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Abstract: As the foremost step of spectral unmixing, endmember extraction has been one of the
most challenging techniques in the spectral unmixing processing due to the mixing of pixels and
the complexity of hyperspectral remote sensing images. The existing geometrial-based endmember
extraction algorithms have achieved the ideal results, but most of these algorithms perform poorly
when they do not meet the assumption of simplex structure. Recently, many intelligent optimization
algorithms have been employed to solve the problem of endmember extraction. Although they
achieved the better performance than the geometrial-based algorithms in different complex scenarios,
they also suffer from the time-consuming problem. In order to alleviate the above problems, balance
the two key indicators of accuracy and running time, an adaptive surrogate-assisted endmember
extraction (ASAEE) framework based on intelligent optimization algorithms is proposed for hyper-
spectral remote sensing images in this paper. In the proposed framework, the surrogate-assisted
model is established to reduce the expensive time cost of the intelligent algorithms by fitting the fully
constrained evaluation value with the low-cost estimated value. In more detail, three commonly
used intelligent algorithms, namely genetic algorithm, particle swarm optimization algorithm and
differential evolution algorithm, are specifically designed into the ASAEE framework to verify the
effectiveness and robustness. In addition, an adaptive weight surrogate-assisted model selection
strategy is proposed, which can automatically adjust the weights of different surrogate models
according to the characteristics of different intelligent algorithms. Experimental results on three data
sets (including two simulated data sets and one real data set) show the effectiveness and the excellent
performance of the proposed ASAEE framework.

Keywords: hyperspectral remote sensing; intelligent optimization algorithms; endmember extraction;
surrogate-assisted model

1. Introduction

Hyperspectral remote sensing image, with hundreds of continuous spectra containing
rich ground object information in each pixel [1], has been used in various fields, such as
terrain change detection [2], geological exploration [3] and agricultural monitoring [4].
However, limited to the low spatial resolution of the hyperspectral remote sensor, mixed
pixels are inevitably appear in the hyperspectral image. The mixed pixels contain at least
one ground object material, such as water, soil, and trees, etc., which interferes with the
accurate analysis of the hyperspectral image to a certain extent [5,6]. Spectral unmixing,
as an efficient technique to solve the problem of mixed pixels, aims to decompose the
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mixed pixels into a set of pure substances (also known as endmembers) and estimate the
proportion of the corresponding endmembers (also called abundances) [7]. In general, end-
member extraction and abundance estimation are the two main tasks of spectral unmixing.
There are many mixture models in spectral unmixing, such as linear mixture model (LMM),
bilinear mixture model and nonlinear mixture models [8]. However, other models have
higher complexity than LMM, most endmember extraction researches are based on the
LMM. In the LMM [9], it assumes that each observable pixel can be expressed as a linear
combination of pure endmembers. Therefore, for a hyperspectral image consisting of m
endmembers, each pixel in the LMM can be written as

yi = Eα + ni (1)

where yi = [y1, y2, ..., yL]
T is the i-th mixed pixel in the hyperspectral image; E = [e1, e2, ..., em]

represents the set of endmembers that reconstructs the hyperspectral image Y, in which
each endmember in e contains L spectral bands; α = [α1, α2, ..., αm]T denotes the abundance
vector of the corresponding endmember set e; ni = [n1, n2, ..., nL]

T is the noise term for the
i-th mixed pixel. For a hyperspectral image with N observed pixels, (1) can be written as
the matrix form

Y = EA + N (2)

where Y = [y1, y2, ..., yN] is the hyperspectral image matrix, A = [α1, α2, ..., αN] and N =
[n1, n2, ..., nN] represent the abundance matrix and the noise matrix, respectively. Due to
physical limitations and constraints, the abundance needs to satisfy two constraints, namely
the abundance sum-to-one constraint (ASC, ∑m

j=1 αj = 1) and the abundance nonnegative
constraint (ANC, αj ≥ 0, j = 1, 2, ..., m) [10].

Geometrically, it is assumed that there are pure endmembers in the hyperspectral
image, and all pixels can be contained in a simplex whose vertices correspond to the
endmember set constituting the image [11]. Therefore, in recent decades, many geometrial-
based endmember extraction methods have been proposed to obtain the vertices of the
simplex, among which the classical algorithms include the pixel purity index (PPI) [12], N-
FINDR [13] and the vertex component analysis (VCA) [14], etc. PPI extracts the endmember
set by projecting spectral vectors into random vectors and employed the minimum noise
fraction for reducing the dimension. N-FINDR selects the simplex with the largest volume,
and their vertices are used as the terminal endmembers. VCA obtains the endmembers
by continuously projecting the extreme values until reaching the prescribed number of
endmembers. Low computational complexity and high accuracy of extraction results are
the advantages of these algorithms, but there are also some unavoidable shortcomings.
For example, when the data do not meet the simple structure, the extraction accuracy of
geometrial-based method will be significantly reduced, and it is also vulnerable to noise
and outliers [15,16].

In order to alleviate the above problems, some intelligent optimization algorithms have
been applied in endmember extraction in recent years. In the literature, the intelligent-based
endmember extraction algorithms can be roughly divided into three main categories, which
are the based on the genetic algorithms (GA) [17–20], the particle swarm optimization (PSO)
algorithms [21–27] and the differential evolution (DE) algorithms [28,29]. Zhang et al. [21]
employed the discrete particle swarm optimization (DPSO) to minimize the root mean
square error (RMSE) between the reconstructed image and the original image to obtain the
appropriate endmember set by encoding each particle as the potential position of the active
endmember in the hyperspectral image. In [19], the combination of genetic algorithm and
the orthogonal projection, called genetic orthogonal projection (GOP), was proposed to
solve the problem of endmember extraction. To overcome the problem of poor performance
and low efficiency, Zhong et al. [28] proposed an adaptive differential evolution (ADEE)
algorithm, which explore the endmember set with the adaptive crossover and mutation
strategies to avoid manual setting of parameters. Liu et al. [23] explored a novel quantum-
behaved particle swarm optimization (QPSO) with the row-column coding to overcome the
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dimension disaster of the standard PSO algorithm, and a cooperative approach is designed
to expand the whole particle swarm search space. In [26], an improved QPSO (IQPSO)
was designed to enhance the precision of extracted endmembers. Although the above
intelligent-based endmember extraction algorithms are more effective and robust than the
traditional algorithms, they suffer from a serious problem of time-consuming. It is difficult
to satisfy the rapidity of endmember extraction in practical applications. In addition, if the
time-consuming is reduced by decreasing the number of algorithm cycles, the intelligent-
based algorithms are easy to fall into the local optimum.

As mentioned earlier, the abundance is subject to the ASC and the ANC, and four
abundance estimation strategies including the fully constrained least squares (FCLS), the
sum-to-one constrained least squares (SCLS), the nonnegative constrained least squares
(NCLS) and the unconstrained least squares (UCLS) can be employed to solve this problem.
However, mathematically, it takes much less time to solve the abundance inversion problem
with the other three methods than FCLS. Therefore, some intelligent-based endmember
extraction algorithms [25,30] directly employed the UCLS for the abundance inversion in
order to reduce the computational cost. Nevertheless, the extraction accuracy of the SCLS,
NCLS and UCLS is not convincing compared with the FCLS. Therefore, it is urgent to
reduce the computational cost for the intelligent-based endmember extraction algorithms.
The surrogate-assisted evolutionary algorithms (SAEAs), have been widely adopted as one
of the most effective methods to solve the expensive optimization problems [31–33]. As
the name suggests, it aims to establish a surrogate model to approximate the expensive
objective evaluation function to significantly reduce the computational cost. At present,
many efficient surrogate models such as polynomial regression (PR) [34], support vec-
tor machines (SVM) [35–37], radial basis function networks (RBF) [38,39] and Gaussian
processes (GP) [40,41] have been studied and developed. Taking this cue, it is a natural
idea to estimate the expensive evaluation value of FCLS from the cheap estimates with
the SAEAs. In summary, an efficient adaptive surrogate-assisted intelligent algorithms
(ASAEE) framework for endmember extraction is proposed in this paper to overcome the
costly time problem. The major contributions of this paper are threefold:

(1) This paper solves the endmember extraction problem with the proposed ASAEE
framework. The overall convergence characteristics and the time-consuming issue can
be significantly improved by the proposed framework.

(2) Three algorithms of ASAEE-GA, ASAEE-PSO and ASAEE-DE based on the ASAEE
framework are specifically designed. The experimental results of these three algo-
rithms have been greatly improved compared with the corresponding state-of-the-art
intelligent-based endmember extraction algorithms.

(3) An adaptive weight surrogate-assisted model selection algorithm is designed, which
is able to automatically adjust the weights of different surrogate-assisted models
according to the characteristics of different intelligent optimization algorithms.

(4) We also transfer the ASAEE framework to other intelligent-based endmember extrac-
tion algorithms, which greatly reduces the expensive time cost while maintaining the
accuracy.

The remainder of this paper is structured as follows. Section 2 briefly reviews the re-
search related to the employing of intelligent algorithms to solve the endmember extraction
problem. In Section 3, the proposed ASAEE framework and its combination with three
intelligent optimization algorithms, namely ASAEE-GA, ASAEE-PSO, and ASAEE-DE are
described in detail. Section 4 reports the experimental results of the proposed method
compared with several state-of-the-art endmember extraction algorithms. Conclusions are
drawn in Section 5.

2. Related Work

In this section, we first review the intelligent-based optimization algorithms for
endmember extraction. Relevant researches on the surrogate-assisted models are also
briefly introduced.
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2.1. Intelligent-Based Endmember Extraction Algorithms

The intelligent-based endmember extraction methods can effectively compensate for
the shortcomings of geometrial-based methods in terms of reduced accuracy when the
simplex condition is not satisfied. Furthermore, they can obtain the better accuracy for
endmembers with undesirable distribution in the search space, which means that the
intelligent-based algorithms have higher robustness and less dependence on data. Most of
the intelligent-based methods transform the endmember extraction task of hyperspectral
images into a combinatorial optimization problem and solve it by intelligent optimization
algorithms, such as GA, PSO and DE.

The optimization objective function is important for the final results of endmember
extraction. Most of the endmember extraction methods focus on the RMSE value, and the
result will have a smaller RMSE when it is closer to the ground truth. Zhang et al. [21]
proposed the DPSO which represents the combination of endmembers in hyperspectral
image with binary encoding for particle positions and velocities, and searches for the
optimal result in the discrete feasible space with the classical discrete particle swarm
optimization. In subsequent studies, QPSO [23] is designed with the quantum-behaved
strategy to strengthen the robustness and the convergence rate and in the multi-dimensional
search space. IQPSO [26] improved the QPSO in the global search capability and the high-
dimensional difficulty. In [19], Rezaei et al. employed a GA to determinate the exact
number and position of each endmember obtained by the projecting the data in an orthog-
onal subspace. In [28], Zhong et al. designed an adaptive differential evolution strategy
to the classical DE algorithm, which solves the drawback that traditional differential evo-
lution method requires multiple runs to find the appropriate parameters for different
practical problems.

The other commonly used optimization objective is to maximize the volume. As the
volume of the convex simplex with the endmembers as the vertices, the larger volume is
obtained when the result is closer to the real endmember set, which is defined as follows

Volume(E) =

∣∣∣∣det
[

1 1 ... 1
e1 e2 ... em

]∣∣∣∣
(m− 1)!

(3)

where m is the number of endmembers. A novel mutation operator accelerated quantum-
behaved particle swarm optimization (MOAQPSO) [24] proposed by Xu et al. is one of the
methods based on maximization of volume. Different from the DPSO, there is no velocity
vector in MOAQPSO, which explores the best combination of endmembers by the position
of the particles and employs the mutation rate to avoid falling into local optimum.

Some researches also employed other intelligent-based optimization algorithms for
endmember extraction, such as the ant colony optimization algorithms [15,42], the bee
colony optimization algorithms [43], and the discrete firefly algorithms [44], etc. In addition,
refs. [18,22,25–27,29] have turned to multiobjective optimization algorithms to optimize
two indicators simultaneously, namely minimizing the RMSE and maximizing the volume.

2.2. Brief Introduction of the Surrogate-Assisted Models

The purpose of establishing the surrogate-assisted models is to reduce the expensive
evaluation cost of the intelligent optimization algorithms by employing a small amount of
expensive real evaluation to construct and update the surrogate-assisted model, which is
also known as data-driven optimization. Most of regression or classification techniques,
such as PR, RBF, SVM, GP, etc., can be employed as the surrogate-assisted models.

The data-driven surrogate-assisted evolutionary optimization is mainly divided into
two major research directions, namely offline and online data-driven optimization. The
modeling of the surrogate-assisted model can only rely on offline data in the offline data-
driven evolutionary optimization process. While the online data-driven evolutionary
optimization is to select the appropriate data in the evolutionary search process to im-
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prove the fitting quality of the surrogate-assisted model. Therefore, in the online surrogate
management methods, many model management strategies such as population-based,
individual-based and generation-based are widely studied. The population-based model
management employed multiple populations for evaluation, and each population is evalu-
ated with different fidelity. As its name suggests, the individual-based model management
aims to construct and update the surrogate model according to the specific individuals,
pre-selection method, clustering based method, uncertainty based method, random strategy
and best strategy are often employed in the selection of individuals. The generation-based
model management, a relatively simple example, is to use some data to construct the
surrogate-assisted model before optimization, and be updated in the number of iterations
with the appropriate data to improve the surrogate-assisted model.

In the field of remote sensing, the surrogate-assisted models have also been explored
in many research directions in accelerating the convergence and improving the efficiency,
such as endmember selection [20], hyperspectral image classification [45] and hyperspectral
nonlinear substitution [46], etc.

3. Proposed Method

In this section, we first describe the motivation for designing the surrogate-assisted
model with the intelligent optimization algorithms to solve the endmember extraction
problem. Then initialization mechanism and the objective optimization function will be
introduced. Subsequently, the ASAEE framework will be described in detail, including the
construction and updating of the surrogate model. Finally, the ASAEE framework with the
evolution strategies of GA, PSO and DE are proposed.

3.1. Motivation

After determining the optimal endmember set with the intelligent-based optimization
algorithms, the extracted endmembers must meet two constraints, i.e., all abundances
cannot be negative, and the sum of all abundances is one. In general, the FCLS can be
employed to accurately estimate the abundance of inversion. However, mathematically,
due to the time spent by FCLS is very expensive, some researches have turned to the NCLS,
UCLS and other low-time-cost abundance inversion methods instead. However, it will lead
to inaccurate situations where the abundance from the inverse is negative or the sum is not
one. Therefore, it is very promising to employ the surrogate model to replace the true FCLS
abundance inversion value and reduce the expensive time cost of the intelligent-based
endmember extraction algorithms.

3.2. Initialization and Objective Optimization Function

Considering that the evolution strategies of different intelligent algorithms have their
own advantages and disadvantages, it is very important for the ASAEE framework to
design a unified coding and initialization which is suitable for most intelligent algorithms.
The encoding of individual or particle is shown in Figure 1. Specifically, the length of the
encoded vector is N, and the elements in the vector are all binary encoded. Among them,
the element of 0 means that the corresponding pixel in the hyperspectral image is not a
candidate endmember. On the contrary, if the element is 1, it means that the pixel is the
endmember to be extracted. In summary, the number of elements in the vector is equal to
the pixels in the hyperspectral image, and the sparsity of the vector (i.e., the number of
1 elements) is equal to the number of endmembers to be extracted.
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......
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Figure 1. The initialization mechanism of the individuals or particles.

In this paper, we mainly focus on the single objective optimization. For the evaluation
of individual or particle, as an important measurement index for endmember extraction,
RMSE is regarded as the optimization objective, which can be expressed as

fASAEE = RMSE(Y, Ŷ) =
1
N

N

∑
i=1

√
1
L
‖yi − ŷi‖2

2 (4)

where yi and ŷi are the pixels in the original image Y and the reconstructed image Ŷ,
respectively. N and L represent the number of pixels and the number of spectral bands,
respectively.

3.3. ASAEE Framework

The pseudo code of the overall framework is shown in Algorithm 1. The entire ASAEE
framework can be divided into three parts, namely the construction of the surrogate-assisted
model, evolution strategies and the updating of the surrogate-assisted model. The first step
is to generate the initial population and construct the adaptive surrogate-assisted model.
Because different surrogate-assisted models have their own characteristics, it is difficult
to determine only one surrogate-assisted model to optimize for a specific optimization
problem. Therefore, a stable and efficient surrogate-assisted model with adaptive weights
is designed to be constructed, which can be expressed as

Saw =
s

∑
t=1

wtSt (5)

where St is the t-th of all s surrogate-assisted models. Four classical surrogate-assisted
models including the PR, SVM, RBF and GP are employed in this paper. wt is the weight
corresponding to the t-th surrogate-assisted model, which is defined as

wt =
∑s

q=1 rq − rt

2 ∑s
q=1 rq

(6)

where rt is defined as: ∑R
i=1

√
1
R‖fi − f̂i‖2, R is the number of samples used to construct or

update the surrogate model, fi and f̂i are the value evaluated by FCLS and the surrogate-
assisted model, respectively.
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Algorithm 1 The ASAEE Framework
Input: Y: the original hyperspectral image, Maxgen: the max generation number, K: the

population size.
Output: Ê: the endmember set for reconstructing the remixed image.
1: Generate the initial population P0.
2: %Construct the surrogate-assisted model
3: D0 ←Randomly select K/10 individuals and Evaluate them with FCLS.
4: Construct the surrogate-assisted model by: Saw = ∑s

t=1 wtSt.
5: Evaluate each pi in P0 with the surrogate model Saw.
6: gen← 1.
7: while gen < Maxgen do
8: Evolve the Pgen with an intelligent optimization algorithm.
9: Evaluate each pi in Pgen with the surrogate-assisted model Saw.

10: %Update the surrogate-assisted model
11: P

′
gen ← the reinitialized population with K/10 individuals.

12: (x∗gen, y∗gen)← Obtain the individual with the best fitness in Pgen.
13: (xu

gen, yu
gen)← Obtain the individual with the most uncertain in Pgen.

14: (xr
gen, yr

gen)← Obtain the individual by randomly selecting in P
′
gen.

15: Calculate the fitness of (x∗gen, y∗gen), (x
u
gen, yu

gen) and (xr
gen, yr

gen) with FCLS.
16: Dgen ← Dgen ∪ (x∗gen, y∗gen) ∪ (xu

gen, yu
gen) ∪ (xr

gen, yr
gen).

17: Update the surrogate-assisted model Saw with Dgen.
18: gen = gen + 1.
19: end while

The construction of the surrogate-assisted model with adaptive weights is shown in
Figure 2. It is difficult to determine which surrogate-assisted model is more suitable for
expensive evaluation problems. Therefore, it makes more sense to assign the corresponding
weights according to the errors of different surrogate-assisted models.

After constructing the surrogate-assisted model, since the samples selected at the
beginning are not enough for the predicted value of the surrogate-assisted model to simu-
late the whole real abundance inversion value, we design the online data-driven model
management strategy to update the surrogate-assisted model. In each generation of evo-
lution, the optimal fitness sample (x∗gen, y∗gen), the most uncertain sample (xu

gen, yu
gen) and a

random sample (xr
gen, yr

gen) are selected to update the surrogate-assisted model to ensure
accurate and efficient approximation of the expensive evaluation function. It should be
noted that the (x∗gen, y∗gen) is obtained by selecting the individual with the best fitness value
evaluated by the surrogate-assisted model for all the individuals in Pgen. The (xu

gen, yu
gen) is

obtained by calculating the maximum neighborhood distance of all individuals evaluation
values in Pgen. The (xr

gen, yr
gen) is randomly selected from an initial population P

′
gen with

K/10 individuals. With the above designs, the overall computational complexity of the
ASAEE framework is almost reduced by KgenOFCLS times compared with the traditional
intelligent-based algorithms.
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Figure 2. Illustration of the proposed ASAEE Framework.

3.4. Evolution Strategies

In this section, in order to verify the generality and robustness of our proposed ASAEE
framework, three intelligent algorithms, including the GA, PSO and DE, are employed to
design with the ASAEE framework for evolution.

3.4.1. ASAEE-GA

For the ASAEE-GA, population Pgen will first form the parent population P
′
gen with

the tournament selection, which is used to generate the offspring population Cgen. Then
each two individuals pa and pb are selected from P

′
gen for the crossover and mutation, and

their corresponding offspring are generated as: ci = Mutation(Crossover(pa, pb)), where
the Crossover() and Mutation() are the multi-point crossover operator and the uniform
mutation operator, respectively. The crossover operation randomly selects multiple points
on the parent chromosome, and then exchanges part of genes in pa and pb to obtain two
new individuals. In addition, uniform mutation randomly generates a number within the
interval [Umax, Umin] to replace the original variable at the mutated genes. Umax and Umin are
respectively the upper and lower bounds of the decision variable. The offspring population
Cgen is generated through repeating this step until there is no unselected individual in the
population P

′
gen. Then K individuals with the best fitness are selected from Pgen∪Cgen to

form the next parent population Pgen+1. As the current generation reaches the maximum
number of generations Maxgen, the individual with the best fitness is selected as the
reconstructed endmember set Ê.

3.4.2. ASAEE-PSO

In the ASAEE-PSO, the concept of basic PSO is applied to quantum space, and the
wave functions is used to describe the motion states of the particles, which enables the
motion of particles in feasible solution space to exhibit global randomness. Instead of the
traditional PSO that uses position and velocity to represent the particle state, quantum-
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behaved PSO (QPSO) evolves only with the particle positions, which also has the advantage
of fewer parameters. For the evolution of the ASAEE-PSO, suppose that the j-th decision
variable of the i-th particle at generation gen is expressed as xgen

i,j . In addition, xgen
ibest and xgen

gbest
represent the self-optimum position of the i-th particle and the global optimal position
of all particles, respectively. The self-optimum position and the global optimal position
can be obtained according to the objective function (4), and their update rules are shown
as follows

xgen+1
ibest =

xgen+1
i , if fASAEE(x

gen+1
i )< fASAEE(x

gen
ibest)

xgen
ibest, if fASAEE(x

gen+1
i ) ≥ fASAEE(x

gen
ibest)

xgen+1
gbest = argmin{fASAEE(x

gen+1
ibest }, i=1, 2, ..., K.

(7)

In a quantum system, particles are attracted by quantum delta potential wells centered
on local attractor points. The update of the xgen+1

i,j is obtained by solving the probabilistic
model of the particle position and then transforming it from the quantum state to the
classical state by Monte Carlo Simulation method, which is expressed as follows

xgen+1
i,j = ogen

i,j ± ∗β ∗
∣∣∣bestgen

j − xgen
i,j

∣∣∣ ∗ ln

[
1

ugen
i,j

]
ugen

i,j = rand(0, 1), i = 1, 2, ..., K, j = 1, 2, ..., m

bestgen
j =

1
K

K

∑
i=1

xgen
ibest,j, j = 1, 2, ..., m,

(8)

where β is the contraction-expansion coefficient, which controls the convergence speed of
the algorithm and its value will change linearly with gen from 1.0 to 0.5 according to [47].
bestj is the average position of the j-th decision variable in the self-optimum particles of all
individuals, and ui,j is a random number in the interval [0, 1]. In addition, oi,j is the position
of the local attractor, which can be expressed as

oi,j = ϕi,j ∗ xibest,j + (1− ϕi,j) ∗ xgbest,j

ϕi,j = rand(0, 1), i = 1, 2, ..., K, j = 1, 2, ..., m,
(9)

where ϕi,j is also a random number in the interval [0, 1]. After the number of generations
reaches the termination condition, the particle of xgen

gbest is taken as the optimal endmem-
ber set.

3.4.3. ASAEE-DE

Different from ASAEE-GA, the mutation in ASAEE-DE adds the difference of the
selection vectors to the basis vector to realize the change of the decision variable. The
mutation operator adopts the “DE/rand/1” strategy, which can be expressed as follows

vgen
i = xgen

r1 + F(xgen
r2 − xgen

r3 ), (10)

where vi is the i-th vector generated by the individuals (xr1 , xr2 , xr3) through the mutation
operator. F is the mutation scaling factor, and r1, r2 and r3 are three mutex integers randomly
selected from the range [1, K]. In addition, the binomial crossover is employed after the
mutation operation to generate offspring c, which is shown as follows

cgen
i,j =

vgen
i,j if j = jrand or randi,j ≤ Cr

xgen
i,j otherwise,

(11)

where jrand is an integer randomly selected from the range [1, m] and randi,j is a random
number within the interval [0, 1]. The crossover rate Cr and the mutation scaling factor F
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will be adaptively updated according to [28]. A (µ + λ) strategy [48,49] is applied in the
selection stage, which combines µ parents and λ generated offsprings to obtain a population
with (µ + λ) individuals, and the best µ individuals are selected to enter the next generation.
In ASAEE-DE, the number of parents µ and the number of offspring λ are the same as the
size of the population K. Finally, the individual with the best fitness in the max generation
Maxgen is regarded as the final endmember set.

4. Experimental Results

In order to verify the effectiveness of the proposed ASAEE framework, a series of
experiments are designed and performed on three benchmark data sets, including two
simulated data sets and one real data set. In the following, these three data sets are briefly
introduced first. Then the ablation experiments are analyzed to prove the rationality
of the ASAEE framework design. Then the ablation experiments are analyzed to prove
the rationality of the ASAEE framework. The proposed method is compared with other
endmember extraction algorithms on different data sets. In addition, three algorithms of
the proposed framework are compared with the state-of-the-art peer competitors. Finally,
the generality of the proposed framework is reflected in the transfer to some classical
intelligent-based endmember extraction algorithms.

4.1. Data Sets Description

In these experiments, three widely used endmember extraction benchmark data sets
are employed to examine the performance of the proposed ASAEE framework. The first
data set (DS1) and the second data set (DS2) are two simulated hyperspectral image from the
USGS spectral library [50], which are displayed separately in Figure 3a,b. Five endmembers
including the Alunite, Buddingtonite, Calcite, Kaolinite and Muscovite synthesize the DS1
with 80 × 100 pixels. On the basis of these five endmembers, five more endmembers (Illite,
Jarosite, Nontronite, Halloysite, and Pyrophyllite) constitute a total of ten endmembers to
simulate DS2 with 160 × 160 pixels. The spectra of DS1 and DS2 are shown in Figure 3c,d,
respectively. The third data set (DS3) is a widely used real hyperspectral image [19] (the
AVIRIS Cuprite image) with 400 × 350 pixels, including 50 spectral bands, which is shown
in Figure 4.

In addition, two important indicators are employed to measure the performance of the
algorithms, which are the RMSE and the running time. The RMSE is an index to measure
the difference between the reconstructed image and the original image, and the running
time is an important manifestation of the efficiency of the algorithms. Moreover, for the
simulated data sets, experiments will be performed on three different levels of signal-to-
noise ratio (SNR), namely, 20, 30 and 40 dB. The endmembers in the simulated data sets
are known in advance, so the number of endmembers in DS1 and DS2 is set to 5 and 10,
respectively. In the real data set, since the number of endmembers cannot be obatined
as the priori knowledge, the number of endmembers is set to 5, 10, 15, 20 respectively
as recommended in reference [21,28]. In all the intelligent-based algorithms, the number
of individuals or particles is set to 20 and the number of iterations is set to 200. Besides,
all the experimental results take the average of 10 independent experiments as the final
presentation. All the experiments are implemented on the Matlab 2021 platform using Intel
i5-10400 CPU@2.90GHz.
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Figure 3. Simulated data sets. (a) The image and the abundance of 5 endmembers of DS1. (b) The
image and the abundance of 10 endmembers of DS2. (c) Five spectra in DS1. (d) Ten spectra in DS2.

Figure 4. The AVIRIS Cuprite image.

4.2. Experiments on the Proposed ASAEE Framework

In this section, two ablation experiments are performed to prove the rationality and
validity of constructing the adaptive surrogate-assisted model. First, we would investigate
whether the construction of surrogate-assisted model will affect the endmember extraction
performance. Second, we would also explore the performance between the proposed
adaptive surrogate-assisted model and other single surrogate-assisted models.
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The experimental results on two simulated data sets of with and without surrogate-
assisted model are shown in Figure 5. In the results, EE-GA, EE-PSO, and EE-DE represent
three classic intelligent-based endmember extraction algorithms, and the FCLS are all
employed for their individual evaluations. On the contrary, ASAEE-GA, ASAEE-PSO
and ASAEE-PSO are combined with the proposed ASAEE framework. It can be observed
from the experimental results that the endmember extraction algorithms based on the
ASAEE framework can significantly reduce the expensive time cost compared with ordinary
intelligent-based endmember extraction algorithms. In addition, the comparison results on
the real data set with and without the ASAEE framework are illustrated in Figure 6. The
above experimental results clearly shows that the proposed ASAEE framework improves
the expensive cost of previous intelligent-based endmember extracion algorithms on all the
benchmarks. To be specific, the ASAEE framework reduces the time in simulated data sets
and the real data set by almost thirty times and two thousand times respectively compared
with the original algorithms, which coincides with the analysis of the algorithm complexity
in Section 3.3.
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Figure 5. Comparison with and without ASAEE framework on DS1 and DS2 under different SNR.
(a) DS1 20 dB. (b) DS2 20 dB. (c) DS1 30 dB. (d) DS2 30 dB. (e) DS1 40 dB. (f) DS2 40 dB.
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Figure 6. Comparison with and without ASAEE framework on DS3. (a) Methods with ASAEE
framework. (b) Methods without ASAEE framework.

Besides, Figure 7 illustrates the experimental results of different surrogate-assisted
models and the proposed adaptive surrogate-assisted model. In other word, four repre-
sentative surrogate models constructed with PR, SVM, RBF and GP are compared with
the proposed model. It can be concluded that the performance of different surrogate
models has great differences for each hyperspectral data sets, but the proposed adaptive
surrogate model strategy can assign different weights to each surrogate model for obtaining
a compromise between these surrogate models, which is capable of better approaching
the real evaluation results. In summary, the design of adaptive surrogate-assisted model
can not only reduce the expensive time cost for the intelligent algorithms, but also allocate
the appropriate weights to select the most suitable surrogate models according to their
corresponding fitting.
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Figure 7. Comparison of the proposed adaptive surrogate-assisted model with other surrogate-
assisted models in different data sets. (a) DS1. (b) DS2. (c) DS3.

4.3. Comparison of the Proposed ASAEE with Other Methods

In this section, three algorithms based on the ASAEE framework are compared with
other endmember extraction algorithms. The comparison algorithms employed in this pa-
per include PPI [51], N-FINDR [13], VCA [14], GOP [19], DPSO [21], ADEE [28], QPSO [23]
and IQPSO [26]. Specifically, the PPI, N-FINDR and VCA are three classical geometrial-
based approaches, and the GOP, DPSO, ADEE, QPSO and IQPSO represent the endmember
extraction algorithms based on GA, PSO and DE in the intelligent algorithms. For the sake
of fairness, the parameter settings of these intelligent-based algorithms are consistent with
their respective papers. In addition, in the experimental results presented in the table, the
best data is shown in bold, and the second best data is shown in bold and underlined.

Tables 1–3 present the indicators’ values obtained by three ASAEE-based algorithms
and the comparison algorithms in identifying the real endmembers on two simulated data
sets under different SNR and four endmember situations in the real data set, respectively.
In general, in the simulated data sets, the performance of all algorithms are improved as
the SNR increases, and the time spent are also increase except for the geometrial-based
algorithms. In terms of the indicator of time, although the traditional geometrial-based
algorithms have achieved the excellent results, their performance in accurate extraction are
not ideal reflected by the RMSE indicator. On the contrary, the intelligent-based algorithms
are generally better than the traditional methods in terms of endmember extraction accuracy,
but the time of these algorithms is also very expensive. However, the endmember extraction
algorithms with the ASAEE framework has achieved a good compromise between these
two indicators. Specifically, the ASAEE-DE has the best endmember extraction performance
in two simulated data sets, while ASAEE-GA has the excellent performance in the real data
sets. In terms of time index, ASAEE-DE takes the shortest time due to the simplicity of its
evolutionary steps, followed by ASAEE-PSO and ASAEE-GA takes the longest.
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Table 1. Comparison of the proposed ASAEE framework with other algorithms on DS1.

Attributes
SNR 20 30 40

Methods RMSE Time (s) RMSE Time (s) RMSE Time (s)

PPI 0.6062 3.100 0.6069 3.365 0.6055 3.599
Geometrial-based N-FINDR 0.0823 1.436 0.0263 1.522 0.0183 1.626

VCA 0.0735 0.910 0.0232 0.936 0.0173 0.980

GOP 0.0784 1558.228 0.0224 1835.942 0.0109 2212.031
DPSO 0.0811 1429.519 0.0196 1701.182 0.0115 2064.372

Intelligent-based ADEE 0.0809 1291.413 0.0171 1534.217 0.0098 1727.190
QPSO 0.0739 1357.904 0.0157 1660.213 0.0091 1882.512
IQPSO 0.0717 1332.013 0.0138 1653.510 0.0072 1861.607

ASAEE-GA 0.0731 66.706 0.0171 70.272 0.0095 74.264
ASAEE-based ASAEE-PSO 0.0722 59.958 0.0143 62.391 0.0080 66.220

ASAEE-DE 0.0697 43.331 0.0114 45.447 0.0061 47.059

Table 2. Comparison of the proposed ASAEE framework with other algorithms on DS2.

Attributes
SNR 20 30 40

Methods RMSE Time (s) RMSE Time (s) RMSE Time (s)

PPI 0.5132 4.522 0.5063 4.642 0.5051 4.723
Geometrial-based N-FINDR 0.0805 1.995 0.0336 2.061 0.0218 2.102

VCA 0.0711 1.236 0.0306 1.309 0.0189 1.381

GOP 0.0780 2050.407 0.0295 2273.227 0.0113 2587.485
DPSO 0.0802 1813.623 0.0305 2099.171 0.0136 2392.728

Intelligent-based ADEE 0.0759 1472.874 0.0273 1651.492 0.0101 1884.253
QPSO 0.0724 1668.131 0.0262 1891.692 0.0098 2105.269
IQPSO 0.0679 1613.092 0.0240 1810.125 0.0082 2080.572

ASAEE-GA 0.0702 74.408 0.0273 78.559 0.0094 83.952
ASAEE-based ASAEE-PSO 0.0684 67.945 0.0265 71.623 0.0089 75.798

ASAEE-DE 0.0658 54.151 0.0208 58.847 0.0075 62.801

Table 3. Comparison of the proposed ASAEE framework with other algorithms on DS3.

Attributes
Endmember 5 10 15 20

Methods RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s)

PPI 20.7768 30.774 18.3991 42.293 16.8536 57.495 14.3208 65.473
Geometrial-based N-FINDR 5.8611 26.633 4.0298 34.205 3.8376 48.465 3.2275 59.217

VCA 5.5463 25.495 3.8370 32.197 3.5101 43.151 2.9383 57.542

GOP 5.2643 1.590 × 106 3.8251 1.985 × 106 3.5212 2.308 × 106 2.9180 2.820 × 106

DPSO 4.5321 1.373 × 106 3.3797 1.764 × 106 3.0944 2.081 × 106 2.7488 2.556 × 106

Intelligent-based ADEE 4.2970 1.24 × 106 3.3102 1.586 × 106 3.0206 1.912 × 106 2.6831 2.401 × 106

QPSO 4.1542 1.270 × 106 3.1326 1.600 × 106 2.9437 2.005 × 106 2.6704 2.493 × 106

IQPSO 4.0720 1.258 × 106 3.0327 1.581 × 106 2.7794 1.990 × 106 2.5925 2.451 × 106

ASAEE-GA 4.3364 954.296 3.4417 1309.780 3.1561 1613.094 2.7436 1940.092
ASAEE-based ASAEE-PSO 4.0862 826.323 3.1058 1198.461 2.8456 1436.977 2.6024 1805.624

ASAEE-DE 3.7321 751.325 2.8469 984.226 2.5564 1318.374 2.2613 1705.950

From Tables 1–3, we can find that the indicators’ values obtained by ASAEE framework
are smaller than those obtained by other comparison algorithms except for one time value
compared with geometrial-based algorithms. For the results of real data set, Figure 8
illustrates the comparison of abundance inversion results of some endmembers obtained
by the ASAEE framework. Overall, the results are in line with our expectations, the
original intention of the ASAEE design is to reduce the expensive time cost while ensuring
that the extraction accuracy is not severely affected for the intelligent-based endmember
extraction algorithms.
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Figure 8. The abundance maps of five endmembers obtained from (a–e) ASAEE-GA. (f–j) ASAEE-
PSO. (k–o) ASAEE-DE.

4.4. Transfer to Other Intelligent-Based Endmember Extraction Algorithms

In this section, we will prove the applicability of the ASAEE framework by transferring
it to five intelligent-based comparison methods. As can be seen from Figure 9, the results
are the time comparison before and after the transfer of ASAEE framework. It can be
concluded that it is very significant with the evaluation from the surrogate-assisted model
to the intelligent-based algorithms in endmember extraction. Theoretically, as long as it
is an intelligent-based algorithm involving individual or particle evaluation, the ASAEE
framework can be transferred and greatly shorten the entire evaluation time.
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Figure 9. Time Comparison of transferring the proposed ASAEE framework to other algorithms on
different data sets. (a) DS1. (b) DS2. (c) DS3.

5. Conclusions

This paper has proposed an adaptive surrogate-assisted intelligent optimization al-
gorithms framework to deal with the endmember extraction for hyperspectral remote
sensing image. Specially, the surrogate-assisted model is established in the abundance
inversion stage of the intelligent algorithms, an adaptive weight strategy are designed to
automatically assign the weights according to the fitting degree of various surrogate mod-
els, so as to reduce the evaluation time and accelerate the convergence of the algorithms
under the condition of ensuring certain accuracy. Three intelligent algorithms, ASAEE-GA,
ASAEE-PSO, and ASAEE-DE, combined with the design of an adaptive surrogate-assisted
model, are proposed to efficiently solve the endmember extraction problem.
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In the future work, we will focus on solving more complex endmember extraction
scenarios and improve the robustness and practicability of the ASAEE framework. In
addition, other intelligent-based algorithms, such as the ant colony algorithms and bee
colony algorithms, will also be explored to incorporate into the ASAEE framework. The
MOEA-based intelligent endmember extraction algorithms will also be studied.
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