 0.9384x + 16.722
R² = 0.9336

250

260

270

280

290

250 270 290

y = 0.9583x + 11.218
R² = 0.9491

250

260

270

280

290

250 270 290

y = 0.917x + 22.806
R² = 0.9509

250

260

270

280

290

250 270 290

Figure 5. Comparison of the accuracy levels of different LST reconstruction methods at varying
missing rates.
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methods and the original data at varying missing rates. The figures in lines 1 to 5 show the correlation
analysis results of different LST reconstruction methods when the data missing rate is 10%, 20%, 30%,
40% and 50%, respectively.

The accuracy of the method proposed in this paper was further verified using the
data measured at a number of weather stations. In Section 2.2.2, the time consistency
between the measured data of the meteorological station and the surface temperature data
of MYD11A2 has been processed. Therefore, the measured data used in this experiment
have 46 values every year. Firstly, 40% of the MODIS LST time series data were removed in
2020 at Yutian Station, Cele Station, Hotan Station, Luopu Station, Moyu Station, and Pishan
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Station, ensuring consistency of the times of missing values in each group of data. Then,
LST data reconstruction was performed using the proposed method and other methods.
There were 96 missing values in the data measured in 2020 at the six weather stations. The
data measured at these weather stations corresponding to the times of missing values in
2020 were used to verify the accuracy of the proposed method. The correlation between the
LST data reconstructed with this method and measured data were analyzed. The analysis
results are shown in Figure 7. It can be seen from Figure 7 that the coefficient of correlation
between the reconstructed data of the method in this paper and the data measured at
weather stations is 0.9108, while the coefficient of correlation between the original data
and measured data is 0.9231. These two values are basically consistent. In addition, it can
be seen from the scatter plots of the original MODIS LST data measured after midnight
and the reconstructed LST data with the proposed method that most data points before
and after reconstruction are concentrated near the 1:1 line, which further proves the high
accuracy of the proposed method.
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Figure 7. Comparison between LST data after midnight and measured data before (plot on the left
side) and after (plot on the right side) reconstruction.

4.2. Qualitative Analysis

In order to evaluate the performance of various LST reconstruction methods in a
more visual way, the complete LST data of year 2020 within 31× 31 pixel range were
selected in the study area shown in Figure 1 and used as the data for the experiments.
Some existing data were removed randomly to create a missing rate of 40%. The areas
with missing data were reconstructed using the four methods mentioned above. Figure 8
shows the reconstruction effects of different methods when the surface temperature data
are continuously missing in the time domain. It can be seen from Figure 8 that the values
of LST data reconstructed using the method based on SG filter are slightly higher. In
practice, due to the influence of weather or external environment, there are some abrupt
changes in the time series of surface temperature, such as the sudden drop of temperature.
SG reconstruction method mainly uses the data before and after the missing point to
reconstruct the missing pixel. When the data value before and after the missing point
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are large, the value reconstructed using SG will be higher than the original result. In
addition, the reconstruction method based on SSA lacks the details of time series due to the
complement based on the trend characteristics of the data, so the reconstruction results are
not accurate enough. The images reconstructed using the two methods based on SSA-LSTM
and SSA-BiLSTM are more consistent with the original images. Since the BiLSTM model
can read data bidirectionally, it can learn more potential data features and predict results
more accurately than SSA-LSTM.
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The differences in the data reconstructed using different LST reconstruction methods
and the original data were treated to demonstrate the performance of the proposed method
in LST reconstruction in a more visual way. The results are shown in Figure 9. It can
be seen from Figure 9 that the proposed method is accurate in LST reconstruction, while
the images reconstructed using the method based on SG filter deviate greatly from the
original images.

In order to verify the regional applicability of the proposed method, Wenchuan in
the Sichuan province was selected as the validation area. A small range of 50× 50 pixels
were selected from the Wenchuan area, and all missing pixels in 2020 were reconstructed
according to the method in this paper. The comparison effect before and after reconstruction
is shown in Figure 10. The figure shows the reconstruction effect of this method on this
region in different seasons. It can be seen that the method in this paper can achieve
the reconstruction of a large number of missing pixels, and the reconstructed images
are complete.
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4.3. Limitations of the Proposed Method

Although the proposed method can achieve relatively high accuracy in LST recon-
struction when there are a large number of missing values in time series data, it has certain
limitations. Firstly, the method in this paper lacks the use of spatial information. When
further research is conducted in the future, consideration can be given to establishing a
reconstruction model that combines a convolutional neural network with the predictive
model to identify the spatial and temporal features of LST and achieve higher accuracy
in LST reconstruction. Secondly, due to the significant impact of abrupt changes such as
changes in weather conditions on LST reconstruction, the performance of the proposed
method in reconstructing some pixels is unsatisfactory. In subsequent LST reconstruction
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efforts, more attention should be paid to data reconstruction problems caused by changes
in weather conditions.

5. Conclusions

The large number of missing values in MODIS LST data restricts the use of such
data. SSA-BiLSTM, an LST reconstruction method combing data decomposition with
data prediction, is proposed to obtain spatially and temporally continuous LST data. This
method consists of two major processes, namely, rough LST reconstruction based on the
trend features of the data extracted using the SSA model and refined LST reconstruction
based on the short-term features of the data learned by BiLSTM model.

A comparative analysis of the four methods mentioned in this paper is performed
through “removal–reconstruction–comparison” using RMSE, R2, and MAPE based on
remote sensing data and measured data. Experimental results show that when the missing
rate is high, the deviations of data reconstructed using the methods based on SG filter
and SSA are great, and the stability of reconstructed data is relatively low. Hybrid models
based on data decomposition perform better than single models in LST reconstruction. The
SSA-BiLSTM model is more accurate than the SSA-LSTM in LST reconstruction, indicating
that compared with the latter, the former can consider the features of the entire time series
data more adequately and perform better in predicting unknown data.
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