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Abstract: The increasing demand for 3D geospatial data is driving the development of new products.
Laser scanners are becoming more mobile, affordable, and user-friendly. With the increased number
of systems and service providers on the market, the scope of mobile laser scanning (MLS) applications
has expanded dramatically in recent years. However, quality control measures are not keeping pace
with the flood of data. Evaluating MLS surveys of long corridors with control points is expensive
and, as a result, is frequently neglected. However, information on data quality is crucial, particularly
for safety-critical tasks in infrastructure engineering. In this paper, we propose an efficient method
for the quality control of MLS point clouds. Based on point cloud discrepancies, we estimate the
transformation parameters profile-wise. The elegance of the approach lies in its ability to detect
and correct small, high-frequency errors. To demonstrate its potential, we apply the method to real-
world data collected with two high-end, car-mounted MLSs. The field study revealed tremendous
systematic variations of two passes following tunnels, varied co-registration quality of two scanners,
and local inhomogeneities due to poor positioning quality. In each case, the method succeeds in
mitigating errors and thus in enhancing quality.

Keywords: mobile laser scanning; point clouds; quality control; georeferencing; systematic errors;
transformation parameters; quality enhancement

1. Introduction

Mobile laser scanning (MLS) established itself in the geospatial market and has become
a key technology for 3D digitizing the world. Much of what we know about mobile
laser scanning technology stems from research from the 1990s and early 2000s [1,2]. As
technology advanced, the price and weight of laser scanners fell, and they began to emerge
on various moving platforms such as helicopters and vehicles [3–6]. Today, laser scanners
exist in many sizes and shapes for use on airplanes, drones, cars, and even a person’s back.
Commercial products are now available from many manufacturers, and numerous private
companies offer data collection services.

Accordingly, the spectrum of applications has expanded considerably. MLS has found
its way into asset management, maintenance, construction, project planning, and safety [7].
The application usually determines the data quality requirements. Consider the scene
in Figure 1. The criteria for completeness and metric accuracy depend on whether the
ultimate goal is an as-built inventory of road signs or a deformation analysis of the retaining
structure. In the end, the quality of the point cloud determines the quality of the derived
information. The difficulty for end users is in verifying or evaluating whether the MLS
point cloud meets the application-specific requirements.

Indeed, this task is complex and requires consideration of the factors that affect the
geometric accuracy of the MLS data. Commercial, off-the-shelf MLS systems consist of
multiple sensors (see Figure 1), each of which provides noisy data and for which data
integration is also subject to uncertainty. Researchers investigated the error budget of
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airborne and land-based MLS point clouds based on functional relationships and empirical
error values [8,9]. The drawback of such error prediction models is that they only pro-
vide a rough estimate of uncertainty and do not necessarily represent the quality of the
data collected.

Figure 1. Illustration of road infrastructure data collection with state-of-the-art MLS systems. Black
lines represent the scan lines of the right profile laser scanner.

Multipath and outages of global navigation satellite systems (GNSS) distort the ve-
hicle’s trajectory. Residual errors in the system calibration or changing parameters due
to environmental conditions also systematically influence the 3D point cloud coordinates.
Furthermore, laser scanner measurements are prone to systematic variations. Scanning
geometry, surface roughness, and reflectivity are all elements to consider [10,11].

Understanding the systematic errors of individual sensors aids in determining the
expected quality of MLS point clouds. However, it is impossible to predict systematic
errors and their influence on the accuracy of the generated point cloud. It is also impossible
to attribute identified point cloud deviations to actual causes during post-processing. In
any case, it is feasible to determine the extent of the errors using reference data. Engineers
typically utilize artificial or natural ground control points (GCPs) or establish surface
patches with known geometry parameters to validate the absolute accuracy. These methods
prove to be time-consuming for long corridor surveys, requiring data acquisition with
reference sensors and costly post-processing.

MLS systems are on the rise, and recognition among engineers and end users is grow-
ing. Its efficient data acquisition makes MLS attractive for many applications. However,
quality control of this data is still very costly. Therefore, achieving MLS acceptance will
require further efforts in quality control and error reduction, especially for safety-critical
applications. This paper aims to contribute to these developments and therefore addresses
the following questions:

- How can we efficiently assess the quality of a commercial MLS dataset?
- Which strategy proves most promising for reducing systematic errors in MLS

point clouds?

We begin with a literature review of related work and introduce the reader to several
approaches to modeling, determining, and eliminating errors in MLS point clouds. Based on
this foundation, we present our accuracy assessment and error compensation methodology
in Section 3. Section 4 gives details on the performed field studies, especially hardware,
configuration, and location. We finally present and discuss our results, and conclude our
paper with a summary.
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2. Approaches to Modeling, Determining, and Mitigating Errors in MLS Point Clouds
2.1. Error Modelling

In the early days of mobile laser scanning, much of the scientific work focused on
the theory of the emerging technology. Ref. [12] elaborated on the functional relationships
and formulas of lasers, laser ranging, and airborne laser scanning. While the paper made
assumptions and simplifications, it provided a thorough examination of the influencing
factors. Ref. [13] modified the lidar equation (see Equation (8)) to introduce typical error
values. The difference between an ideal and an error-contaminated system gives insight
into the effects of the global positioning system (GPS), inertial measurement units (IMU),
ranges, scan angle, mounting, and time biases. Ref. [13] pointed out that the choice of
flight pattern can help recover some errors directly. While [8] followed a similar strategy
for introducing random errors, they differentiated the lidar equation with respect to eight
potentially biased parameters: lever arm (three), boresight angles (three), laser range, and
scan angle. Although the expressions derived were based on several assumptions, these
expressions allowed them to study the optimal flight configuration. Ref. [9] pursued
a similar strategy with a different goal. His first-order error analysis incorporated six
additional parameters, three each for position and attitude. By introducing typical error
values from data sheets and experience values in the error formula, he estimated the 3D
accuracy of the laser footprint of airborne and land-based MLS. This methodology can
give a sense of the achievable accuracy and whether a hardware update will deliver the
expected results. In addition to the investigations regarding positioning and calibration
insufficiencies, Ref. [14] also addressed the systematic effects of the scanning geometry.
They derived a quality measure that depends on the normal of the terrain model and the
laser beam direction.

2.2. Calibration

One crucial quality assurance measure is the calibration of offsets and rotations of
laser scanners to the IMU. Calibration minimizes systematic errors significantly. Ref. [15]
presented a procedure to estimate the boresight angles and the range finder offset during
in-flight calibration. The idea was to use tie planes instead of tie points. The benefit of this
approach was that no interpolation of airborne MLS data was necessary. As the planes’
geometry parameters were unknown, the adjustment estimated them simultaneously with
the four calibration parameters. Ref. [16] presented a method for post-mission quality con-
trol of airborne laser scanner data. A transformation of overlapping lidar strips minimizes
systematic discrepancies at conjugate points in the normal direction. It turns out that biases
in the system components are derivable from these transformation parameters.

Another strategy for calibration of land-based MLS is to match individual points
from point clouds of several runs and to minimize the deviations between them. Ref. [17]
attributed the determined differences directly to boresight angles since they assumed
lever-arm offsets to be known and position errors to be negligible. For correspondence
matching of overlapping point clouds, they used the iterative closest point (ICP) algorithm.
In contrast Ref. [18] subdivided the point clouds into profiles and estimated the boresight
angles and lever-arm offsets from the corresponding profile points. They reported a
reduction in misalignment from the meter to centimeter levels.

Due to its ease of practical use, the plane is the geometric primitive of choice in the
literature for calibrating land-based MLS. The combination of plane orientations and MLS
passages is essential for calibration quality, though. Ref. [19] simulated different scenarios
and proposed configurations in which the systematic errors magnify and can thus be
reliably determined. Ref. [20] provided a similar approach by replicating data collections
of a virtual calibration field. They assessed different configurations based on parameter
correlations and partial redundancies. However, practical evaluation of two MLS passages
in opposite directions of a castle revealed remaining systematic deviations. The authors
attributed these to trajectory uncertainties in the evaluation drive.



Remote Sens. 2022, 14, 857 4 of 30

While [15,16] saw the possibility of creating suitable conditions for calibrating airborne
laser scanning systems, this is not necessarily the case for land-based MLS systems. Ref. [21]
estimated drifts due to positioning uncertainty along with calibration parameters, but
as reported by [15], there is a risk of introducing further parameter correlations with
this approach.

2.3. Quality Control

In purely practical terms, the end user is most likely not interested in the cause of a
distorted point cloud but in its orders of magnitude. Many methods exist for post-mission
quality control of MLS point clouds [22]. Commonly, either artificial black and white, or
natural control points provide quantitative accuracy analysis [7]. Ref. [23] exploited the
high reflectance of road markings to define corner points as GCPs. The residuals of the
MLS points fitted to a reference plane are also a valid quantitative measure, provided that
the reference surfaces are sufficiently planar [15]. The same is true for fitting multiple lines
to the scanned roadway at an intersection [24].

Static terrestrial laser scans (TLS) have proven suitable for evaluating 3D accuracy. ICP
algorithms are state-of-the-art for determining point correspondences and for estimating
transformation parameters in the context of a least-squares fitting. Due to high data
redundancy, this method provides precise results without making assumptions. The TLS
point cloud should be an order of magnitude more accurate to serve as a reference, though.
Therefore, data collection requires a lot of effort, as registration errors between multiple
static scans would be attributed to the MLS point cloud. Ref. [25] divided an MLS point
cloud of an urban scene into short time segments before applying ICP to obtain a piecewise
transformation for alignment to a georeferenced TLS point cloud. Ref. [26] established a
large test field for MLS systems based on static TLS data as part of an EU project. They
utilized artificial features such as poles and building corners to evaluate elevation and
planimetric errors. Ref. [27] took a similar approach by creating a large test field for MLS
systems in a city. Here, georeferenced scans of a scanning total station serve as a reference.
They determined the normal distance from all MLS points to their nearest TLS reference
points and minimized these deviations using least-squares adjustment. Similar to [25],
they also subdivided the point cloud into sections and computed translations in so-called
anchor points.

2.4. Correction

As mentioned in the Introduction, random and systematic errors are unavoidable in
MLS point clouds under certain circumstances. Therefore, many researchers have tried
to eliminate them as much as possible during post-processing. Ref. [28] presented an
approach to compensating for height errors in airborne laser scanning data. The idea is
to correct the heights of a scan strip using an estimated algebraic surface. They calculated
such a correction surface using tie points in overlapping scan strips and control points.
Ref. [29] demonstrated a method to correct trajectory errors of land-based MLS in the
absence of GNSS satellite visibility using GCPs. They extracted the time of sampling of the
control point and introduced the difference vector as an observation update in the trajectory
filtering at that GNSS time. According to their results, the position error within a tunnel
does not exceed 5 cm, provided that GCPs are available every 400 m. Ref. [30] introduced
the so-called multi-pass approach. The motivation is also to minimize the number of control
points. They manually digitized line features in point clouds that occurred in multiple
passages of the same scene. These control lines were used on the one hand to evaluate
positioning errors and, on the other hand, to average the height of multiple point clouds.
The estimated trajectory error of each pass determines the weight for averaging. The
authors argued that employing the multi-pass strategy reduces time and costs compared to
the multi-target approach.

Other freely available sources such as 3D city and terrain models are also suitable for
removing systematic errors. The combination of these two provides a three-dimensional
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reference for MLS point clouds. For example, Ref. [31] registered their recorded MLS point
clouds to city models using ICP. To account for the changing positioning accuracy along
the path, they subdivided the point cloud into sections and performed the calculations
section-wise. They avoid discontinuities by transforming each point with multiple sets of
parameters and computing a weighted average.

These models are an abstraction of reality, in which building facades are vertical and
streets are perfectly flat. Ref. [32] made similar assumptions without actually using city
models. Namely, they introduced parallelism and orthogonality constraints for the detected
planes in their point cloud adjustment procedure. They transformed individual profiles
and estimated the plane parameters simultaneously, following the example of [15].

2.5. Classification of Our Contribution

Many scientists and practitioners conducted field studies and published their findings
on MLS data quality. We build upon existing work but view the problem from the end
user’s perspective. In other words, we assume that we obtain the point cloud and the
trajectory without being involved in data collection and processing. Thus, the focus of
our work is on quality control and error minimization. Before going into the details of the
method, we point out the overlap between our work and existing research:

- The idea behind our approach is similar to strip adjustment. Similar to [33], we
attempt to compensate for discrepancies between overlapping scan strips. Unlike [18],
we do not attribute the differences between multiple runs of land-based MLS point
clouds to mounting parameters for the reasons mentioned earlier.

- Similar to the work of [18], our approach extracts profiles from the MLS point cloud
but in a different way.

- Instead of performing profile matching [18], we use the nearest neighbor approach as
in the ICP algorithm or as in [27] to establish point correspondences.

- While [27] calculates translations to the reference point clouds, we estimate the six
degrees of freedom similar to the methods in [25,32]. However, we do not have to
make assumptions about planarity, parallelism, and orthogonality in our least-squares
adjustment.

- We also employ the estimated transformation parameters to adjust the point cloud,
similar to [31]. However, before transforming profiles, we first smooth the parameters.

3. Methodology

The proposed method aims to process MLS point clouds efficiently to evaluate the
geometric quality and to mitigate errors. The main features and prerequisites of our
approach are presented below.

Input The input to our method is a reference point cloud represented as a set of points
Ri ← r = [rx, ry, rz] and the MLS point cloud with the timestamp of each measured
point as Mj ← m = [mx, my, mz, mt]. In this work, we assume that both sets, R and
M, capture stable areas. For preprocessing and identifying such areas (e.g., the road
surface), the reader is referred to [34]. The reference point cloud can be the following:

(i) The point cloud of a passage acquired in the same direction as M;
(ii) The point cloud collected in an opposite driving direction to drive-runs of M;
(iii) The data from a second laser scanner, if available; or
(iv) A terrestrial laser scanned point cloud.

As already mentioned, we used commercially available systems with one or more
high-quality laser scanners. We evaluated two point clouds from the same scanner
in the first two cases. When comparing laser data from different scanners of the
same run (iii), differences can occur due to insufficient co-registration and strongly
varying trajectory quality, such as next to high structures. Even though there are few
up-to-date TLS datasets of the public road network and infrastructure objects, we
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also apply TLS point clouds as a reference (iv) in our study. The procedure presented
below works independently of the choice of reference point cloud.

Time component The MLS quality varies over time. Therefore, the method requires a
subdivision of the point cloud into portions with presumably stable quality. The
criteria for partitioning depends on the scanner hardware and the expected error level.
For example, modern, high-end systems provide profiling frequencies ranging from
150 to 250 Hz [35,36]. Point sampling rates of up to 1 Mhz are sufficient for precisely
estimating the transformation parameters. However, the reliability depends on the
scenery. For example, if only the road surface is present, it becomes problematic to
find the horizontal alignment reliably.

Optimization We minimize the discrepancy between the two point clouds by optimizing
the parameters for aligning the profiles in a least-squares problem. We establish
correspondences by searching for the nearest neighbor, but unlike ICP, we optimize
them only in the direction of the reference point cloud normals. In this way, we
relax the strict point associations and thus make positional uncertainties more forgiv-
ing. Eventually, smoothing the obtained transformation parameters guarantees the
elimination of remaining outliers.

Transformation With the trajectory data, we can optionally transform point clouds into
the IMU system and study the coregistration of multiple scanners.

Correction Finally, we correct the query point cloud profile-wise based on the smoothed
transformation parameters. As we show later, we can also transform and match both
point clouds in the sense of a strip adjustment.

Figure 2 gives an overview of the method and the individual steps that are necessary.

compute
normals

search 
nearest neighbor

extract
profiles

optimize
profile by profile

t ,t ,t ,qx y z

smooth
parameters

transform
profile by profile

R

M

Figure 2. Workflow of the proposed methodology.

3.1. Point Association and Normal Computation

We calculated the nearest point in the reference cloud R to each point in the query
cloud M. A brute-force search necessitates O(n2) distance calculations in total, which can
be expensive when dealing with large point clouds. We used the reference cloud to build a
KD tree to overcome this problem. Then, we performed a distance search using the KD-tree
with O(n log n) distance calculations to find all nearest neighbors.

The KD-tree associated with the reference point cloud R was then used to calculate
the normals. A common approach is to select a subset of points within a predefined radius
around each reference point. The eigenvalue decomposition of the covariance matrix of the
subset then yields the principal components. The component with the smallest eigenvalue
corresponds to the normal of the approximated plane in that point (cf., e.g., [37]). Finally,
we minimized the normal distances between all associated points in the optimization
process. It is worth mentioning that this method is fully automatic and is not limited to
flat surfaces. Cylinders and other arbitrarily shaped artificial objects can also be locally
approximated by planes (see Figure 3) and thus used in our approach.
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Reference
cloud

Query cloud

Neighborhood
for normals
computation

Figure 3. Normal distances as metrics to be minimized (left) and visualization of normals as HSV
colors in an urban scene (right).

3.2. Profile Extraction

The profile extraction strategy goes back to the operating principle of most land-based
MLSs. We can imagine profile laser scanners constantly generating point subsets with
varying quality characteristics. A separation of the profiles in post-processing is possible,
provided we have timing information. Modern laser profilers obtain their time data usually
through PPS (pulse per second) signals from connected GNSS receivers with nanoseconds
accuracy [38].

However, since the effective measurement rate differs from the actual one, we do not
simply use the reciprocal of the sampling rate for separation. Minor differences would
accumulate over longer data acquisitions and produce inconsistent profiles. We thus
propose to subdivide the profiles based on spatial information rather than time. The plan
is to pick a starting point for the first profile and then find the closest point after one scan
revolution. This point defines the endpoint of our profile, while the following point in time
corresponds to the starting point of the next one.

This concept works well as long as the spatial distances between the start and end
points do not become too large. For example, if we start at a face of a building and
the vehicle passes by, at some point, the profile points are no longer on the facade, and
the nearest neighbor is on another object. A suitable starting point is thus on a surface
that ideally extends over the entire point cloud. Accordingly, the road proves to be a
promising surface.

Our algorithm begins by classifying the point cloud into road and non-road points
using the method described in [34]. Figure 4 shows an MLS point cloud that contains
geometry, time, and semantic information.

Figure 4. Visualization of a point cloud with a color-coded time information (left) and classification
of road (orange) and non-road points (blue) (right).

We exploit the time information of the MLS point cloud by sorting the points according
to their GNSS time. As a result, we can extract data of the first 1/ f seconds, where f
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corresponds to the rotation frequency of the scanner. The road point with the mean GNSS
time of the extracted point cloud subset is our starting point ms for profile extraction (see
Figure 5 left).

As a next step, we compute the Euclidean distance D from ms to all points in the
timely ordered set M. Consequently, D increases with time, with differences between, e.g.,
points on the wall and the road surface. To subdivide the profiles at approximately the
same point on the road, we look for local minima in the oscillating distance function (cf.
Figure 5 right). Based on the first-order derivative of the discrete function

D′i = Di − Di−1, with i = 2 . . .
∣∣M∣∣ , (1)

a change of sign (− to +) suggests a local minimum and thus a profile end point. It is worth
noting that the strategy works even when cars and other objects obscure the road surface.
In contrast to empty road sections (as depicted in Figure 4), the only difference is that the
profile end point may wander slightly from the path of the preceding ones.
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Figure 5. Elevation data of the first 1/ f seconds classified into road (yellow) and non road points
(dark purple) (left); calculated distance function d and localized profile end points (red) (middle)
with detail view (right).

3.3. Optimization

After profile extraction, we can identify M and R as a set of matrices, i.e.,
R = {R1, R2, . . . , Rnprofiles}, where each Rp ∈ R3 contains profile points. Because we
established direct correspondences, the number of profiles npro f iles and the number of
points within a profile np are the same for both clouds R, M. Since each profile is optimized
separately, we will omit the indices p from now on.

Using the computed normals n of the reference point cloud R, we parametrize planes
at each profile point using the Hessian normal form and calculate the offset with

di = 〈ni , ri〉 with i = 1 . . . |R| . (2)

After finding the plane parameters, we seek a 3D transformation that best aligns the
query point cloud M with our reference planes (n, d). In contrast to the ICP algorithm, we
minimize the orthogonal distances of M to R, accounting for the laser scanner’s higher
sensitivity in line-of-sight. The desired parameters are three translation and three rotation
parameters. The direction and magnitude of a spatial rotation can be described by the
Euler-axis e and the Euler angle θ. We adopt the axis–angle representation in R4 using unit
quaternions q

q = q0 + q = q0 + q1 î + q2 ĵ + q3 k̂

q = q0 + q = cos
θ

2
+ e sin

θ

2
with |q| = 1 .

(3)
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Following [39], we define an operator Lq(m) that rotates a vector m ∈ R3 with a unit
quaternion q using

Lq(m) = q m q∗

=
(

q2
0 − ||q||2

)
m + 2 (〈q , m〉)q + 2 q0(q×m) .

(4)

Quaternions thus provide a concise notation for spatial rotations. They simplify
the differentiation with respect to the desired rotation parameters since no trigonometric
functions occur. Additional information on quaternion algebra is given in Appendix A.1.

We can finally formulate our optimization function as

f =
〈
ni ,

(
Lq(mi) + t

)〉
− di = 0 . (5)

The profile points mi and the derived plane parameters ni, di represent our observa-
tions. The vector of unknowns contains seven parameters x =

[
q0, q1, q2, q3, tx, ty, zz

]T .
Remember that three rotation parameters exist while q ∈ R4. To account for the singu-

larity, it is therefore necessary to introduce a unity constraint when estimating q0, q1, q2, q3

c =
√

q q∗ =
√

q2
0 + q2

1 + q2
2 + q2

3 := 1 . (6)

We estimate the parameters in a least-squares sense by applying a constraint Gauss–
Helmert Model (GHM). Although its theory is well-established in the literature [40,41],
some remarks are valuable for solving the specific problem. Note that the number of
profile points n determines the number of rows of the Jacobian matrix A, while Jacobian B
increases quadratically with the number of points (cf. Equation (7)). As a result, memory
can become scarce when we deal with large sets of R and M. Fortunately, most elements of
B are zero, so we can apply sparse matrix operations. By doing so, we save computation
time and memory while maintaining full precision. We weigh all observations equally
(Ql = I) unless we have trajectory data available (see Section 3.4).

A[n×7] =
∂ f
∂x

∣∣∣∣
x0,v0

B[3n×3n] =
∂ f
∂v

∣∣∣∣
x0,v0

C[1×7] =
∂c
∂x

∣∣∣∣
x0

(7)

Appendix B provides a detailed description on how to solve the constraint GHM
problem to estimate the transformation parameters x̂ and their variances σx̂.

3.4. Transformation and Weighting

The direct georeferencing or the lidar equation px
py
pz

 =

 tx
ty
tz

+ R(r, p, y)

︸ ︷︷ ︸
trajectory

·
 ∆x

∆y
∆z

+ R(α, β, γ) ·
 sx

sy
sz


︸ ︷︷ ︸

calibration, sensing

(8)

can be expressed more simply as

p = t + R(r, p, y) · pIMU . (9)

It establishes the functional relationship between georeferenced coordinates and sensor
data of the navigation and scanning system. The MLS data service provider delivers
coordinates p in a predefined mapping frame (e.g., UTM). With trajectory information, i.e.,
the vehicle’s position t and its attitude r, p, y (roll, pitch, and yaw), we can transform p into
the IMU’s system by rearranging Equation (9) to

RT(r, p, y)(p− t) = pIMU . (10)
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The proposed data transformation is motivated by two factors.

Multiple scanner data We may use data from multiple laser scanners as reference and
query sets R, M to validate their co-registration in the IMU frame (cf. Figure 6 left).

Weighting We can reconstruct the sampling of the mobile laser scanners once we know
the position and orientation of the vehicle. Using the local coordinates in the IMU
system, we determine the distance and the angle of incidence of the laser beams

δi =
∣∣|pIMUi

∣∣|2 ϕi = arccos

〈
−pIMUi , ni

〉
δi

. (11)

According to many studies [10,11,42], short distances and scans orthogonal to the
surface produce the most precise results. Therefore, we combine both information in
a weight function

ωi = e−
(δi−µ)2

2σ2 · cos ϕi , (12)

and adjust µ and σ according to the ranging uncertainty provided by the manu-
facturers (see Figure 6 right). For the Z + F profiler 9012 [35], for example, we set
µ = 10 m, σ = 15 m.
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Figure 6. The transformation of MLS point clouds into the IMU body frame enables us to validate the
co-registration of an asymmetric two-laser scanner setup (left) and to introduce a weighting function
into the constraint GHM model (right).

3.5. Profile-Wise Correction

To transform the query cloud M profile-wise, the estimated parameters must not
differ too much for neighboring profiles x̂i−1, x̂i. After all, significant discrepancies would
eventually lead to discontinuities in the point cloud. In general, adjacent parameters agree
well if the number of points is high enough and object normals are well-distributed (see
Section 3.6). However, to minimize any remaining inconsistencies, a smoothing process
is introduced for all transformation parameters separately. Thus, we first smooth the
transformation parameters x̂ with a moving average filter and then correct the query point
cloud by

mc
i = Lq̂(mi) + t̂ . (13)

Note that the selection of the filter width is hardware dependent. We set the width to
50 in our study.

The correction assumes the reference point cloud to be error-free. When we align
point clouds from two scanners or opposite driving directions, we want to modify both
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point clouds R, M equally, though. Let us therefore decompose the transformation into
two subsequent rotations and translations:

Lq′
(

Lq′(m)
)
+

1
2

t +
1
2

t = r . (14)

In contrast to its original definition (cf. Equation (3)), Lq′ rotates around the same axis
e but with half the angle θ/2. By rearranging, we obtain the relation for adjusting two point
clouds r, m to each other with

Lq′(m) + L∗q′
(

1
2

t
)
= L∗q′

(
r− 1

2
t
)

, (15)

where q′∗ is the conjugate quaternion and L∗q′ thus describes the rotation around -e by θ/2.
For a sample calculation, the reader is referred to Appendix A.2.

3.6. Geometric Analysis of Reliability

The estimated variance σx̂ provides information on the precision of the transformation
parameters. However, it is a poor indicator for the reliability of the point cloud correction
because it ignores the geometry of the scanned scene. The transformation parameters can
be precise even if they result from two point clouds that capture the road surface only.
Therefore, we propose to use the point normals n to evaluate the scenery. We assume that
well-distributed point normals will provide data for reliable results. In other words, the
quantification of the point normal distribution allows us to infer reliability.

Our idea is to interpret the normals n as points on a unit sphere and to count the
occurrences at discrete bins. We choose the Fibonacci lattice (see Figure 7 left) to evenly
distribute L points on the sphere. It stands out for constructing almost equal-sized surface
patches at low complexity. The L lattice points l lie along a spiral, with successive points at
the greatest possible distance and the angle between them based on the golden ratio [43].
The vector of the grid point lj that spans the smallest angle with the point normal defines
the bin to which it is assigned (cf. Equation (16)).

jmax(i) = argmax
1≤j≤L

〈
ni, lj

〉
(16)

Consequently, we can analyze the distribution of point normals by plotting the his-
togram of jmax for each profile. Figure 7 right shows the normals distributions for a profile
capturing a tunnel and an overland scene with vegetation. The histogram of the latter
(orange) indicates that normals dominate in the vertical direction (L = 51, see Figure 7 left),
while the tunnel scene also provides many points on vertically oriented surfaces.
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Figure 7. The Fibonacci spiral provides an evenly spaced lattice on a unit sphere (left) for evaluating
the point normal distribution for a scanned profile of a tunnel and an overland scene (right).
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3.7. Summary

Using our methodology, we identify deviations of an MLS point cloud with respect to
another one. The reference point set R might be laser scan data acquired from the opposite
driving direction, a second scanner, or a terrestrial laser scan. In summary, five processing
steps are necessary to assess the coincidence of reference R and query point cloud M and
to match them profile by profile.

1. Assuming both point clouds are aligned at the centimeter level, construct a KD tree
for the reference point cloud R and search for the nearest neighbor for each point in
the query cloud M;

2. Compute the normals for each point in R using the already constructed KD tree;
3. Segment road points, and exploit the GNSS timestamps of the MLS point cloud for

profile extraction (see Section 3.2);
4. Solve the constraint optimization problem, and estimate the transformation parame-

ters profile-wise (see Section 3.3); and
5. Smooth the estimated parameters with a moving average filter, and correct the point

cloud(s) (see Section 3.5).

For analyzing the co-registration of scanners, we suggest transforming each profile
into the time-variable IMU body frame (see Section 3.4). High-frequent trajectory data are
a prerequisite, though. In further consequence, the estimated parameters also relate to the
body frame, which allows for a better interpretation.

4. Field Study

The motivation behind our contribution is the deformation analysis of retaining
structures (cf. [34]). However, the method is not limited to the presented use case or the
hardware used. It is also applicable to other outdoor, indoor, and underground scenarios,
using point clouds from high-end and low-cost profile scanners.

4.1. Study Area

We collected real-world MLS data with our partners to validate our presented tech-
nique. The measurements took place in November 2020 in Styria, Austria. Figure 8 left
displays a map of the study area with the location of the objects of interest. In this paper,
we focus on three different scenarios that reveal common problems in practice.

RW1 represents a typical scene in a mountainous region where a retaining wall (RW)
is located directly after a tunnel. Such conditions pose a challenge to the accurate
positioning of the MLS system since GNSS is not available and IMU errors accumulate.

RW2 is an open sky setting with an 18-meter-high retaining structure adjacent to a highway.
GNSS processing is possible, but multipath effects will likely occur and degrade
quality. RW2 is a suitable site for recording data from two travel directions and for
performing terrestrial reference measurements.

Urban scene includes tall buildings that constrain GNSS signals and pose the risk of
multipath effects. On the other hand, buildings and other artificial objects provide
differently oriented surfaces, which proves beneficial in our processing pipeline. As
discussed in Section 3.6, well-distributed point normals promise reliable estimates for
correcting MLS point clouds.
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Figure 8. Map of the study area, location of retaining walls (RW1 and RW2), and the urban test field
with coordinates referring to UTM33N (left); MLS systems used in our study, from left to right: Siteco
Road-Scanner 4 [44] and Leica Pegasus:Two Ultimate Dual Head [45] (right).

4.2. Hardware

Both partners utilize MLS systems from different manufacturers that are commercially
available (cf. Figure 8 right). In principle, both use the same sensors: two Z + F 9012 profile
scanners, one multi-frequency GNSS antenna, a tactical-grade IMU with three fiber optic
gyros and three accelerometers, and an odometer. Due to different philosophies of the
manufacturers and system operation by the partners, the results vary. Table 1 highlights
the differences between the systems that are relevant for our processing and analysis.

Table 1. Main differences in the operation of the MLS systems used.

Road-Scanner 4 Pegasus:Two Ultimate

Scanner rotation speed 200 Hz 150 Hz
Setup assembled before operation fixed

Calibration on-site during maintenance
Scanner configuration 45◦/45◦ 60◦/30◦

Although the laser scanners of both systems operate at 1 Mhz, they produce dif-
fering point clouds due to the different rotational speeds. The point density inside a
profile rises when the scanner’s rotation rate is reduced, yet the separation along the
trajectory increases.

It is worth noting that commissioning differs for both systems. The Pegasus: Two
Ultimate remains mounted on a platform while the individual components of the Road-
Scanner 4 system are assembled each time before deployment. Consequently, the Road-
Scanner system requires an in-field calibration with ground control points (GCPs) after
its installation, whereas the mounting parameters (cf. Equation (8)) of the Pegasus: Two
Ultimate are updated during annual maintenance. Information on the date and qual-
ity of the last calibration might be beneficial when evaluating the co-registration of the
two scanners.

The Road-Scanner system provides a symmetrical two-scanner configuration with
respect to the driving direction. The asymmetric configuration of the Pegasus:Two Ultimate
system generates point clouds (cf. Figure 6) with different angles of incidence and distances
to a wall that is parallel to the driving direction.
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4.3. Data Acquisition and Delivery

Initializing the IMU integration constants is essential before data collection can be-
gin. Tactical-grade IMUs generally have gyro biases less than the earth rate (15◦/h),
allowing them to determine the vehicle’s heading reliably in static mode [46]. An alterna-
tive is a kinematic alignment, which involves distinctive driving maneuvers to align the
IMU data and the GNSS Course-Over-Ground. In our study, both systems performed a
kinematic alignment.

In the measurement campaign, we strove to create comparable conditions for both
systems. Therefore, the two vehicles drove in convoy at 60 to 100 km/h, and the MLS
systems collected data from the same area less than five seconds apart.

As mentioned above, we did not participate in processing trajectories and the georefer-
enced point clouds. However, we defined boundary conditions for a consistent processing
strategy and supplied our partners with GNSS raw data from four surrounding base
stations of the Austrian Positioning Service (APOS). The data delivery included

- Point clouds with RGB, intensity, and time information, georeferenced in UTM33N;
- High-frequency trajectory data including position and attitude (200 Hz); and
- Trajectory quality data such as standard deviation and separation in the east, north,

up, roll, pitch, and yaw directions (1 Hz).

The separation is a quality parameter that measures the trajectory deviation between
the forward and reverse solutions. These two refer to the same trajectory but are processed
forward and backward in time. Differences may occur due to variations in the satellite
geometry and availability. Suppose an MLS survey includes a long tunnel and the effects
of IMU drifts are maximum at the end of the tunnel. Therefore, forward and reverse
processing yield different results. The trick is to combine both solutions by inverse variance
weighting to obtain the best possible trajectory. The separation itself provides a good first
indicator of the quality of the final trajectory. As Figure 9 shows, the deviations decrease
the further the vehicle travels from the tunnel portal. Accordingly, we must assume a lower
absolute positioning accuracy for our object of interest (RW1).
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Figure 9. Separation between forward and backward passes indicates a lower trajectory quality near
the tunnel portal. RGB point cloud of RW1 and discrete color coded points with separation in east
(left, blue line in right plot); separation in all three components plotted versus time (right). Note:
Driving direction is opposite to the viewing direction in the left 3D visualization.

5. Results

This section presents the quality assessment of the acquired MLS point clouds. In ap-
plying our methodology, we distinguish between three different approaches and objectives.

Multi-pass approach: We investigate the agreement of MLS point clouds obtained with
one scanner in several successive passes. Apart from satellite constellation and
availability, we assume that the conditions are the same for all passes. The MMS setup,
scanning geometry, and surface properties remain unchanged during acquisition.
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Therefore, the comparison of these point clouds provides information on how well
georeferencing of the point clouds was accomplished.

Ground truth verification: In addition to repeatability analysis, we attempt to analyze the
accuracy of the point clouds using reference data. For this purpose, we use TLS data
registered with high accuracy surveyed GCPs. In addition, direct comparison of these
GCPs with manually picked locations in the MLS point cloud allows for independent
verification.

Multi-scanner approach: Finally, we compare point clouds of two scanners mounted on
one platform. The goal is to verify the co-registration of the scanners. It is worth
noting that direct georeferencing can also impact the co-registration of multiple
scanners. This is especially true if the time difference between scans is large (e.g., at
low travel speeds) or if the quality of the trajectory varies significantly. In the case of
non-symmetrically designed systems, different scan geometries (i.e., incidence angle
and distances) can lead to further deviations.

5.1. Multi-Pass Approach

In the following subsections, we present our repeatability analysis for all point clouds
acquired from RW1, RW2, and the urban scene (cf. Figure 8).

5.1.1. RW1

Since construction work took place at the highway near RW1, we drove at 60 km/h
and 80 km/h in a convoy. An escort vehicle of the Austrian Highway Agency (ASFiNAG)
drove behind the MLS systems for safety reasons. Within a few seconds, the two MLS
systems passed by RW1 one after the other, a total of three times. Although both MLS
systems produce a point cloud for each scanner, we devote this section to analyzing the
point clouds from the right scanner. To refer to the individual point clouds, we use the
following notation:

- Pegasus Ultimate:Two: D (60 km/h), F (80 km/h), H (80 km/h)
- Road-Scanner 4: 402 (60 km/h), 403 (80 km/h), 404 (80 km/h)

With these six point clouds, there exist (6
2) = 15 point cloud combinations. It is possible

to compare between the systems (e.g., D vs. 402), between the epochs (e.g., D vs. F), and
between both systems and epochs (e.g., D vs. 403).

Let us start by comparing point clouds D vs. 402. Figure 10 depicts the estimated
transformation parameters in the left column and the associated precision in the right
column. We separate these two because the range of transformation parameters is large
compared with their calculated standard deviation. Each point in the time series represents
the results for an extracted profile of the MLS point cloud.

When looking at the graphs, one can make the following observations:

Filtering and noise: It becomes evident that the filtering process is necessary to obtain
smooth transformation parameters over time or profiles. The filter width of the
moving average in this example is 50. Interestingly, the noise of the translations
(tx, ty, tz) and the rotation angle θ are larger than the standard deviations would
suggest. This fact confirms our statement that we cannot fully rely on the estimated
precision as a quality measure.

Local artifacts: Towards the end (i.e., at time 08:28:22), tz and θ and their standard devia-
tion deviate strongly from the rest of the time series. This artifact is caused by poor
distribution of point normals (see the next point) and a small number of points. The
peak in tz and θ at 08:28:12 occurs exactly where the construction vehicle is parked
on the first lane of the highway. The distance between the nearest neighbors on the
highway represents the actual displacement in z. In the case of complex objects such
as vehicles, the nearest neighbor query might bias the parameter estimation.
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Point number and distribution of point normals: The smallest variations occur in the
height translation tz (third row, left in Figure 10). If we plot the distribution of
point normals (cf. Section 3.6) along all profiles (see Figure 11 left), we see that bin
51 dominates throughout the profile-tagged MLS point cloud. The normals associated
with bin 51 point upwards (cf. Figure 7), suggesting that most points lie on the road
surface. Hence, the geometry and the number of points prove to be quantitative qual-
ity measures. We can also identify the retaining wall and observe how the presence
of bin 29 decreases as the vehicle travels along the highway. Towards the end of the
trajectory, the number of points is small, which significantly affects the uncertainty of
the parameters tz and θ.

Horizontal translation: The highway runs roughly northeast to southwest, so the points
on the retaining wall contribute equally to the east (tx) and north (ty) displacement
calculations. In Figure 11 right, we plotted the estimated translation tx as a color-
coded point cloud. It is noticeable that the separation plot in Figure 9 shows similar
deviations. Despite the separation being a good first indicator of the expected quality
of the MLS point clouds, the similarities are rather coincidental. The position and
attitude separation describe the differences in the forward and backward computation
of the error-prone trajectory, while we compare the already georeferenced point
clouds, which are also affected by errors.

08:28:10 08:28:15 08:28:20

0

100

200

t x
[m

m
]

Filtered

08:28:10 08:28:15 08:28:20
0

5

10

15

s t
x

[m
m

]

08:28:10 08:28:15 08:28:20

−200

−100

0

100

t y
[m

m
]

Filtered

08:28:10 08:28:15 08:28:20
0

5

10

15

s t
y

[m
m

]

Figure 10. Cont.
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Figure 10. Results of the estimated transformation parameters (left) and standard deviation (right)
for the alignment of 402 to D; each value and timestamp refers directly to a profile.
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Figure 11. Distribution of point normals of point cloud D (left) and the estimated translation in
easting (tx) for point cloud 402 w.r.t. D (right).

With the estimated transformation parameters, we can correct the query cloud 402
to fit the reference cloud D. We performed a point cloud comparison in commercial soft-
ware (3DReshaper17.1.8) before and after correction (see Figure 12). Based on the results,
the deviations of about 18 cm on the road surface for the uncorrected case are visible.
After correction, 95% of the computed deviations are below 5 cm and the median devi-
ation is 6 mm. Figure 13 shows the distribution of the point deviations before and after
the correction.
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Figure 12. Point cloud comparison between D and 402 before (left) and after (right) applying the
transformation parameters to the query cloud 402.
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Figure 13. Distribution of point deviations before and after correcting the query cloud 402.

The results so far have focused on the comparison of point clouds D and 402. For the
14 other MLS point cloud combinations, we estimated the transformation parameters in
the same way and computed the statistical parameters before and after correction. Table 2
summarizes the results and reads as a matrix. The upper triangular matrix describes the
median point cloud distances and the associated variations for all 15 combinations. The
robust dispersion is computed via the median absolute deviation, scaled by the inverse of
the third quartile of the normal distribution [47]. The lower triangular matrix is shaded
green. It lists the same statistical values after applying the correction. We can find the
elements (1, 4) and (4, 1) representing the statistical values for the combination of D and
402 as depicted by the histograms in Figure 13.

Table 2. Statistics of MLS point cloud distances for all combinations before (not-colored) and after
correcting RW1 (green-colored): median ± scaled median absolute deviation (MAD) in mm.

D F H 402 403 404
D - 49± 11 107± 32 183± 4 189± 9 193± 11
F 2± 2 - 141± 61 135± 6 143± 11 144± 14
H 6± 7 9± 9 - 275± 19 288± 9 291± 13

402 6± 7 13± 12 28± 13 - 9± 9 16± 11
403 7± 7 10± 9 9± 7 2± 2 - 7± 5
404 4± 5 11± 12 12± 9 2± 2 2± 3 -

Based on our evaluations (cf. Table 2), we can conclude that our strategy enables
us to reduce the deviations between the MLS points clouds significantly. We see median
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deviations of more than 20 cm reduced to 1 cm or less. Interestingly, point clouds 402, 403,
and 404 (lower right of the four blocks) match consistently better than point clouds D, F,
and H (upper left).

5.1.2. RW2

In addition to the example of a structure directly after a tunnel (RW1), we selected
another typical scene in mountainous regions for validating the method. In RW2, we
scanned an 18 m high and 200 m long retaining structure that stabilizes a slope adjacent to a
rural road and a heavily traveled highway below. The two MLS systems drove the route on
the country road on both lanes and in both directions (also in the wrong way: WW) with a
traveling speed of approximately 30 km/h. Therefore, employees of the road maintenance
department of the Austrian state of Styria temporarily closed the road section during our
measurements. We adopt the following notation for point clouds:

- Pegasus Ultimate:Two: O (1st lane), P (1st lane, WW), Q (2nd lane), R (2nd lane WW)
- Road-Scanner 4: 802 (1st lane), 803 (1st lane, WW), 804 (2nd lane), 805 (2nd lane WW)

Let us first compare two point clouds recorded in the opposite driving direction but
on the same lane: 802 vs. 803. The timely gap between the measurements is roughly six
minutes. A look at Figure 14 (left) reveals that the two original point clouds do not match
perfectly. We observe deviations up to 8 cm on the road surface and up to 5 cm on the
retaining structure. It is noteworthy that the magnitude of the deviations varies within the
point cloud. Any attempt to align the point clouds by means of rigid body motions will
therefore fail, as we demonstrate later.

0
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North

18 m

200 m

Figure 14. Point cloud comparison between 802 and 803 before (left) and after (right) applying the
transformation parameters to the query cloud 803.

For safety-critical applications such as deformation analysis, state-of-the-art georef-
erencing is proving unsatisfactory, according to our results. Suppose both point clouds
stem from two epochs. We would incorrectly assume deformations unless performing a
preliminary analysis.

After estimating parameters and transforming the profiles, we can significantly mini-
mize deviations between 802 and 803 (Figure 14, right). Our idea of correcting overlapping
point clouds is essentially similar to the strip adjustment procedure originally introduced
for airborne laser scanning data (cf. Section 2).

Given the eight point clouds (four of each system), we computed the deviations for
all (8

2) = 28 point cloud combinations before and after correction. Table 3 displays the
deviations’ medians as well as their uncertainties.

The statistics of all 28 combinations show that our method can improve the agreement
of MLS point clouds for RW2. Looking at the results of RW2 and RW1 (cf. Table 2),
we observe smaller deviations for RW2 in general. The 2.5 km long tunnel before RW1
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affects the quality of the trajectory significantly. As shown in the upper left and lower
right block of Table 3, both systems provide point clouds with similar reproducibility in
georeferencing quality.

It is noteworthy that RW2, unlike RW1, shows an inhomogeneous pattern of deviations
(cf. Figures 12 and 14). Major differences between the two scenes are the height of the
retaining structures and the measurement duration (apart from the tunnel). It took 14 s to
record RW1 and its 11.5 m high retaining structure at 60 km/h. The two MLSs, on the other
hand, captured the 18 m high retaining wall (RW2) and the vegetation growing above it in
about 34 s.

Table 3. Statistics of MLS point cloud distances for all combinations before (not-colored) and after
correcting RW2 (green-colored): median ± scaled median absolute deviation (MAD) in mm.

O P Q R 802 803 804 805
O - 13 ± 14 14 ± 16 40 ± 12 23 ± 15 19 ± 15 30 ± 6 14 ± 9
P 3 ± 4 - 18 ± 15 20 ± 16 29 ± 21 22 ± 14 27 ± 16 15 ± 13
Q 2 ± 2 3 ± 2 - 29 ± 19 28 ± 18 14 ± 13 31 ± 18 12 ± 6
R 5 ± 3 2 ± 2 4 ± 3 - 58 ± 42 26 ± 17 17 ± 10 29 ± 10

802 4 ± 4 5 ± 4 5 ± 4 7 ± 5 - 29 ± 26 35 ± 28 26 ± 21
803 3 ± 3 3 ± 3 2 ± 2 3 ± 3 5 ± 4 - 29 ± 32 11 ± 8
804 3 ± 3 2 ± 3 3 ± 4 3 ± 3 4 ± 3 4 ± 4 - 23 ± 13
805 3 ± 3 3 ± 4 2 ± 2 3 ± 4 4 ± 4 1 ± 1 4 ± 4 -

5.1.3. Urban scene

We switch from the alpine area to a typical urban scenario. Just as retaining walls, we
expect tall buildings to negatively affect GNSS measurements and thus the georeferencing
accuracy of MLS point clouds. Since MLS is also used for change detection in cities (cf. [48]),
the best possible co-registration of multiple MLS point clouds is thus required.

The urban scene provides a suitable testbed with a narrow road next to multi-story
office buildings. The area was traversed four times within half an hour with an MLS at low
speed (max. 20 km/h). We denote the resulting georeferenced point clouds of the right
scanner as I, II, III, and IV. An example of the point-to-point deviations between runs I and
II is given in Figure 15.

0
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Normal distance [m]

Figure 15. Point cloud comparison between I and II before (left) and after (right) applying the
transformation parameters to the query cloud II; black line depicts the trajectory.

The point clouds of the two passes deviate up to 4–5 cm (Figure 15 left). The median
value of the differences (cf. Table 4) for all combinations is about 2 cm, which is in the
order of differences of RW2. Remarkably, although we can minimize most of the deviations
(Figure 15 right and Table 4), differences of up to 2 cm remain at some locations on the
building facades. These mainly occur when the distance from the scanner to the object
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is large, and the angle of incidence is small. Since our method retains the inner profile
geometry, we can attribute these systematics to the laser measurements.

Table 4. Statistics of MLS point cloud distances for all combinations before (not colored) and after
correcting the urban scene (green): median± scaled median absolute deviation (MAD) in millimeters.

I II III IV
I - 22± 17 15± 13 21± 18
II 3± 3 - 8± 8 18± 17
III 3± 3 7± 7 - 21± 16
IV 4± 4 3± 4 3± 3 -

5.2. Ground Truth Verification with TLS Point Clouds and GCPs

In contrast to the highway, the rural road next to the retaining wall is generally less
busy. RW2, therefore, proved to be an ideal test field for us where we could perform
reference measurements with a TLS and a total station. We used a Leica RTC360 to acquire
laser scans from eleven setup points, which were then registered and referenced by GCPs
in the UTM33N reference system. Although we cannot claim that the TLS point cloud is an
order of magnitude more accurate than MLS point clouds, we still adopt it as our ground
truth. Figure 16 shows three point cloud comparisons: first, the comparison of RTC and
MLS point cloud (left); second, after a best-fit has been calculated (middle); and third, after
our correction approach has been applied (right). According to the difference pattern, the
entire MLS point cloud is deformed inhomogeneously relative to the RTC360 laser scans.
For this reason, a best-fit rigid-body registration, as calculated in a commercial software,
fails to align the point clouds. Our approach largely succeeds in matching the two point
clouds. However, minor deviations remain in the upper part of the retaining wall due to
the systematics caused by the small angle of incidence.

0 0.05 0.1

Normal distance [m]

Figure 16. Point cloud comparison between RTC and 802 point cloud (left), after performing a best-fit
registration to 802 (middle) and after applying our profile-wise correction (right).

The structure in RW2 is subject to a semi-annual deformation monitoring campaign.
There exist numerous retro-reflective targets on the structure and reference targets in the
surrounding area. We take advantage of the high coordinate quality resulting from a
network adjustment by replacing prisms with dedicated scan targets that preserve the
exact GCP position. We used ten circular targets with a diameter of 11.4 cm (4.5 inch) for
those points on the retaining wall (red points in Figure 17) and three rectangular targets
(30 cm × 20 cm) for the ground points (green points in Figure 17).
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Figure 17. Location and type of GCPs at RW2.

It turns out that it is difficult to accurately select or to estimate the center in the MLS
point clouds due to their coarse sampling of the laser scan targets. Thus, in addition to the
uncertainty of georeferencing, the point selection process inevitably introduces additional
systematic errors. We calculate the discrepancies between the reference coordinates of the
GCPs known from geodetic measurements and the selected coordinates in the MLS point
clouds. Since the MLS point clouds provide timing information for the selected points, we
contrast the results of both the GCP and our method in Figure 18.

The transformation parameters have less noise than those of RW1. The estimated
standard deviations of RW2 are also an order of magnitude smaller. We transformed
802 with the plotted transformation parameters to obtain the corrected point cloud in
Figure 16 right. The uncertainty of the point selection process becomes evident when
looking at the GCP deviations in the left column of Figure 18. As a result, we can rely
on the component pointing in the normal direction of the targets only. Therefore, it is
not surprising that, due to the orientation of the retaining wall (cf. Figure 14 right), the
y component of both methods matches best. The z-component of the wall targets, on the
other hand, does not fit as well, particularly in the middle of the wall.
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Figure 18. Results of the estimated transformation parameters (left) and standard deviation (right)
for the alignment of the MLS cloud 802 to the TLS cloud; each value and timestamp refers directly to
a profile.

5.3. Multi-Scanner Approach

Most modern MLS systems with two scanners allow for separate exportation of the
point clouds. We, therefore, recommend first analyzing how well the point clouds of the
left and right scanners agree before proceeding with further analysis.

The reasons for a possible mismatch of the point clouds are manifold. If the boresight
angles and lever arms are insufficiently calibrated, the point clouds inevitably do not match.
In the case of asymmetrically mounted dual scanner systems, the scan geometry is different
for the two scanners, resulting in systematic deviations in the laser measurements. The
quality of the trajectories can also affect the point cloud agreement, especially if the quality
changes significantly or the period between scanner samplings is long.

Point-to-point distances calculated in any available point cloud processing software
can provide an initial guide. However, our method leverages the trajectory data for
transforming the profiles into the IMU system (see Section 3.4). By doing so, we can
analyze all profiles in the same coordinate system and analyze the scanner’s co-registration
regardless of the direction of travel. In this context, it might be tempting to interpret the
transformation parameters between the left and the right scanner as residual mounting
parameters (cf. [16]). The problem is that we have to take into account inaccuracies of the
trajectory that potentially bias our results (see Section 5.1). In addition, the alignment of
the planes is not guaranteed to be ideal (cf. [19]) in the alpine or urban scenes. Therefore,
we focus on minimizing errors, regardless of their origin.

Figure 19 depicts the transformation parameters between left and right scanners of
the already introduced data sets of RW1: D and 402 (cf. Section 5.1.1). Although they were
recorded shortly after each other, the results differ significantly for the acquisitions of the
two MLS systems.
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Figure 19. Estimated translation parameters between the left and right scanners for run D (left) and
402 (right) after transforming all profiles into the IMU system.
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For run 402, the translations across the direction of travel (tx in IMU system) are
smaller than those in the direction of travel ty (Figure 19 right). In contrast, passage D
shows deviations across the traveling path up to 12 mm.

However, for both systems, ty shows the largest variance over time. The reason is
that RW1 does not contain planar objects with normals oriented in the driving direction
that could contribute to the parameter estimation. Conversely, the road surface and the
retaining wall provide enough data for the across and height component. The estimated
translations tx and tz for aligning both point clouds of 402 are consistently below 2.5 mm
throughout the entire passage. In contrast, neither component is stable for run D, indicating
time-varying systematic influences. The asymmetrical design of the MLS system results
in different scan geometries for the two scanners and thus in greater time intervals when
scanning the same object compared with symmetrical systems. Especially in the case of
poor trajectory quality (e.g., after a tunnel, cf. Figures 9 and 11) the latter effect becomes
significant. The good news is that we can compensate for the deviations between the two
scanners of run D (see Figure 20).

0

0.03

0.05

Normal distance [m]

Figure 20. Point cloud comparison between left and right scanners of run D before (left) and after
(right) the alignment.

Unfortunately, it is not always possible to minimize the discrepancies between the
scanners. For example, for the urban scene I (cf. Section 5.1.3), which was scanned with
the same MLS system and processed by the same operator as D, we can improve the
alignment, but errors remain in the centimeter range (see Figure 21 left). These deviations
originate from the different scan geometries, especially at the inflection point (see trajectory
in Figure 21 left and time series at approximately 11:45:45 in Figure 21 right).
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Figure 21. Point cloud comparison between left and right scanners of run I after transforming profiles
(left) using the estimated parameters in the IMU system (right); the black line depicts the trajectory.
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As discussed in Sections 5.1.3 and 5.2, varying incidence angles and distances distort
the profiles. In this case, the rigid-body motion estimation of a single profile also fails to
compensate for the deviations.

6. Discussion

Digitization continues to advance with the proliferation of compact and low-cost MLS
systems on the market. Today’s wide range of products, technologies, and data providers
make 3D geospatial data more affordable and accessible. Point clouds are finding their
way into many applications. For end users, the challenge is to assess data quality and
to eventually decide whether it meets application-specific needs. The paper proposes an
efficient solution, focusing on the geometric accuracy of point clouds as a quality parameter.

Datasheets of MLS systems provide rough estimates of uncertainties under specified
scenarios [44,45]. As a consequence, the quality of the trajectory and thus the MLS point
cloud can change significantly over a short period (see example in Section 5.1.2). For this
reason, we do not aim to model errors [9,12] in advance but assess the collected point
clouds in post-processing. State-of-the-art methods in quality control evaluate the accuracy
of MLS data by reference points, lines, or planes. Their acquisition proves time-consuming,
especially for long corridor surveys. The same holds for data processing, where digitizing
point and line features [30] or evaluating static laser scans with state-of-the-art software is
labor-intensive [26].

In contrast, our proposed methodology processes MLS data fully automatically. The
principal idea is similar to strip adjustment in airborne laser scanning, aiming to reduce
discrepancies between multiple MLS passages. The method shifts (e.g., [27]) and rotates the
point subsets to achieve coincidence. Scanner hardware and the expected error variation
define the partitioning for the point subsets. In the case of profile laser scanners, individual
scan lines may be extracted using our method, as long as they provide enough data to esti-
mate the transformations precisely. To assess the reliability of the piecewise transformation
parameters, we emphasize inspecting the distribution of point normals. We eventually
obtain a smooth transformation function by filtering the parameters over time. By applying
the estimated transformation parameters, we are able to minimize deviations between MLS
point clouds significantly (cf. Sections 5.1.1–5.1.3 and 5.2).

The processing pipeline is flexible regarding data input. The MLS point cloud may
stem from high-end profile scanners or low-cost 360◦ multi-beam scanners. As we demon-
strated for the tunnel scenario, the methodology reveals systematic deviations between
two MLS passages. When we consider each MLS passage as an independent sample, we
can average multiple datasets after having removed the systematic component with our
methodology (see Figure 22). By doing so, we achieve a quality-enhanced MLS point
cloud,which is

- More precise and
- More complete, i.e., denser,

than the original samples. The effort is worthwhile, especially for applications with high-
quality requirements such as deformation monitoring.

One remaining issue is systematic errors in the laser measurements (cf. Sections 5.1.3
and 5.3). There are many influencing factors causing errors and thus distortion of the inner
profile geometry. Since our method assumes profile rigidity, minimizing those systematic
errors fails. We thus propose to enrich the MLS point clouds with incidence angle and
distance information to account for these effects in further analyses (e.g., [42]). For this
purpose, we also need high-frequent trajectory data (cf. Section 3.4).
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Figure 22. Concept of quality-enhanced MLS point clouds.

7. Conclusions

Since we started researching mobile laser scanning, numerous new systems become
available on the market, and many companies have begun offering 3D capture services.
While infrastructure owners, city governments, and others recognize the benefits of efficient
data collection, knowledge of MLS data quality is still lacking. Datasheets are of limited
value in assessing whether the MLS point clouds meet the application-specific requirements.
Ground control points provide independent verification but prove expensive for MLS
surveys of long corridors.

Our contribution addresses an efficient method for quality control of MLS surveys.
The idea is to determine point cloud deviations to MLS point cloud data of another pass or
another scanner. We evaluated datasets of three challenging scenes and detected system-
atic errors after a tunnel of almost 20 cm and inhomogeneous point cloud distortions of
8 cm next to high retaining walls. Varying co-registration parameters also indicated poor
georeferencing quality.

In a nutshell, our proposed methodology computes transformation parameters for
individual scan profiles to minimize point cloud discrepancies. By eventually transforming
profile-by-profile, we account for short-term variations and compensate for them without
interpreting the cause of the error. As demonstrated, our approach minimizes deviations
between multiple MLS passages and multiple scanners significantly. After removing the
systematic components, we propose to average the data, obtaining a quality-enhanced MLS
point cloud.
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Appendix A. Quaternion Algebra

Appendix A.1. Basic Relations

A quaternion q and its conjugate q∗ are given by

q = q0 + q1 î + q2 ĵ + q3 k̂

q∗ = q0 − q1 î− q2 ĵ− q3 k̂ .
(A1)

In case of a unit quaternion, |q| = √q∗ q = 1. The multiplication of two quaternions q
and p is defined as

p q = p0 q0 − p q + p0 q + q0 p + p× q , (A2)

where p and q are the vector components of p and q. A pure quaternion has a zero scalar
component v = 0 + v. Considering q as the axis–angle representation for spatial rotations
in R4, we defined Lq(v) as an operator that rotates vector v around the axis e by angle θ (cf.
Equations (3) and (4)).

Applying the conjugate operator Lq∗(v) with q∗ to v, the vector is rotated around the
negative axis −e

Lq∗(v) = q∗ v q . (A3)

Appendix A.2. Sample Calculation for Averaging Point Clouds

Let us consider an example for averaging point clouds with Equation (15). Our pure
quaternion is rotated to v = 0 + v, with its vector component being v = [1, 1, 1]T . We
define the transformation parameters as

t = [0.5, 0.5, 0.5]T e = [1, 0, 0]T θ =
π

4
,

yielding
q = 0.92388 + 0.38268 î + 0 ĵ + 0 k̂ .

The transformation of v with t and q results in

Lq(v) + t = r =

 1.0000
0.0000
1.4142

+

 0.5000
0.5000
0.5000

 =

 1.5000
0.5000
1.9142

 .
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Our new transformation parameters consist of q′, which takes θ/2 as the rotation angle

q′ = 0.98079 + 0.19509 î + 0 ĵ + 0 k̂ ,

and of the pure quaternion t′ = 0 + 0.5 t for translation. We finally obtain our transformed
vector v by

Lq′(v) + L∗q′(t
′) =

 1.0000
0.5412
1.3066

+

 0.2500
0.3266
0.1353

 =

 1.2500
0.8678
1.4419


and our transformed vector w (w is its pure quaternion counterpart) by

L∗q′(w− t′) = L∗q′

 1.2500
0.2500
1.6642

 =

 1.2500
0.8678
1.4419

 .

Appendix B. Solution of a Constraint Gauss–Helmert Model

Our Jacobian matrix A contains derivatives with respect to the unknown parameters.
These include three translation and four rotation parameters. The number of rows in B
are three times the number of points. We compute derivatives with respect to all three
coordinate components, arrange them in the diagonal, and append the partial matrices
horizontally. The matrix grows quadratically, which is why it is necessary to treat B as
a sparse matrix for large point clouds. Matrix C is a one row matrix, and its entries are
derivatives of the constraint with respect to the unknown parameters.

A[n×7] =
[

∂ f
∂q0

∂ f
∂q1

∂ f
∂q2

∂ f
∂q3

∂ f
∂tx

∂ f
∂ty

∂ f
∂tz

]∣∣∣
x0, v0

B[3n×3n] =


∂ f

∂vx1
. . . 0 ∂ f

∂vy1
. . . 0 ∂ f

∂vz1
. . . 0

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . ∂ f

∂vxn
0 . . . ∂ f

∂vyn
0 . . . ∂ f

∂vzn


∣∣∣∣∣∣∣∣∣
x0, v0

C[1×7] =
[

∂c
∂q0

∂c
∂q1

∂c
∂q2

∂c
∂q3

∂c
∂tx

∂c
∂ty

∂c
∂tz

]∣∣∣
x0

(A4)

We find the solution to the constraint GHM model by solving the linear equation
system [

−
(

AT(BQlBT)−1A
)

CT

C 0

][
x
kc

]
=

[
−AT(BQlBT)−1wm

wc

]
(A5)

with the misclosure vector and scalar being

wm = −B v0 + f

wc = 1− c .
(A6)

Based on the mathematical model and the observations, we compute the vector
of residuals

v = QlB
T
(

BQlB
T
)−1

(wm −A x) . (A7)

The variance factor

σ̂2
0 =

vTQ−1
l v + xTQx

−1x
n− 7 + 1

(A8)

is required to derive the variances and covariances of the seven transformation parameters
by ∑∑∑x = σ̂2

0 Qx. For more details and the mathematical derivation, the reader is referred
to [40,41].
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