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Abstract: Rice false smut is known as the cancer of rice. The disease is becoming increasingly
prominent and is one of the major diseases in rice. However, prevention and treatment of this
disease relies on “Centralized pesticide spraying”. However, indiscriminate spraying leads to
more pesticide residue, and impacts ecological and food safety. To obtain more objective results,
different experimental planting forms are necessary. This study collected data at a complex planting
environment based on “near earth remote sensing” using a frame-based hyperspectral device. We
used mixed detection methods to differentiate between healthy rice and U. virens infected rice. There
were 49 arrangements and more than 196 differentiation models between healthy and diseased rice,
including 7 sowing data plots, 2 farm management types, and 23 pattern recognition methods. Finally,
the real accuracy was mostly above 95%. In particular, with the increase of epoch and iteration,
feature sequences based on deep learning could achieve better results; most of the accuracies were
100% with 100 epochs. We also found that differentiation accuracy was not necessarily correlated
with the sowing dates and farm management. Finally, the detection method was verified according to
the actual investigation results in the field. The prescription map of disease incidence was generated,
which provided a theoretical basis for the follow-up precision plant protection work.

Keywords: rice false smut (Ustilaginoidea virens); complex plant environment; mixed discriminant
methods; near earth remote sensing; detection; prescription map; precision plant protection

1. Introduction

Rice false smut (RFS), resulting from Ustilaginoidea virens, grows on rice grains and
leads to heavy losses of rice yield in most major rice-producing areas. RFS was previously
recorded as a minor disease of rice and considered a symbol of a good harvest in old
times. In recent years, increasing occurrences of RFS have been reported in most major
rice-growing regions throughout the world, such as China, India, and USA [1], causing
chalkiness, and reducing “1000-grain weight” and seed germination (by up to 35%). In
damp weather, the disease could be severe with losses reaching 25%. In India, a yield loss
of 7–75% was observed [2]. Moreover, it is still viable in the soil and infects seedlings after
planting [3]. Ustiloxins produced by U. virens pose as a serious hazard to human health
and to the ecological safety of farmlands [4].

Suitable management practices need to be made to avoid the disease, in order to
minimize direct economic loss. Breeding and utilization of a resistant cultivar is the most
effective and economical way to control RFS disease and ensure the high yield of rice.
Culture management will affect the incidence of RFS and early-planted rice has less RFS
balls than late-planted rice; moreover, high nitrogen increases disease incidence. Chemical
control is effective, for example, using fungicides with high efficiency, low toxicity, and low
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residue is currently the best choice to control RFS disease, but it is often not environmentally-
friendly. If the detection of RFS is more accurate in farmlands, plant protection will be
more precise.

In the literature, many researchers have looked into the biological and chemical
methods for RFS detection. For instance, Tang [5] developed a nested polymerase chain
reaction (PCR)-based assay to detect U. virens using the genes of U. virens as specific
targets. The study might be conducted to detect infection by U. virens at an early stage—to
look into how to mitigate disease spread and to study the ecology. To evaluate disease
severity, Dhua [6] presented a precise assessment method; a yield based on the florets and
actual grains was simulated for the disease severity assessment of RFS disease. The above
methods are relatively tedious. If a nondestructive and rapid method, e.g., remote sense, is
used to detect RFS, it will be very convenient.

Lin [7] started with the pathogenesis of false smut bacteria and occurrence; he com-
bined meteorological, agricultural, and remote sensing elements, and considered the me-
teorological factors conducive to false smut pathogen infection and dissemination, field
management, rice varieties, nitrogen fertilizer, etc. From the perspective of bacteria patho-
genesis and the occurrence of RFS, the study selected five indicators to simulate a forecast
model of the RFS index (50 samples in 2 years) through the model verification; the results
generally agreed with the actual situation, and the verification accuracy reached 83.32%.

Fewer studies on RFS have been based on near earth remote sensing. A large number
of researchers have emphasized other crop diseases, such as satellite remote sensing for
wheat Fusarium head blight [8], soybean sudden death syndrome [9], tobacco crop [10],
rice bacterial leaf blight [11], soybean sudden death syndrome [12], near earth remote
sensing for cucumber leaves in response to angular leaf spot disease [13], early disease in
wheat fields [14], watermelon disease detection [15], rye leaf rust symptoms [16], paddy
leaf disease [17], onion purple blotch [18], etc.

Among the literature, for satellite remote sensing research, Landsat imagery is free,
but the spatial resolution is too low to accurately map smaller infestations. There are also
satellites with pixel sizes of 5 m or less, such as GeoEye-1, Pleiades, WorldView-3 and -4,
and GaoJing-1, or imagery with resolutions of 5–10 m, such as RapidEye, SPOT 6 and 7,
and Sentinel-2, which are only suitable for macro-crop detection—near remote sensing
imagery has a fine pixel size [19].

Although many crop diseases can be successfully detected and mapped using airborne
or satellite imagery—understanding how to convert remote sensing data to practical pre-
scription maps is still lacking. More research is needed to develop operational procedures
for transforming image classification maps to applications maps. Each disease has its own
characteristics and requires different procedures for detection and management.

For RFS detection, there are various influencing factors affecting RFS detection in
near earth remote sensing, such as different sowing dates and farm management types.
In this study, to obtain a more convincing and generalized model for RFS detection, we
considered the sowing data and farm management types; 14 paddy fields were prepared,
including 7 different sowing dates and 2 different farm management types. The data were
obtained using a frame-based hyperspectral image device, based on near earth remote
sensing; 23 different differentiation tradition models were built to obtain the most useful
model. Spectral based deep learning was also used for detection. Finally, the selected
model was verified by actual field investigation results. Our specific objectives were: (1) to
ensure differentiation between healthy ears of rice (HER) and disease ears of rice (DER) at
different sowing dates and farm management types. (2) To develop different models and
get the most reliable model. (3) To develop an appropriate structure of the spectral deep
learning model. (4) To verify the model by actual field investigation results; the disease
prescription map was generated. The workflow of this study is shown in Figure 1.
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Figure 1. Workflow of this work.

2. Materials and Methods
2.1. Samples and Data Acquisition

The experiment fields were performed at the China National Rice Research Institute in
Fuyang (120.2°E, 30.3°N, at an elevation of 11 m above sea level), Hangzhou, Zhejiang, in
September 2017–2020. The research field covers over 500 hectares and includes 45,000 m2 of
professional research grounds; the soil is Ferric–Accumulic Stagnic Anthrosol [20]. The site
is located in the middle and lower Yangtze Plain. The area is characterized by a subtropical
monsoon climate with annual mean temperatures of 13–20 °C, ranging from 2 °C in January
to 35 °C in July, and a mean annual precipitation of 1200–1600 mm, with approximately
80% falling between April and September [21].

The rice cultivar was Yongyou 12 [22]; this is a major rice cultivar with high yield for
single-season rice in southeastern China. Rice plants were grown with 7 plots at different
seed periods, and each plot was divided into 2 fields—nature growth (a pesticide absence
treatment was used to induce the natural occurrence of RFS, NGT) and farm management
(the field was set up as a reference plot and controlled by pesticide applications, FMT), as
shown in Figure 2. There were a total of 14 different rice paddy fields; 10 data acquisition
spots and DER were randomly selected in each field. HER were collected from the plants
near the infested plants in the same data acquisition spot. Overall, 140 ears of rice samples
were collected for DER and HER.

A spectrum from the ear of rice was obtained using S185 (Cubert GmbH, Ulm, Baden-
Württemberg, Germany) from 12:00 to 14:00 under cloudless and windless weather. Before
data collection, a black-and-white board was employed for radiation calibration of the
S185. The hyperspectral image data were collected in the rice field with a hyperspectral
frame-based camera, providing 137 channels, with a sampling interval of 4 nm in a spectral
range of 450 to 950 nm. The full frame images were acquired by a silicium CCD chip with
a sensor resolution of 1 megapixel, while the hyperspectral resolution was about 50 × 50
pixels with 12-bit (4096 DN) precision. A gray scale image with a resolution of 1000 ×
1000 pixel was acquired. Accordingly, this camera’s acquisition frequency was faster than
the line scan hyperspectral camera. Finally, a 1000 × 1000 × 137 hyperspectral image was
generated from the two files using the interpolation method.
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Figure 2. Location and details of test field.

The representative regions of interest (ROIs) reflectance spectra of samples in the
wavelengths ranged from 400 to 950 nm, and were extracted from the healthy region
and RFS regions. Each spectrum was obtained from a rectangular 3 × 3 pixel ROI. The
average spectra are shown in Figure 3. Throughout the spectral region, the HER spectrum
had a higher reflectance intensity than that of the RFS region. Thus, a single band image
could discriminate between the healthy region and unhealthy regions by using a simple
threshold (it can be seen from Figure 3 that the near-infrared spectral absorption of the
diseased area is relatively large; the threshold can be set to 40 in this sample). However,
the results showed that it was difficult to obtain a satisfactory result due to non-uniform
light on the ear of rice. Furthermore, the spectra shown in Figure 3 do not account for
all of the spatial variations, since the ear of rice had different angles. Subsequently, the
dimensionality reduction method was used for the wavelengths (here, we used PCA to
carry out a dimension reduction analysis; the details can be seen in Section 2.3).

Figure 3. Image and spectral hyperspectral data in the healthy and RFS regions (typical and represen-
tative spectral data are shown here; the spectral trends of other samples are similar).
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2.2. Data Analysis

The ROI data were obtained from CubePilot, the hyperspectral image device S185 with
its own software (the data were collected in the same test site for 4 years, for at least twice a
year. For example, data were collected twice in 2018, respectively, on 18 September and
8 October. In Figure 2, data were collected on 18 September 2018; rice was in the yellow-
ripening stage. The weather was cloudy and windless). All data were analyzed using
MATLAB 2019a (the MathWorks Inc., Natick, MA, USA) with an image processing toolbox
(https://www.mathworks.com/help/stats/classification-learner-app.html, accessed on:
14 February 2020). In this study, several types of pattern recognition methods were applied
for the data analysis. The details are seen at the following section. The flow of data analysis
is shown in Figure 4.

Figure 4. The flow of data analysis.

2.3. Differentiation Methods

To further study RFS estimation via detection models, sampling methods were used
to produce calibration sets after data dimensionality reduction of the principal component
analysis (PCA). In this study, the top-n principal component (PC) took up 95% of the total
variance. A five-fold cross validation method was performed to protect against overfitting
by partitioning the data set into folds and estimating the accuracy on each fold. Scaling
the data sets in the study was standardized (we measured the distance of a data point
from the mean, in terms of the standard deviation. Z = (x − X)/S: x is data point, X is
mean, S is standard deviation) to avoid attributes in greater numeric ranges dominating
those in smaller numeric ranges and numerical difficulties during the calculation. The
decision methods and descriptions are listed in Table 1. Comparisons of these methods
have been described in many papers, e.g., retrieving the soybean leaf area index from UAV
hyperspectral remote sensing using RF, ANN, and SVM regression models [23], analysis on
change detection techniques for remote sensing [24], and the benefits of each approach in
plant stress detection [25].

https://www.mathworks.com/help/stats/classification-learner-app.html 
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Table 1. Decision methods in the research.

Classifier Kernel Function Code Description

Complex tree CT Many leaves to make many fine distinctions between classes
Decision trees Medium tree MT Medium number of leaves for finer distinctions between classes

Simple tree ST Few leaves to make coarse distinctions between classes

Discriminant analysis Linear LDA Creates linear boundaries between classes
Quadratic QDA Creates nonlinear boundaries between classes

Logistic regression LR A popular classification algorithm for two classes

Linear LSVM Creates linear boundaries
Quadratic QSVM Creates nonlinear boundaries
Cubic CSVM The solution is a piece-wise cubic

Support vector machines Fine Gaussian FSVM Makes finely detailed distinctions between classes

Medium Gaussian MSVM Kernel scale set to square root of P–sqrt(p), where P is the number
of predictors.

Coarse Gaussian CGSVM The same as above medium Gaussian, Kernel scale set to sqrt(P)*4

Fine FNN The number of neighbors is 1
Medium MNN The number of neighbors is 10

nearest neighbors Coarse CNN The number of neighbors is 100
Cosine COSNN Using a Cosine distance metric. The number of neighbors is 10
Cubic CUBNN Using a cubic distance metric. The number of neighbors is 10
Weighted WNN Using a distance weight. The number of neighbors is 10

Boosted trees BOTEC AdaBoost, with decision tree learners
Bagged trees BATEC Random forest Bag, with decision tree learners

Ensemble classification Subspace discriminant SDEC Subspace, with discriminant learners
Subspace KNN SKEC Subspace, with nearest neighbor learners

RUSBoost trees RUSBEC GentleBoost or LogitBoost, with decision tree learners, choose
boosted trees and change to GentleBoost method

Remote sensing data usually appear in the form of spectrum or sequences (data do
not exist independently, before and after, or the whole sequence or data are associated); a
long short-term memory (LSTM) network is more suitable for sequence data. This study
classifies sequence data using the LSTM network in f MATLAB (https://ww2.mathworks.
cn/discovery/lstm.html, accessed on 14 February 2021). Standard LSTM networks process
sequences in chronological order, which ignore the future context. BiLSTM was chosen
as the architecture because of the correlation between each sequence. Adaptive moment
estimation (ADAM) was used as a solver for the training network, which uses a parameter
update with an added momentum term. Other options include; MaxEpochs-600, three
iterations per epoch; MiniBatchSize-27; learning rate: 0.001; sequence length-pad sequences
in each mini-batch to have the same length as the longest sequence; shuffle–shuffle the
training, and validation data once before training.

There were four different permutation comparison methods (NGT/DER, NGT/HER,
FMT/DER, FMT/DER) among these testing data, namely HER and DER in the nature
grown and management fields, respectively. There were 49 combinations of experiment
plots (FMT1 vs. NGT 1, 2, . . ., 7, FMT2 vs. NGT 1,2, . . ., 7, . . .), suggesting that there were a
total of 196 differentiation results (4 × 49 = 196) between FMT and HER. We used many
permutations and combinations to take into account the diversity of the actual farmland.

3. Results and Discussion
3.1. Comparisons between Different Test Fields

Tables 2–5 shows the accuracy between DER and HER in the farm management of
FMT and NGT. The name rules in the table are based on different test plots. For instance,
1A denotes the earliest and 7A the latest sowing plot with farm management. Likewise, 1D
is the earliest and 7D is the latest sowing plot with nature growing. The remaining names

https://ww2.mathworks.cn/discovery/lstm.html
https://ww2.mathworks.cn/discovery/lstm.html
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in table from 1A (D) to 7A (D) are consistent one-to-one matches between different sowing
plots.

PCA was employed to reduce feature dimension, which kept enough components to
explain the 95% variance in this study. The maximum accuracy could be obtained by more
than one method. The best methods were statistically analyzed according to the selected
frequency (Figure 4). In Table 2; the accuracy ranged from 87 to 100%, mostly above 95%.

Table 2. The accuracy (%) between DER in FMT and HER in NGT.

1D-HER 2D-HER 3D-HER 4D-HER 5D-HER 6D-HER 7D-HER

1d-HER 87.8 94 95 96.4 91.1 92.3 87
2d-HER 92.3 97.6 93.1 97.9 92.2 92.7 87
3d-HER 93 96.9 96 94.4 94 92 91
4d-HER 96.1 97.9 95.5 96.7 96.5 92.7 93.3
5d-HER 90.2 97.1 96.3 94.1 95.2 88.1 89.4
6d-HER 98.4 100 98.1 98.4 88.9 95.1 94.9
7d-HER 99.5 98.7 98.5 100 99.6 96.4 97

Note: HER—healthy ears of rice; DER—disease ears of rice; NGT—nature growth treatment; FMT—farm
management treatment. The abbreviations of the following three tables are also consistent with this table.

Table 3. The accuracy (%) between DER in NGT and HER in FMT.

1D-HER 2D-HER 3D-HER 4D-HER 5D-HER 6D-HER 7D-HER

1d-DER 99.4 100 100 100 98.8 99.2 98.2
2d-DER 99.5 100 99.3 98.7 98.6 99.7 98.5
3d-DER 99.6 99.6 99.3 100 100 100 99.7
4d-DER 97 93.8 97.1 98.5 99.3 94.5 97
5d-DER 99.7 99.7 99.8 100 97.4 99.5 98.8
6d-DER 93.8 90.8 96.6 96.7 97.3 91 90.7
7d-DER 90.4 91.4 93.3 95.9 87.3 94.9 92

Table 4. The accuracy (%) between DER and HER in FMT.

1D-HER 2D-HER 3D-HER 4D-HER 5D-HER 6D-HER 7D-HER

1A-DER 98.6 96.7 99 98.7 95.8 98.1 97.6
2A-DER 98.9 99 100 99.2 100 98.9 98.4
3A-DER 99.1 96.3 99 98.7 98 97.1 97.2
4A-DER 92.5 98.9 98.8 100 96.4 99.2 97
5A-DER 99.3 98.3 98.8 100 94.4 98.4 97.1
6A-DER 95.9 94.6 96 94.9 92.5 95.9 94.8
7A-DER 97.8 95.5 96 96.2 91.6 94 92.5

Table 5. The accuracy (%) between DER and HER in NGT.

1D-HER 2D-HER 3D-HER 4D-HER 5D-HER 6D-HER 7D-HER

1d-DER 97.4 96.7 96.3 98.2 97.8 100 100
2d-DER 98 96.4 97.7 98.7 97.2 96.8 100
3d-DER 99.1 99.6 100 97.8 99.6 100 100
4d-DER 97.5 93.3 96.1 92.4 95.5 99 97.1
5d-DER 96.8 96.2 97.5 98.7 94.8 99.5 100
6d-DER 96.5 84.2 84.6 89.7 79.1 92.6 96.4
7d-DER 96.8 91.5 91.5 86.6 88.8 94.1 89.1

3.2. Accuracy between Different Farm Managements of FMT and NGT

Figure 5 shows the results of the differentiation between FMT and NGT. The plot
covers 196 results with different arrangements. Box-plots for the sample set involved
the representatives of different sowing periods and different farm managements of rice
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growth. In Figure 4, the horizontal ordinate represents the table results different from that
of Tables 2–5 above. From the box-plots, the accuracies ranged from 92 to 99%.

Figure 5. Different comparison methods between FMT and NGT (Table 2 represent the classification
accuracies of all combinations of sowing dates and farmland management methods between DER
in FMT and HER in NGT. Similarly, Table 3 is the accuracy between DER in NGT and HER in FMT;
Table 4 is the accuracy between DER and HER in FMT; Table 5 is the accuracy between DER and HER
in NGT).

The differentiation methods between DER and HER among the different farm man-
agements and sowing dates were analyzed. Among the arrangements, WNN was the
most frequently used differentiation method for RFS analysis. Many researchers [26] have
already estimated various differentiation models; moreover, there are different opinions
about which model is the most appropriate for DER and HER differentiation. This study
used 23 discrimination methods, a very common algorithm at present, to detect all possible
combinations, to ensure the effectiveness of the differentiation results obtained. Those
combinations not only covered different farm management types, but different sowing
periods. For each combination, there will be more than one method to get the highest
accuracy, so the selection frequencies of all discrimination methods were counted, as shown
in Figure 6. It is suggested that QSVM, WNN, and LSVM were the top-three highest accu-
racies for A-DER and D-HER; QSVM, WNN, and FSVM were the top-three for A-HER and
D-DER; FSVM, MNN, and QSVM were the top-three for A-HER and A-DER; WNN, FSVM,
and LSVM were the top-three for D-HER and D-DER. Generally, WNN and QSVM were
the most selective and, therefore, these two methods could be considered the best among
traditional models.
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Figure 6. Selected frequencies of discrimination methods for plot combinations (A and D, respectively,
represent plots with two different management, with a total of four combination modes. The
abbreviation of abscissa represents the different detection methods, and the ordinate value represents
the number of times to obtain the highest accuracies in multiple combinations).

3.3. Spectral-Based Deep Learning

Spectral-based deep learning required approximately 3 min to assess these datasets.
Compared to deep learning for slide-images, the elapsed time was shorter (the platform
was based on a Lenovo P53, CPU Intel Core i5-9400H 2.50 GHz, RAM 32 GB ). If there are
special requirements for time, this method is feasible. For images, it will take days to train.
Therefore, spectral-based deep learning greatly improves the efficiency of detection.

According to the detection results using LSTM, most accuracies achieved over 95%.
The real accuracies ranged from 90 to 100%. The accuracy increased significantly from
the beginning of training to the 500 iteration. Then it slowly rose. As for loss value—it
decreased gradually with the number of iterations. The smoothed value was less than 0.1.
In Table 6 below, DN is DER in NGT, DF is DER in FMT, HN is HER in NGT, and HF is HER
in FMT. The line is 14 kinds of disease samples and the row is 14 kinds of health samples,
under two different farm management types.

Each crop (different from industrial products) is different; thus, the diversity of rice
planting should be considered in disease detection. In this study, we considered different
the planting methods of rice and attempted to use a variety of detection methods. The
main purpose was to make the research results closer to the actual production and to have
better popularization.

According to the analysis results, it can be found that the accuracies nearly ranged
from 92 to 99%. Generally, better results could be obtained, which is irrelevant to the
management mode and planting date.

Data have a great impact on the results, especially in rice fields. Moreover, one must
consider the impact of data collection methods and data inconsistency caused by different
manufacturers. Therefore, in order to ensure the consistency of data, it is necessary to avoid
the influences caused by the change of sunlight through radiation correction devices, and
avoid the impact caused by the inconsistency of equipment manufacturers and personal
use habits.

3.4. Method Validation

Grading of the rice disease index divided RFS into 5 grades, of which, 0 indicated
no diseases, 1 was the least, and 5 was the most serious [27]. The incidence rate of RFS
in the unit area was used as the classification standard of the disease grades. The specific
description was as follows:

Grade 0: The prevalence rate of RFS was 0;
Grade 1: The prevalence rate of RFS was under 5%(include 5%);
Grade 2: The prevalence rate of RFS was under 10%(include 10%);
Grade 3: The prevalence rate of RFS was under 20%(include 20%);
Grade 4: The prevalence rate of RFS was under 50%(include 50%);
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Grade 5: The prevalence rate of RFS was more than 50%.
According to this standard, the disease index was calculated according to the field

disease investigation results, the disease index was as follows:

DI = ∑ xi × ni
N × k

(1)

where, DI is the disease index; xi is the number of diseased panicles at all levels (num-
ber/plot); ni is the representative value at all levels; N is the total number of panicles
investigated (number/plot); k is the highest representative value. In order to facilitate the
calculation, experimental fields were finally divided into several grades according to the
size of the disease index.

The disease grade of RFS, as the control group, was obtained through a field inves-
tigation. In this study, the RFS with different diseased grades were distinguished and
counted according to the rice disease index. The incidence index of each area was calcu-
lated (Table 6). The incidence grade was divided into four grades 1, 3, 5, and 7, according
to the disease index. The conditions corresponding to the disease index were DI < 1, 1 < DI
< 3, 3 < DI < 5 and DI > 5. The classification of grades in this study was mainly based on
the distribution gradient of the disease index.

Table 6. Disease index based on the field investigation of RFS in different experimental areas under
five diseased grades.

Field Label
Number of Diseased Plants

DI
0 1 2 3 4 5

1A 500 0 0 0 0 0 0
1B 500 0 0 0 0 0 0
1C 499 1 0 0 0 0 0.022
1D 498 1 1 0 0 0 0.089
2A 499 0 0 1 0 0 0.111
2B 498 0 2 0 0 0 0.133
2C 500 0 0 0 0 0 0
2D 499 0 0 0 0 0 0
3A 500 0 0 0 0 0 0
3B 498 0 2 0 0 0 0.133
3C 499 0 1 0 0 0 0.067
3D 498 4 3 0 0 0 0.286
4A 469 16 7 5 2 1 1.889
4B 482 10 2 4 2 0 1.111
4C 474 16 6 2 2 0 1.289
4D 469 16 7 5 2 1 1.889
5A 481 10 1 6 2 0 1.267
5B 433 32 20 14 1 3 4.33
5C 423 24 19 15 8 6 5.971
5D 363 59 27 24 13 14 10.6
6A 560 19 9 8 5 1 2.399
6B 515 19 16 9 2 1 2.669
6C 513 12 10 8 4 0 2.234
6D 191 10 2 10 4 0 4.813
7A 431 69 23 24 2 4 6.188
7B 373 59 33 40 11 12 11.43
7C 429 45 9 15 2 1 3.77
7D 129 41 8 13 4 9 13.017

Note: Groups A, B, and C used different pesticides to suppress diseases and insect pests, and the test field in group
D grew naturally as a control group without any disease suppression treatment. The field label is consistent with
that in the section of comparisons between different test fields, but there are four different field plots.

According to the detection method above (top-three highest accuracies and LSTM), we
compared the results with the actual field investigation data, and the results were basically
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consistent. Figure 7 is a prescription map of RFS detection in the experimental field. We
not only carried out disease detection, but we also subdivided the disease grade. Deep
green indicates less disease, red indicates serious disease, and light green and light red are
between the two.

Figure 7. Prescription map of RFS detection in the experimental field.

Due to the large number of rice plants, we cannot guarantee that each disease area can
be detected. In the process of near earth remote sensing data acquisition, we should make
the resolution appropriate. If the data collected by UAV are too close to the ground and
the wind force of UAV is too strong, the rice canopy fluctuates too much and better data
cannot be obtained. If they are too far away from the rice plant, it is impossible to get a
better resolution.

4. Conclusions

This study considered several combinations of rice plant forms, which covered dif-
ferent planting types and management methods. Of those samples, the most convenient
method of the submitted algorithms was based on deep convolutional neural networks.
As for traditional methods, the important step involves the features extracted; therefore,
different statistical and structural features were extracted, combined with widely used
supervised classifiers.

The real accuracy was mostly above 95%. Among these models, support machines and
nearest neighbors with different kernel functions were generally better. WNN and QSVM
were the most frequency selected methods. Moreover, there was no obvious characteristic
showing which arrangement was better. Considering so many factors, the differentiations
between healthy and diseased rice plants turned out to be more reliable.

According to these methods, the disease prescription map of RFS could be produced,
which provides a theoretical basis to take corresponding control measures in the future.

Although this paper has “reference significance” in the detection of RFS, there were
still some limitations.

(1) Near earth remote sensing was used to detect and map RFS in this study; early
detection is still a challenge, in most cases, this delayed detection may be early enough to
reduce further damage with certain measures for RFS; for others, it may be too late to stop
the infection for the current growing season.

(2) Rice planting is affected by many factors; only the two most important factors for
the incidence of RFS were considered in this study.
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(3) This work was carried out in China, with a typical subtropical climate, and involv-
ing a certain popularization. If the same experiment is carried out in other rice producing
areas, there may be differences.

(4) In addition, compared with the convenience of satellite data, image acquisition
with UAV is a technical work, especially in preventing the damage of very expensive hy-
perspectral equipment. Unlike satellite data, there are some uncertainties in the consistency
of near ground remote sensing data.
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PCR polymerase chain reaction
GA genetic algorithm
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DER disease ears of rice
NGT nature growth treatment
FMT farm management treatment
ROI region of interest
PCA principal component analysis
BiLSTM bidirectional long short-term memory
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DI disease index
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