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Abstract: Improving understanding of changes in intra-annual variability (IAV) of evapotranspi-
ration (ET) and the underlying drivers is an essential step for modeling hydrological processes in
response to global change. Previous studies paid special attention to climatic regulations of IAV of ET.
However, ignoring the role of landscape characteristics (e.g., vegetation coverage) can introduce great
uncertainty in the explanation of ET variance. In this work, the Poyang Lake Basin, which is a typical
humid basin in China, was taken as the study area. It has experienced an obvious climate change and
revegetation since the 1980s. Here, trends of IAV of ET and their responses to four climatic variables
(i.e., air temperature, precipitation, downward shortwave radiation and wind speed) and vegetation
coverage were explored from 1983 to 2014. The results show that IAV of ET exhibited contrary
trends during the past decades. It significantly (p < 0.05) declined with a significant linear slope of
—0.52 mm/year before 2000, and then slightly increased (slope = 0.06 mm/year, p > 0.05) over the
basin, which was generally consistent with the IAV of temperature and radiation. The proposed
variables could well capture the change in IAV of ET, while their dominators were different during
the two contrasting phases mentioned above. The IAV of radiation and temperature dominated the
change of the IAV of ET over 77.82% and 35.14% of the basin, respectively, before and after the turning
point. Meanwhile, the rapid increase in vegetation coverage, which was associated with afforestation,
significantly (p < 0.05) reduced IAV of ET over about 35% of the study area. The achievements of this
study should be beneficial for a sophisticated awareness of responses of intra-annual variability of ET
to climate and land cover changes at the basin scale.

Keywords: evapotranspiration; intra-annual variability; climate change; vegetation cover change;
Poyang Lake Basin

1. Introduction

Evapotranspiration (ET) is the only way in which terrestrial water returns to the
atmosphere in the earth system [1]. It is a crucial component to maintain land surface water
and energy balance [2,3]. Terrestrial ET is mainly composed of two parts [4]. The first
is plant transpiration, which is mainly controlled by leaf stomata, and the other is water
evaporation from moist surfaces of vegetation and/or soil. Transpiration and evaporation
are regulated by both abiotic (e.g., climate and soil) and biotic (e.g., leaf area and coverage)
variables [5]. Hence, it is meaningful and challenging to understand comprehensive and
complex responses of terrestrial ET to changes in climate and land cover.

Recently, variabilities of ET at the intra-annual time scale have been increasingly paid
attention to [6-9]. It is a thythmic characteristic of water loss, which is usually indicated by
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the standard deviation (SD) of ET (termed SDgr) in a year [8]. The intra-annual variability
(IAV) of ET plays a critical role in water cycle. On the one hand, ET and its components
are the source of precipitation. The intra-annual distribution of ET may impact seasonal
amounts of rainfall. On the other hand, ET could affect soil water content and consequently
surface water reserves and water yield (i.e., streamflow). Hence, it regulates the allocation
of surface water between vegetation and human needs, and even mitigates floods to some
extent [10]. Therefore, it is quite valuable to investigate changes in IAV of ET and their
dominant factors for deepening understandings of water cycle in response to global change.

Variabilities of terrestrial ET and the underlying causes have been widely investigated
at multiple scales [11,12]. Generally, climatic variables are considered as the predominant
drivers of ET variance. Temperature, precipitation, solar radiation, wind speed, etc., which
are associated with evaporation demand and water supplement, have been applied to
explain temporal and spatial characteristics of ET [13,14]. In particular, some scholars have
explored the impacts of climatic variables on IAV of ET by diverse approaches. Based
on the Budyko framework, Zhang et al. [8] pointed out that potential ET (termed ET))
dominated the intra-annual standard deviation of ET under energy-limited conditions,
while precipitation was the major contributor of that under equitant and water-limited
conditions across China. The study of Zeng et al. [7] showed that the sources of ET
variability varied with space at the intra-annual scale. It suggested that the ET variance
was regulated by precipitation in low altitude arid regions, whereas it was controlled by
ET,, in boreal regions. Overall, given the complex of the mechanism, responses of IAV
of ET to climatic factors may be inconsistent and even contrary under different climate
conditions [8].

In additional to climatic variables, biotic factors (e.g., physiological characteristics of
vegetation) also significantly affect land surface ET [15]. At the regional scale, ET is mainly
influenced by changes in vegetation coverage. Vegetation coverage could determine the
allocation of water and energy between vegetation and soil and consequently affect ET and
its components [16]. On the one hand, vegetation absorbs water from soil and increases
the amount of water returning to the atmosphere by transpiration. On the other hand, a
change in vegetation coverage would affect the partition of radiation between canopy and
ground, and thereby impact soil and leaf evaporation. Furthermore, vegetation coverage
also determines canopy precipitation interception. As known, afforestation is one of the
most representative changes in vegetation coverage due to human activities. This process
might change the water balance at the basin scale. Given the importance and complexity,
impacts of vegetation cover change for afforestation on IAV of ET deserve special attention.

Recent studies usually investigated influences of climate and other factors on ET by
comparative analysis between watersheds under different environments, e.g., dry and
wet conditions. Actually, the results could just represent the spatial differences of ET
responses [8]. However, a long-term change in IAV of ET and its responses to changes in
climate and vegetation cover are still much less understood at the regional scale. In this
work, the Poyang Lake Basin, a typical humid basin in central-eastern China, was taken as
the study area to explore trends of IAV of ET from 1983 to 2014 and its abiotic and biotic
dominators, using meteorological reanalysis and remotely sensed data. This study tried
to answer the following questions: (1) how did IAV of ET vary across the basin which
experienced a significant change in climate and vegetation coverage during 1983-2014?
(2) Was there a dynamic effect of vegetation restoration on ET? (3) What were the major
controllers of IAV of ET?

2. Materials and Methods
2.1. Study Area

The Poyang Lake Basin (24.5°N-30.1°N and 113.6°E-118.5°E, Figure 1) was selected
as the study area for its outstanding changes in climate and land cover [17,18]. It is an
important sub-watershed of the Yangtze River Basin with a quite developed river system.
It contains five sub-watersheds, i.e., the Ganjiang Basin, Fuhe Basin, Xinjiang Basin, Raohe
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Basin and Xiushui Basin, as well as the biggest freshwater lake of China, Poyang Lake.
The watershed size is about 1.6225 x 10° km?, i.e., 9% of the total area of the Yangtze
River Basin. The Poyang Lake Basin is a typical energy-limited basin with a sub-tropical
monsoon climate [19]. That is, actual evaporation is limited by the rate of energy supply
rather than water supply. The annual temperature and rainfall are in the range 16.3-17.5 °C
and 1341-1943 mm, respectively.
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Figure 1. Terrain of the Poyang Lake Basin. The background color denotes the elevation (unit: m).

The vegetation coverage across the basin experienced an obvious change during
the past decades [18]. The Poyang Lake Basin suffered an intensive deforestation after
1950s, where forest coverage decreased to 33.1% in 1978. Then, with the implementation
of afforestation, greening was widely observed across the basin. The forest coverage
continuously increased since 1990s and raised to 63.1% until 2011. That is, the coverage
showed a fast increase mainly resulting from anthropogenic activity. This provides a
natural laboratory for learning impacts of vegetation restoration on IAV of ET. In our
present work, the open water bodies of the Poyang Lake Basin were excluded from the
subsequent analysis to minimize the effects of water exchange to evaporation.

2.2. Data and Processing
2.2.1. Evapotranspiration

Two long-term satellite-based ET datasets were adopted to calculate the IAV of ET in
this study. The first was the Advanced Very High-Resolution Radiometer (AVHRR) monthly
ET data (unit: mm/month) with a spatial resolution of 8 km from 1983 to 2006 [20,21]. The
other was the Moderate-Resolution Imaging Spectroradiometer (MODIS) monthly ET prod-
uct (unit: mm/month) with a resolution of 1 km covering the period of 2001-2014 [22,23].
For the relative high accuracy, these two datasets have been widely applied in studies
on water cycle in response to climate change and human activities at multiple spatial
scales [24,25]. In this study, both of these datasets were aggregated to grids of 1/12° X
1/12° to match the spatial resolution of the vegetation coverage data derived from remote
sensing vegetation index mentioned below. Afterwards, the two ET datasets were fused
according to the overlapping period to obtain a long time series from 1983 to 2014 [18].
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Additionally, field observations of hydrological variables, including precipitation, soil
moisture and runoff, were collected to validate our satellite-based ET data [26].

2.2.2. Climatic Variables

Four climatic variables, i.e., surface air temperature (AT, unit: °C), precipitation (PR,
unit: mm h~!), downward shortwave radiation (SR, unit: W m~2) and wind speed (WD,
unit: m s~ 1) were used in this study, which are recognized the principal regulators of ET [27].
They were obtained from a monthly dataset of the high-resolution Chinese Meteorological
Forcing Dataset (CMFD) [28-30]. CMFD was made through fusion of satellite-, reanalysis-
and in-situ station-based data with a spatial resolution of 0.1°. It is the first high spatial-
temporal resolution gridded near-surface meteorological dataset and has been widely used
in studies of land surface process in China [31,32]. In the present work, the monthly climatic
data during 1983-2014 were resampled to the resolution of 1/12° by the nearest neighbor
method to match the resolution of the ET data.

2.2.3. Vegetation Coverage

The Normalized Difference Vegetation Index (NDVI) product of NOAA Global In-
ventory Monitoring and Modeling System (GIMMS, version number 3g.v1) was adopted
to calculate vegetation coverage across the study area [33]. This dataset covers the pe-
riod of 1983-2014 with a temporal resolution of half-month and a spatial resolution of
1/12° (about 0.083°) [34]. After a series of corrections (e.g., orbital drift effects, calibration,
viewing geometry, stratospheric volcanic aerosols and other errors unrelated to vegetation
change) [35,36], GIMMS NDVI 3g.v1 is well consistent with other high-precision NDVI
products (e.g., MODIS), and has been widely applied in detecting responses of vegetation
to climate change over the world [37,38]. In this study, the maximum value composite was
carried out for the NDVI dataset to further get rid of white noise points [39].

A long-term time series of vegetation coverage was derived following an improved
approach described in Wang et al. [18]. This approach employed an optimized dimidiate
pixel model, in which dynamic background values and Moderate-Resolution Imaging
Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) (MOD44B) were used. By
validation, the NDVI-based vegetation coverage of this work performed well against the
field investigation data of vegetation cover which were collected from the Statistics Year-
book of Jiangxi Province and Statistics Yearbook of China [18,26]. Overall, the correlation
coefficient (r) between them was 0.94, indicating that the satellite-based vegetation cover
could appropriately capture the revegetation process in the Poyang Lake Basin.

2.3. Statistical Analyses
2.3.1. Trend Analysis

To detect changes of IAV of ET over the Poyang Lake Basin, two regression models, i.e.,
linear regression model (Equation (1)) and piecewise regression model (Equation (2)) [40],
were adopted and compared. The former assumed there was only one trend over the entire
study period, while the latter one assumed that the trend of SDgr significantly changed
during the past decades [41-43].

y=k-t+b+e 1)

_{krf+h+£ t<w

kry t+by+e t>u )

In the models, y indicates the standard deviation of monthly ET in a year (i.e., SDgT),
t indicates the year, and « indicates the turning point (TP) of the SDgy time-series data.
k, k1 and k; indicate the magnitudes of global SDgt trend, SDgt trend before the TP and
SDgt trend after the TP, respectively. b, by, by and ¢ indicate the intercept and the residual
random error of the regression model, respectively. The models were fitted to the SDg time-
series by the least squares approach. The performances of the models were evaluated by
coefficient of determination (R?), root mean square error (RMSE) and Akaike information
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criterion (AIC). Generally, a model with a relatively lower AIC value performs better
than another. In this study, the value of AIC was quantified following Peng et al. [43].
The difference between the AIC value of linear regression model and that of piecewise
regression model (termed 5AIC) was calculated. Here, if the $AIC was lower than —2,
the piecewise regression model was significantly preferred, and vice versa. Additionally,
changes in TAV of climatic variables and vegetation coverage were also detected over the
study area.

2.3.2. Path Analysis

Relationships of IAV of ET to the climatic variables and vegetation coverage were
explored by partial correlation analysis. Moreover, path analysis was applied to investigate
direct effects of the environmental variables on IAV of ET pixel by pixel over the study area.
In the analysis, path coefficients were standardized weights which can be used in examining
the possible causal linkage between statistical variables [44-46]. In the present work, SDgt
was employed as the dependent variable, indicating IAV of ET. IAV of climatic variables
(also indicated by the intra-annual standard deviation of the monthly variable), as well as
yearly vegetation coverage (VC), were employed as independent variables. Specifically,
the climatic variables included temperature (SDart), solar radiation (SDgR), precipitation
(SDpRr) and wind speed (SDwp).

2.3.3. Analysis of Dominant Variable

According to the significance of the path coefficients, response patterns of IAV of ET
to the variables could be recognized. Furthermore, the environmental variable with the
highest absolute value of path coefficient (direct effect) was identified as the dominant
variable of IAV of ET. To explore differences in the effects of climatic variables and VC
throughout the continuous vegetation restoration, all of the analysis mentioned above were
applied during the entire study period and the phases before and after the turning point.

3. Results
3.1. Changes of IAV of ET

Changes in IAV of ET, measured by SDgt, were detected by both linear regression and
piecewise regression in the Poyang Lake Basin (Figure 2). In general, SDgt significantly
(p < 0.05) declined from 26.2 mm in 1983 to 20.8 mm in 2014 over the entire basin, with a
linear slope of —0.14 mm/year (Figure 2a). Similarly, significant (p < 0.05) decreases in
SDgt were observed in all of the sub-basins, despite variations in magnitude (from —1.0
to —1.7 mm/year) (Figure 2b—f). However, the piecewise regression model performed
better, with a higher R? (0.56) and lower RMSE (1.73 mm) and AIC (44.56), than the linear
regression model (R? = 0.25, RMSE = 2.27 mm, and AIC = 56.78) in capturing the change
of SDgt the across the Poyang Lake Basin (Table 1). The turning point of the SDgt time-
series was found in the year of 1999 (Figure 1). That is, the trend of IAV of ET remarkably
changed over the Poyang Lake Basin during the study period. This result was consistent
with that in each of the sub-basins. The differences of AIC between the piecewise and
linear regression models were negative (with an average value of —10.91) across all of the
sub-basins. The turning points of the SDgt trend were found in 1999 across the sub-basins
except the Ganjiang Basin (in 2002) (Figure 1). To minimize spatial heterogeneity, the year
of 1999 was selected as the turning point for the subsequent analysis. Before 1999, the SDgt
significantly (p < 0.05) decreased by —0.52 mm/year, while it slightly (p > 0.05) increased by
0.06 mm/year after 2000 over the whole study area (Figure 1a). For the sub-basins, likely,
the trends of the SDgt ranged from —0.42 to —0.56 mm/year and from 0.3 to 1.3 mm/year
before and after 2000, respectively (Figure 1b—f). Moreover, the spatial distribution of
IAV of ET across the study area was investigated during different phases (Figure 3). The
multiyear average value of SDgt from 1983 to 2014 was 35.82 & 4.01 mm over the Poyang
Lake Basin. The low SDgt values were mainly observed on the edge of the basin, where
there are mountainous regions (e.g., the Raohe and Xiushui Basins) (Figure 3a). After 2000,
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IAV of ET further decreased in the regions with relative low SDgt values, especially in the
Ganjiang Basin. Whereas, it slightly enhanced in the central of the study area (Figure 3b,c),
with an overall average SDgt of 35.17 & 4.24 mm during 2000-2014.

Slope =—0.14 ** Slope =—0.17 **
Slope = — .52 ** Slope =—0.55 **
Poyang Lake Basin Slope = 0.06 Ganjiang Basin Slope = 0.03

Slope =—0.13 ** Slope =-0.11
Slope =—0.56 ** Slope =—0.50 **
Fuhe Basin Slope = 0.07 Xinjiang Basin Slope = 0.09

Slope =-0.10 Slope = - 0.10
Slope = —0.42 ** Slope = — 0.44 **
Raohe Basin Slope = 0.03 Xiushui Basin Slope = 0.13

1983 1987 1991 1995 1999 2003 2007 2011 1983 1987 1991 1995 1999 2003 2007 2011

Figure 2. Trends of intra-annual variability of evapotranspiration (ET), -measured by the intra-annual
standard deviation of monthly ET (termed SDgr), based on the linear regression model (the black
lines) and piecewise regression model (the color lines) over (a) the Poyang Lake Basin and (b—f) its
sub-basins from 1983 to 2014. The slopes (unit: mm/year) of the regression lines are shown in each
panel, and ** stands for p < 0.01 (statistical significance of linear regression or piecewise regression).

The performances of the models are listed in Table 1.

Table 1. Performances of the linear regression model and piecewise regression model in detecting
trends of the intra-annual variability of evapotranspiration (ET) from 1983 to 2014. The R?, RMSE and
AIC indicate coefficient of determination, root-mean square error (unit: mm) and Akaike information

criterion, respectively.

. . Linear Regression Model Piecewise Regression Model
Basin/Sub-Basin R2 RMSE AIC R2 RMSE AIC
Poyang Lake Basin 0.25 227 56.78 0.56 1.73 44.56
Ganjiang Basin 0.33 2.27 56.79 0.62 1.72 44.05
Fuhe Basin 0.20 2.51 63.41 0.54 191 50.77
Xinjiang Basin 0.15 2.38 60.03 0.49 1.86 49.11
Raohe Basin 0.16 2.17 53.90 0.43 1.78 46.44

Xiushui Basin 0.16 2.20 54.81 0.46 1.75 45.32
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Figure 3. Spatial distribution of multiyear average amplitudes of the intra-annual variability of
evapotranspiration (ET), measured by the intra-annual standard deviation of monthly ET (termed
SDgt), over the Poyang Lake Basin during (a) the entire study period (1983-2014) and (b,c) the two

phases (1983-1999 and 2000-2014, respectively).

3.2. Effects of the Selected Variables on IAV of ET

Figure 4 shows the changes in IAV of the climatic variables and VC over the Poyang
Lake Basin from 1983 to 2014. In general, IAV of radiation and temperature first decreased
and then increased around 2000, which was very consistent with IAV of ET. In contrast,
IAV of wind speed exhibited gradual decline, while that of precipitation varied without
a significant trend. For VC, a continuous increase was observed over the study area. It
rapidly increased to 60% from 1990 to 2000 due to revegetation and maintained a slow
increase since 2000. Relationships of IAV of ET to IAV of the climatic variables and VC were
investigated by partial correlation analysis over the Poyang Lake Basin and its sub-basins.
Table 2a provides the average values of the coefficients of partial correlation (r) during
1983-2014. Significantly (p < 0.01) positive correlations between SDgt and SDsg dominated
the entire study area. That is, AV of ET increased with IAV of radiation. On the contrary,
an increase in VC reduced IAV of ET in most of the basin, showing significant (p < 0.05)
negative correlation coefficients between SDgpt and VC in the study area except the Raohe
Basin. The two phases before and after the turning point were taken into account in the
analysis. During the first phase (1983-1999), both SDgr and VC were significantly (p < 0.05)
correlated with SDgt in most of the sub-basins (Table 2b). In other words, an increasing
IAV of radiation and VC would substantially enhance and weaken IAV of ET, respectively,
in the Poyang Lake Basin. Notably, the absolute values of correlation coefficient for VC
during 1983-1999 were larger than those during the whole study period, indicating a
greater effect of VC during a rapid revegetation. Generally, stronger effects of IAV of
temperature, indicated by the significant correlation coefficients between SDar and SDgr,
were observed in all of the sub-basins from 2000 to 2014 (Table 2¢). In contrast, SDgg was
only significantly (p < 0.05) associated with SDgt in the Raohe Basin, where the effect of
IAV of temperature was not significant anymore. Moreover, the relationship between VC
and TAV of ET remarkably decoupled across the basin, where the correlation between VC
and SDgt was not statistically significant.
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Figure 4. Changes in intra-annual variability of the climatic variables and vegetation coverage (VC)

over the Poyang Lake Basin from 1983 to 2014. SDt, SDsr, SDwp and SDpr denote the intra-annual
standard deviation of monthly temperature, radiation, wind speed and precipitation, respectively.

Table 2. Relationships of the intra-annual variability of evapotranspiration (ET), measured by SDgr,
with the climatic variables and vegetation coverage (VC) over the Poyang Lake Basin and its sub-
basins during (a) 1983-2014, (b) 1983-1999 and (c) 20002014, respectively. SDgt, SDaT, SDsr, SDwp
and SDpg denote the intra-annual standard deviation of monthly ET, temperature, radiation, wind
speed and precipitation, respectively. Each value indicates the average of partial correlation coefficient
between SDgt and one variable after controlling the others over the basin/sub-basin. The colors

indicate the statistical significance of p < 0.01 (dark red), p < 0.05 (light red) and p > 0.05 (white),
respectively.

1983-2014 1983-1999 2000-2014
SDar SDsg  SDwp SDpr vC SDar  SDsg SDwp SDpr \Ye SDar  SDsg  SDwp  SDpr vC

Poyang Lake Basin 0.21 —0.06 —0.10 0.07 —0.07 0.33 0.26 -022 —-035
Ganjiang Basin 0.22 0.02 —-0.15 0.15 0.02 0.30 -0.10 017 —-0.15
Fuhe Basin 0.24 —-0.13 —0.21 —0.04 —-0.12 0.33 0.34 -039 —0.25
Xinjiang Basin 0.31 —-0.08 —0.10 0.23 -0.13 -0.04 -0.08 —-0.23
Raohe Basin 0.18 0.00 0.22 —0.26 0.33 0.01 —0.04
Xiushui Basin 0.28 —-0.02 —0.06 0.26 -0.16 —0.10

After that, the direct effects of the climate variables and VC on IAV of ET were
quantitatively explored across the Poyang Lake Basin during the different periods. The
spatial distribution of the significant path coefficients (p < 0.05) demonstrated AV of solar
radiation dominated IAV of ET from 1983 to 2014, followed by VC and IAV air temperature
(Figure 5). IAV of radiation enhanced IAV of ET at most (about 85.3%) of study area
(Figure 5c). Likewise, IAV of temperature also promoted IAV of ET in the central of the
Poyang Lake Basin (24.2% of the area) (Figure 5b). A significant suppression of VC on IAV
of ET was widely observed in the basin (47.7% of the area) (Figure 5a). IAV of precipitation
significantly reduced IAV of ET as well, mainly in the Xiushui and Fuhe Basin, accounting
for 24.2% of the area (Figure 5e). The significant effects of IAV of wind speed on that of ET
were only observed in parts of the Xinjiang and Ganjiang Basin (about 5.6% of the area)
(Figure 5d).
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Figure 5. Direct effects of (a—d) the climatic variables and (e) vegetation coverage (VC) on the
intra-annual variability of evapotranspiration (ET), measured by SDgt, over the Poyang Lake Basin
from 1983 to 2014. SDgt, SDaT, SDsRr, SDwp and SDpr denote the intra-annual standard deviation
of monthly ET, temperature, radiation, wind speed and precipitation, respectively. The colored
areas indicate where the path coefficient of the variable was statistically significant (p < 0.05) in the
path analysis.

Figure 6 shows spatial distribution of the significant (p < 0.05) path coefficients of
the climatic variables and VC before the turning point of 1999. Similarly to the entire
study period, IAV of solar radiation mainly controlled IAV of ET across the Poyang Lake
Basin (88.3% of the area), indicating that an increasing fluctuation of energy would greatly
stimulate the seasonal deviation of ET. Significantly negative effects of VC were widespread
in the basin as well, accounting for 35% of the area. However, IAV of temperature hardly
impacted IAV of ET during 1983-1999. Only 7.3% of the study area occurred significant
positive effects of temperature, mainly in central of the Xinjiang Basin and southern of the
Ganjiang Basin. The areas regulated by IAV of precipitation and wind speed (7.4% and 4.3%
of the area, respectively) were mainly located in the Xiushui and Xinjiang Basin before 2000.
After 2000, the areas controlled by IAV of both radiation and VC remarkably reduced to
34.1% and 4.1%, respectively (Figure 7). The significant effects of IAV of temperature on the
ET variance, in constant, widely expanded, which was observed in 40.7% of the study area.
The response of IAV of ET to IAV of precipitation also enhanced in western of Ganjiang
and Fuhe Basin. The effect of IAV of wind speed was still limited during 2000-2014.
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Figure 6. Direct effects of (a—d) the climatic variables and (e) vegetation coverage (VC) on the
intra-annual variability of evapotranspiration (ET), measured by SDgt, over the Poyang Lake Basin
from 1983 to 1999. SDgt, SDaT, SDsr, SDwp and SDpg denote the intra-annual standard deviation
of monthly ET, temperature, radiation, wind speed and precipitation, respectively. The colored
areas indicate where the path coefficient of the variable was statistically significant (p < 0.05) in the

path analysis.

3.3. Dominators of IAV of ET

According to the significant path coefficients of the climatic variables and VC, the
response patterns of IAV of ET were categorized during the different study periods. Spatial
distributions of the first six dominant patterns are shown in Figure 8. The result showed
that Pattern I (SDgr) and Pattern V (SDgr + VC) were widespread, accounting for about
31.99% and 29.78% of the basin, respectively, from 1983 to 2014 (Figure 8a). The former
one was mainly located in the Raohe and Ganjiang Basin, meanwhile the latter one widely
occurred in the Ganjiang and Fuhe Basin. Similarly to the entire study period, Pattern I
dominated the most area (51.99%) of the Poyang Lake basin, followed by Pattern V which
was observed in 11.36% of the area during 1983-1999 (Figure 8b). After the turning point
(i.e., the year of 1999), the patterns of IAV of ET in response to IAV of the variables gave a
quite different picture (Figure 8c). Only 12.58% and 8.86% of the area showed Pattern I and
Pattern V, respectively, mainly in the Raohe and Fuhe Basin as well. Pattern II (SDat) were
widely observed in the north of the Poyang Lake Basin (about 30.21% of the study area).
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Figure 7. Direct effects of (a—d) the climatic variables and (e) vegetation coverage (VC) on the
intra-annual variability of evapotranspiration (ET), measured by SDgt, over the Poyang Lake Basin
from 2000 to 2014. SDgt, SDaT, SDsRr, SDwp and SDpr denote the intra-annual standard deviation
of monthly ET, temperature, radiation, wind speed and precipitation, respectively. The colored
areas indicate where the path coefficient of the variable was statistically significant (p < 0.05) in the
path analysis.

Furthermore, the dominator of IAV of ET was further identified for each of the pixels in
the basin in light of the maximum absolute value of the significant path coefficient (Figure 9).
During the entire study period, IAV of ET was dominated by IAV of radiation (i.e., SDgR) in
the most (about 72.0%) of the Poyang Lake Basin (Figure 9a). VC and IAV of temperature
(SDaT) followed that, accounting for 12.92% and 12.15% of the basin, respectively. Notably,
the roles of both SDgr and VC were more important before the year of 1999 (Figure 9b). The
area dominated by SDsr and VC increased to 77.82% and 18.0%. In contrast, the control of
IAV of temperature to IAV of ET dramatically enhanced in north and central of the study
area (35.14%) from 2000 to 2014 (Figure 9c), while the area dominated by IAV of radiation
just decreased to 16.27% of the basin. However, there was a 39.46% of the area where IAV
of ET was significantly regulated by none of the selected variables during this period.
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Figure 8. Patterns of responses of the intra-annual annual variability of evapotranspiration (ET),
measured by SDgr to the climatic variables and vegetation coverage over the Poyang Lake Basin
during (a) the entire study period (1983-2014) and (b,c) the two phases (1983-1999 and 2000-2014,
respectively). SDgt, SDaT, SDsg, SDwp, SDpr and VC denote the intra-annual standard deviation
of monthly ET, temperature, radiation, wind speed and precipitation, and vegetation coverage,
respectively. Each color of the figure indicates a group of the variables of which the path coefficients
were statistically significant (p < 0.05) in the path analysis. Only the first six dominant patterns were
shown in the maps.
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Figure 9. Dominators of the intra-annual variability of evapotranspiration (ET), measured by SDgT,
over the Poyang Lake Basin during (a) the entire study period (1983-2014) and (b,c) the two phases
(1983-1999 and 2000-2014, respectively). SDgt, SDaT, SDsRr, SDwp, SDpr and VC denote the intra-
annual standard deviation of monthly ET, temperature, radiation, wind speed and precipitation,
and vegetation coverage, respectively. The color of each pixel indicates the dominant variable, of
which the absolute value of the path coefficient is statistically significant (p < 0.05) and highest in the
path analysis. NS indicates none of the selected variables was significantly related to SDgt during
the period.

4. Discussion

Improving understanding of changes in IAV of ET and the underlying drivers is an
essential step for better modeling of water cycle in response to global change. Previous
studies have suggested that the IAV of ET varied considerably over time with climatic
variables [6-8]. However, both abiotic and biotic variables affect annual and seasonal
ET [9,12,18], and ignoring the role of landscape characteristics (e.g., vegetation coverage)
can introduce large biases in the prediction of IAV of ET. Our present work shows that
the IAV of ET exhibited significant contrasting trends during the past decades across the
Poyang Lake Basin, China (Table 1 and Figure 2). Moreover, the proposed variables (i.e., the
climatic variables and vegetation coverage) could well capture the changes in ET variance
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(Table 2 and Figures 5-7). Furthermore, during the different phases, the dominators of IAV
of ET were different (Figure 9).

4.1. Roles of the Climatic Variables

It has been well reported that climate change controls terrestrial ET at regional and
global scales [25,47]. The findings of this study also support this view. The study area, the
Poyang Lake Basin, belongs to a typical subtropical humid climate under energy-limited
conditions [8,19]. Hence, energy, indicated by downward shortwave radiation, dominated
IAV of ET in light of not only the significant correlation between SDgt and SDsr but also
its control areas (Table 2 and Figure 8). Moreover, the turning points for both IAV of ET
and radiation were found in 1999 by the piecewise regression analysis. Additionally, a
synchronous decrease in ET and radiation in summer (June-August) was observed from
1983 to 1999. All of these manifested the role of radiation on the ET variability. Evaporation
demand, which is mainly driven by temperature [47], is another dominator of ET in humid
basins. An increase in air temperature would enhance vapor pressure deficit (VPD) and
thereby potential evapotranspiration (ETp). If soil moisture is sufficient, ET would be
stimulated with an increasing ET}, [48]. It has been reported that the Poyang Lake Basin has
experienced an obvious warming since 1998 [49]. In our analysis, we found that SD 4t also
rose after 1998 because temperature increased in summer whereas decreased in winter. This
was high consistent with the turning point of SDgt at the year of 1999. Among the selected
variables, only SDat and VC significantly changed after 1999. However, the correlation
between IAV of ET and VC seemed to be severely weakened due to the slow-down of the
revegetation (Figure 8). Hence, the increase in SDgt might be attributed to the enhanced
fluctuation of seasonal temperature with asymmetric warming after 1999. Compared to
energy and evaporation demand, the areas dominated by water supply (i.e., precipitation)
were limited, mainly in the Ganjiang, Fuhe and Xiushui Basin. It may be associated with
the relatively sufficient water supplement. As previously reported, ET variance is more
sensitive to precipitation fluctuation in water-limited environments (e.g., arid climates) than
other conditions (e.g., humid climates) [50,51]. Although wind speed plays an important
role in evaporative demand, it slightly impacted IAV of ET over the study area, which is
agreed to the previous study [12,19].

4.2. Roles of Vegetation Coverage

In addition to the climatic variables, increased controls of vegetation on terrestrial ET
are observed over the entire world [24]. The Poyang Lake Basin experienced a dramatic
reforestation from 1980s to 1990s, with a two-fold increase of the total vegetation cover-
age [18]. This restoration period was just consistent with that when SDgt significantly
decreased, showing a tight coupling between VC and IAV of ET. After 2000, the growth
of VC slowed down, and meanwhile SDg7 started to exhibit an adverse trend across the
basin. It indicates that a rapid restoration would promote the seasonal fluctuation of ET
to become more stable (i.e., a decrease in SDgt). Two potential causes accounted for the
decline in SDgt with the increasing vegetation cover. On the one hand, an expansion of
vegetation leaf area could diminish the amount of strong solar radiation on soil surface in
summer, resulting in a decrease in soil evaporation [18,52]. On the other hand, high ET in a
well vegetated area would take heat away and raise air relative humidity [53]. Hence, it
could induce a decrease in air temperature and VPD to some extent, and further a decline
of evaporation demand, especially in the humid regions [54]. That is, the cold island effect
of afforestation would further weaken the terrestrial ET. Both of the pathways mentioned
above would lead to lower summer ET and consequently minor IAV of ET. Compared
to a sparse vegetation, restoration may produce a systematic shift between water cycle
components [16,18]. Overall, an increase in VC could reduce the fluctuation of ET in a year
cycle so that maintain the water content of soil. This is beneficial to enhance the stability
of water cycle at the basin scale, as well as resistance of terrestrial ecosystem to climatic
extremes. Notably, this positive effect of afforestation may just occur in humid basins,
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whereas it seems to be reversed over arid regions due to the strong evaporation demand [9].
Moreover, the decline in SDgr in response to revegetation might be observed in areas where
VC dramatically increased. As shown in this study, despite a continuous but slight increase,
SDgt seemed to be insensitive to VC after that was over 60%, implying a limited role on
IAV of ET [12].

4.3. Uncertainties and Further Study

In our present work, a few limitations should be acknowledged. First, although both
the AVHRR and MODIS ET data have been widely evaluated and applied, there are still
uncertainties in their forcing data, retrieval algorithm and parametrized scheme [25]. One
of the most noteworthy problems is the static land cover data adopted in the ET estimation,
which were used to set the physiological parameters (e.g., potential stomatal conductance)
and constraints on stomatal conductance (e.g., minimum air temperature) [20,23]. To this
point, a previous study investigated the impacts of land cover change on the data quantity
of AVHRR and MODIS ET during the past decades over the Poyang Lake Basin [18]. It
showed that the AVHRR and MODIS ET data worked properly, because the conversions
between the land cover types did not significantly alert the key parameters or marginally
impacted to the variation in ET in the study area [20,55]. However, given land cover
changes, the constant parametrization of land classification inevitably induced errors in
the ET calculation. It is necessary to develop a reliable scheme in which land cover types
could be well identified for ET inversion in future study. Second, the direct effect of
each of the regulators on IAV of ET was examined by path analysis. Despite statistical
independence among the four climatic variables over the most areas of the Poyang Lake
Basin, the collinearity might be inevitable due to the temperate monsoon climate [56],
which is another source of uncertainty in this study. Third, the intra-annual standard
deviation of the climatic variables could not fully represent influences of extreme events
(e.g., seasonal drought [57]), weakening the explanatory power of the abiotic regulator
of ET. Forth, the result showed that there were lots of areas where all of the selected
variables could not account for the change of SDgt during 2000-2014 (Figure 8). This might
be associated with the mountain topography at the upstream region of the sub-basins,
which is needed to be further investigated. Finally, interferences of human activity, e.g.,
water management over the cropland of the study area, also leaded to uncertainties of the
present results. Nevertheless, despite the uncertainties mentioned above, the findings of
this work explicitly demonstrated that both the climatic variables and vegetation coverage
play key roles in regulating IAV of ET, and the role of the variables varied in space and
time. Hence, we suggest that the hydrological response and feedback should be interpreted
by not only abiotic but also biotic variables (e.g., vegetation coverage) to avoid omissions
of useful signals.

5. Conclusions

This study presented changes of intra-annual variability (IAV) of ET and the responses
to climatic variables and vegetation coverage over the Poyang Lake Basin in China from
1983 to 2014. Our findings demonstrate that IAV of ET showed contrary trends across the
study area during the past decades. It statistically significantly decreased with a linear
slope of —0.52 mm/year before 2000, and then increased (slope = 0.06 mm/year) despite
no significant. The changes in IAV of ET were largely attributed to the climatic variables
and vegetation coverage by statistical analysis. Generally, IAV of solar radiation (a proxy of
energy) and air temperature (a proxy of evaporation demand) dominated the changes of
IAV of ET over 77.82% and 35.14% of the basin, respectively, at the two phases. Meanwhile,
the increase in vegetation coverage through the rapid restoration significantly reduced IAV
of ET across the study area (about 35% of the area). Overall, we argue that both abiotic and
biotic variables should be taken into account in understanding of changes in IAV of ET at
the basin scale.



Remote Sens. 2022, 14, 885 16 of 18

Author Contributions: Conceptualization, Y.W. and ]J.].; methodology, software and formal analysis,
Y.W.,; data curation and validation, Y.W. and ].J.; project administration, J.J; writing—original draft,
Y.W.,; writing—review and editing, Y.L., X.F. and J.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (grant number
41807173, 41971374) and Fundamental Research Funds of the Sanjiang University (grant number
2018SJKY009).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The ET datasets presented in this study are openly available in Nu-
merical Terradynamic Simulation Group, University of Montana at [http://files.ntsg.umt.edu/
data/ET_global_monthly/Global_8kmResolution/old/V1.0/] and [http://files.ntsg.umt.edu/data/
NTSG_Products/MOD16/]. The climate data were downloaded from A Big Earth Data Platform
for Three Poles with a spatial resolution of 0.1° and temporal resolution of 3-h [http://poles.
tpdc.ac.cn/zh-hans/data/7a35329¢-c53f-4267-aa07-e0037d913a21/]. The GIMMS 3g NDVI data
presented in this study are openly available in National Qinghai-Tibetan Plateau Data Center at
[http:/ /poles.tpdc.ac.cn/en/data/9775{2b4-7370-4e5e-a537-3482c9a83d88 /].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wilcox, B.P; Thurow, T.L. Emerging issues in rangeland ecohydrology: Vegetation change and the water cycle. Rangel. Ecol.
Manag. 2006, 59, 220-224. [CrossRef]

2. Shukla, J.; Mintz, Y. Influence of land-surface evapotranspiration on the earth’s climate. Science 1982, 215, 1498-1501. [CrossRef]
[PubMed]

3. Katul, G.G,; Oren, R,; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy
exchange in the soil-plant-atmosphere—climate system. Rev. Geophys. 2012, 50, RG3002. [CrossRef]

4. Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189, 115-117. [CrossRef]

5. Wang, K,; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic
variability. Rev. Geophys. 2012, 50, RG2005. [CrossRef]

6. Zeng, R.; Cai, X. Assessing the temporal variance of evapotranspiration considering climate and catchment storage factors. Adv.
Water Resour. 2015, 79, 51-60. [CrossRef]

7.  Zeng, R.; Cai, X. Climatic and terrestrial storage control on evapotranspiration temporal variability: Analysis of river basins
around the world. Geophys. Res. Lett. 2016, 43, 185-195. [CrossRef]

8.  Zhang, D,; Liu, X.; Zhang, Q.; Liang, K.; Liu, C. Investigation of factors affecting intra—annual variability of evapotranspiration
and streamflow under different climate conditions. J. Hydrol. 2016, 543, 759-769. [CrossRef]

9. Zhou, G; Xia, J.; Zhou, P; Shi, T.; Li, L. Not vegetation itself but mis-revegetation reduces water resources. Sci. China Earth Sci.
2021, 64, 404-411. [CrossRef]

10. Tang, L.; Cai, X.; Gong, W.; Lu, J.; Chen, X,; Lei, Q.; Yu, G. Increased vegetation greenness aggravates water conflicts during
lasting and intensifying drought in the Poyang lake watershed, China. Forests 2018, 9, 24. [CrossRef]

11.  Croitoru, A,; Piticar, A.; Dragotd, C.S.; Burada, D.C. Recent changes in reference evapotranspiration in Romania. Glob. Planet.
Chang. 2013, 111, 127-137. [CrossRef]

12. Li, G.; Zhang, F; Jing, Y.; Liu, Y,; Sun, G. Response of evapotranspiration to changes in land use and land cover and climate in
China during 2001-2013. Sci. Total Environ. 2017, 596597, 256-265. [CrossRef]

13.  Burn, D.H.; Hesch, N.M. Trends in evaporation for the Canadian prairies. J. Hydrol. 2007, 336, 61-73. [CrossRef]

14. Dinpashoh, Y,; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P; Kahya, E. Trends in reference crop evapotranspiration over Iran. J.
Hydrol. 2011, 399, 422-433. [CrossRef]

15. Wang, L.; Good, S.P,; Caylor, K.K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett.
2014, 41, 6753-6757. [CrossRef]

16. Liu, Y,; Xiao, J.; Ju, W.; Xu, K.; Zhao, Y. Recent trends in vegetation greenness in china significantly altered annual evapotranspira-
tion and water yield. Environ. Res. Lett. 2016, 11, 094010. [CrossRef]

17.  Liu, Y.; Wu, G.; Zhao, X. Recent declines in China’s largest freshwater lake: Trend or regime shift? Environ. Res. Lett. 2013, 8,
014010. [CrossRef]

18. Wang, Y.; Liu, Y,; Jin, J. Contrast effects of vegetation cover change on evapotranspiration during a revegetation period in the

Poyang lake basin, China. Forests 2018, 9, 217. [CrossRef]


http://files.ntsg.umt.edu/data/ET_global_monthly/Global_8kmResolution/old/V1.0/
http://files.ntsg.umt.edu/data/ET_global_monthly/Global_8kmResolution/old/V1.0/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/
http://poles.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267-aa07-e0037d913a21/
http://poles.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267-aa07-e0037d913a21/
http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/
http://doi.org/10.2111/05-090R1.1
http://doi.org/10.1126/science.215.4539.1498
http://www.ncbi.nlm.nih.gov/pubmed/17788673
http://doi.org/10.1029/2011RG000366
http://doi.org/10.1016/j.agrformet.2014.01.011
http://doi.org/10.1029/2011RG000373
http://doi.org/10.1016/j.advwatres.2015.02.008
http://doi.org/10.1002/2015GL066470
http://doi.org/10.1016/j.jhydrol.2016.10.047
http://doi.org/10.1007/s11430-020-9670-x
http://doi.org/10.3390/f9010024
http://doi.org/10.1016/j.gloplacha.2013.09.004
http://doi.org/10.1016/j.scitotenv.2017.04.080
http://doi.org/10.1016/j.jhydrol.2006.12.011
http://doi.org/10.1016/j.jhydrol.2011.01.021
http://doi.org/10.1002/2014GL061439
http://doi.org/10.1088/1748-9326/11/9/094010
http://doi.org/10.1088/1748-9326/8/1/014010
http://doi.org/10.3390/f9040217

Remote Sens. 2022, 14, 885 17 of 18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.; Van Niel, T.G.; Thomas, A.; Grieser, ].; Jhajharia, D.; Himri, Y.; Mahowald,
N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation.
J. Hydrol. 2012, 416, 182-205. [CrossRef]

Zhang, K.; Kimball, ].S.; Nemani, R.R.; Running, S.W. A continuous satellite—derived global record of land surface evapotranspi-
ration from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [CrossRef]

Remote Sensing (RS) GIMMS NDVI Based Global Monthly ET from 1983 to 2006. Available online: http://files.ntsg.umt.edu/
data/ET_global_monthly/Global_8kmResolution/old/V1.0/ (accessed on 23 August 2016).

Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ.
2011, 115, 1781-1800. [CrossRef]

MOD16 Global Evapotranspiration. Available online: http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/ (accessed on 18
February 2015).

Forzieri, G.; Miralles, D.G.; Ciais, P.; Alkama, R.; Ryu, Y.; Duveiller, G.; Zhang, K.; Robertson, E.; Kautz, M.; Martens, B.; et al.
Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 2020, 10, 356-362. [CrossRef]

Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P,; Sitch, S.; Shi, H.; Arora, V.K,; Haverd, V.; Jain, A K.; Kato, E.; et al. Evaluation of global
terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling.
Hydrol. Earth Syst. Sci. 2020, 24, 1485-1509. [CrossRef]

Liu, Y.; Wu, G. Hydroclimatological influences on recently increased droughts in China’s largest freshwater lake. Hydrol. Earth
Syst. Sci. 2016, 20, 93-107. [CrossRef]

Chen, X.; Mo, X,; Hu, S.; Liu, S. Contributions of climate change and human activities to ET and GPP trends over North China
Plain from 2000 to 2014. . Geogr. Sci. 2017, 27, 661-680. [CrossRef]

Chen, Y,; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J.
Geophys. Res. 2011, 116, D20104. [CrossRef]

He, ].; Yang, K; Tang, W.; Liu, H.; Qin, J.; Chen, Y,; Li, X. The first high-resolution meteorological forcing dataset for land process
studies over China. Sci. Data 2020, 7, 25. [CrossRef] [PubMed]

China Meteorological Forcing Dataset (1979-2015). Available online: http://poles.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267
-aa07-e0037d913a21/ (accessed on 16 April 2017).

Jin, J.; Ma, X.; Chen, H.; Wang, H.; Kang, X.; Wang, X.; Wang, Y.; Yong, B.; Guo, F. Grassland production in response to changes in
biological metrics over the Tibetan Plateau. Sci. Total Environ. 2019, 666, 641-651. [CrossRef] [PubMed]

Li, X.; Che, T,; Li, X,; Wang, L.; Duan, A.; Shuangguan, D.; Pan, X.; Fang, M.; Bao, Q. CASEarth Poles: Big data for the Three Poles.
Bull. Am. Meteorol. Soc. 2020, 101, E1475-E1491. [CrossRef]

Global GIMMS NDVI3g v1 Dataset (1981-2015). Available online: http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3
482c9a83d88/ (accessed on 8 December 2016).

Tucker, C.J.; Pinzon, J.E.; Brown, M.E; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, F,; El Saleous, N. An extended AVHRR
8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. . Remote Sens. 2005, 26, 4485—4498. [CrossRef]
Pinzon, ].E.; Tucker, C.J. A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929-6960. [CrossRef]
Garonna, I.; de Jong, R.; de Wit, A.J.; Miicher, C.A.; Schmid, B.; Schaepman, M.E. Strong contribution of autumn phenology to
changes in satellite-derived growing season length estimates across Europe (1982-2011). Glob. Chang. Biol. 2014, 20, 3457-3470.
[CrossRef] [PubMed]

Buermann, W.; Parida, B.; Jung, M.; Macdonald, G.M.; Tucker, C.J.; Reichstein, M. Recent shift in Eurasian boreal forest greening
response may be associated with warmer and drier summers. Geophys. Res. Lett. 2014, 41, 1995-2002. [CrossRef]

Buermann, W.; Forkel, M.; O’Sullivan, M.; Sitch, S.; Friedlingstein, P.; Haverd, V.; Jain, A.K,; Kato, E.; Kautz, M.; Lienert, S.;
et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110-114.
[CrossRef]

Holben, B.; Kimes, D.; Fraser, R.S. Directional reflectance response in AVHRR red and near—IR bands for three cover types and
varying atmospheric conditions. Remote Sens. Environ. 1986, 19, 213-236. [CrossRef]

Toms, J.D.; Lesperance, M.L. Piecewise regression: A tool for identifying ecological thresholds. Ecology 2003, 84, 2034-2041.
[CrossRef]

Wang, X.; Piao, S.; Ciais, P; Li, ].; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change its implication in the change
of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240-1245. [CrossRef]

Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite—derived vegetation growth trend in temperate boreal
Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228-3239. [CrossRef]

Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, ].; Myneni, R.B.; Pinzon, ].E.; Tucker, C.J.; Piao, S. Recent change of vegetation growth
trend in China. Environ. Res. Lett. 2011, 6, 044027. [CrossRef]

Chen, C.; Chen, D.; Pan, J.; Lam, S.K. Analysis of factors controlling soil N,O emission by principal component and path analysis
method. Environ. Earth Sci. 2014, 72, 1511-1517. [CrossRef]

Farrer, E.C.; Ashton, LW.; Spasojevic, M.].; Fu, S.; Gonzalez, D.].X.; Suding, K.N. Indirect effects of global change accumulate to
alter plant diversity but not ecosystem function in alpine tundra. J. Ecol. 2015, 103, 351-360. [CrossRef]

Jin, J.; Wang, Y.; Jiang, H.; Cheng, M. Recent NDVI-based variation in growth of boreal intact forest landscapes and its correlation
with climatic variables. Sustainability 2016, 8, 326. [CrossRef]


http://doi.org/10.1016/j.jhydrol.2011.10.024
http://doi.org/10.1029/2009WR008800
http://files.ntsg.umt.edu/data/ET_global_monthly/Global_8kmResolution/old/V1.0/
http://files.ntsg.umt.edu/data/ET_global_monthly/Global_8kmResolution/old/V1.0/
http://doi.org/10.1016/j.rse.2011.02.019
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/
http://doi.org/10.1038/s41558-020-0717-0
http://doi.org/10.5194/hess-24-1485-2020
http://doi.org/10.5194/hess-20-93-2016
http://doi.org/10.1007/s11442-017-1399-z
http://doi.org/10.1029/2011JD015921
http://doi.org/10.1038/s41597-020-0369-y
http://www.ncbi.nlm.nih.gov/pubmed/31964891
http://poles.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267-aa07-e0037d913a21/
http://poles.tpdc.ac.cn/zh-hans/data/7a35329c-c53f-4267-aa07-e0037d913a21/
http://doi.org/10.1016/j.scitotenv.2019.02.293
http://www.ncbi.nlm.nih.gov/pubmed/30807954
http://doi.org/10.1175/BAMS-D-19-0280.1
http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/
http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/
http://doi.org/10.1080/01431160500168686
http://doi.org/10.3390/rs6086929
http://doi.org/10.1111/gcb.12625
http://www.ncbi.nlm.nih.gov/pubmed/24797086
http://doi.org/10.1002/2014GL059450
http://doi.org/10.1038/s41586-018-0555-7
http://doi.org/10.1016/0034-4257(86)90054-4
http://doi.org/10.1890/02-0472
http://doi.org/10.1073/pnas.1014425108
http://doi.org/10.1111/j.1365-2486.2011.02419.x
http://doi.org/10.1088/1748-9326/6/4/044027
http://doi.org/10.1007/s12665-014-3056-5
http://doi.org/10.1111/1365-2745.12363
http://doi.org/10.3390/su8040326

Remote Sens. 2022, 14, 885 18 of 18

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Zhang, K; Kimball, ].5.; Nemani, R.R.; Running, SW.; Hong, Y.; Gourley, ].].; Yu, Z. Vegetation greening and climate change
promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956. [CrossRef] [PubMed]

Jung, M.; Reichstein, M.; Ciais, P; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al.
Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951-954. [CrossRef]
[PubMed]

Tao, H.; Fraedrich, K.; Menz, C.; Zhai, J. Trends in extreme temperature indices in the Poyang Lake Basin, China. Stoch. Environ.
Res. Risk Assess. 2014, 28, 1543-1553. [CrossRef]

Fatichi, S.; Ivanov, V.Y. Interannual variability of evapotranspiration and vegetation productivity. Water Resour. Res. 2014, 50,
3275-3294. [CrossRef]

Yang, Y.; Fang, ].; Ma, W.; Wang, W. Relationship between variability in aboveground net primary production and precipitation in
global grasslands. Geophys. Res. Lett. 2008, 35, L23710. [CrossRef]

Beer, C.; Ciais, P.; Reichstein, M.; Baldocchi, D.; Law, B.E.; Papale, D.; Soussana, ].F.; Ammann, C.; Buchmann, N.; Frank, D.; et al.
Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 2009, 23,
GB2018. [CrossRef]

Jackson, R.B.; Randerson, ].T.; Canadell, ].G.; Anderson, R.G.; Avissar, R.; Baldocchi, D.D.; Bonan, G.B.; Caldeira, K.; Diffenbaugh,
N.S.; Field, C.B; et al. Protecting climate with forests. Environ. Res. Lett. 2008, 3, 044006. [CrossRef]

Peng, S.; Piao, S.; Zeng, Z.; Ciais, P; Zhou, L.; Li, L.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China cools local land surface
temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915-2919. [CrossRef]

Liu, J.; Liu, M,; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995-2000. Sci.
China Ser. D Earth Sci. 2003, 46, 373-384.

Yu, G; Chen, Z.; Piao, S.; Peng, C.; Ciais, P; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems
in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910-4915. [CrossRef] [PubMed]

Wang, M.; Ding, Z.; Wu, C.; Song, L.; Ma, M.; Yu, P;; Lu, B.; Tang, X. Divergent responses of ecosystem water-use efficiency to
extreme seasonal droughts in Southwest China. Sci. Total Environ. 2021, 760, 143427. [CrossRef] [PubMed]


http://doi.org/10.1038/srep15956
http://www.ncbi.nlm.nih.gov/pubmed/26514110
http://doi.org/10.1038/nature09396
http://www.ncbi.nlm.nih.gov/pubmed/20935626
http://doi.org/10.1007/s00477-014-0863-x
http://doi.org/10.1002/2013WR015044
http://doi.org/10.1029/2008GL035408
http://doi.org/10.1029/2008GB003233
http://doi.org/10.1088/1748-9326/3/4/044006
http://doi.org/10.1073/pnas.1315126111
http://doi.org/10.1073/pnas.1317065111
http://www.ncbi.nlm.nih.gov/pubmed/24639529
http://doi.org/10.1016/j.scitotenv.2020.143427
http://www.ncbi.nlm.nih.gov/pubmed/33183794

	Introduction 
	Materials and Methods 
	Study Area 
	Data and Processing 
	Evapotranspiration 
	Climatic Variables 
	Vegetation Coverage 

	Statistical Analyses 
	Trend Analysis 
	Path Analysis 
	Analysis of Dominant Variable 


	Results 
	Changes of IAV of ET 
	Effects of the Selected Variables on IAV of ET 
	Dominators of IAV of ET 

	Discussion 
	Roles of the Climatic Variables 
	Roles of Vegetation Coverage 
	Uncertainties and Further Study 

	Conclusions 
	References

