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Abstract: Multimodal remote sensing image registration is a prerequisite for comprehensive applica-
tion of remote sensing image data. However, inconsistent imaging environment and conditions often
lead to obvious geometric deformations and significant contrast differences between multimodal
remote sensing images, which makes the common feature extraction extremely difficult, resulting
in their registration still being a challenging task. To address this issue, a robust local statistics-
based registration framework is proposed, and the constructed descriptors are invariant to contrast
changes and geometric transformations induced by imaging conditions. Firstly, maximum phase
congruency of local frequency information is performed by optimizing the control parameters. Then,
salient feature points are located according to the phase congruency response map. Subsequently,
the geometric and contrast invariant descriptors are constructed based on a joint local frequency
information map that combines Log-Gabor filter responses over multiple scales and orientations.
Finally, image matching is achieved by finding the corresponding descriptors; image registration
is further completed by calculating the transformation between the corresponding feature points.
The proposed registration framework was evaluated on four different multimodal image datasets
with varying degrees of contrast differences and geometric deformations. Experimental results
demonstrated that our method outperformed several state-of-the-art methods in terms of robustness
and precision, confirming its effectiveness.

Keywords: remote sensing; multimodal image registration; phase congruency; Log-Gabor filter

1. Introduction

Nowadays, advanced remote sensing technology can realize omni-directional and
multi-granularity perception of the same target scene under different imaging environment
and conditions [1]. In the meanwhile, rich multimodal remote sensing images can be
acquired with different sensors, or in different time periods [2,3]. A prerequisite for
comprehensive utilization of multimodal image information is accurate image registration,
which has been widely used in many computer vision tasks such as image mosaic, image
fusion, change detection, vision-based navigation, scene matching guidance [4]. Therefore,
the accuracy of image registration is critical to the application effect of the above top-
level tasks.

Multimodal remote sensing image registration is the process of aligning remote sensing
images of the same scene taken by different sensors, at different times, or/and from
distinct viewpoints [5]. Although many related methods have been proposed [6–12], it
is still very challenging work due to the contrast inconsistency caused by differences
in imaging environment (different sensors, weather, and time periods) and the large
geometric deformations induced by imaging conditions (different platform attitudes and
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positions) (Figure 1). Recent mainstream methods have been applied successfully in
the situation where the geometric changes are small [6–9] or can be greatly alleviated
according to the capture information [10,13]. However, automatic multimodal remote
sensing image registration has not been solved effectively in complicated environments with
large geometric changes and significant contrast differences. The challenges in the accurate
registration of multimodal remote sensing images are specifically analyzed as follows:

1. Differences in imaging mechanisms or different weather capture conditions cause
non-linear radiation changes between images, which leads to significant contrast
differences, rendering traditional feature representation methods based on grayscale
or gradient less effective or even invalid.

2. Large geometric deformations occur between images acquired from different azimuths
(viewpoints) or different platforms (airborne camera, space camera), which makes it
extremely difficult to extract invariant features.

3. Images acquired at different times or by different sensors contain some structural
changes, resulting in poor consistency of the feature representation for the same target,
making it difficult to achieve accurate registration.

Remote Sens. 2022, 14, 1051 2 of 24 
 

 

where the geometric changes are small [6–9] or can be greatly alleviated according to the 
capture information [10,13]. However, automatic multimodal remote sensing image reg-
istration has not been solved effectively in complicated environments with large geomet-
ric changes and significant contrast differences. The challenges in the accurate registration 
of multimodal remote sensing images are specifically analyzed as follows: 
1. Differences in imaging mechanisms or different weather capture conditions cause 

non-linear radiation changes between images, which leads to significant contrast dif-
ferences, rendering traditional feature representation methods based on grayscale or 
gradient less effective or even invalid. 

2. Large geometric deformations occur between images acquired from different azi-
muths (viewpoints) or different platforms (airborne camera, space camera), which 
makes it extremely difficult to extract invariant features. 

3. Images acquired at different times or by different sensors contain some structural 
changes, resulting in poor consistency of the feature representation for the same tar-
get, making it difficult to achieve accurate registration. 
To alleviate the difficulty mentioned above, this paper presents a robust multimodal 

remote sensing image registration framework using local statistical frequency infor-
mation. The main contributions of our paper can be summarized as follows: 
1. The maximum phase congruency optimization method is proposed, which is a guar-

antee for stable structural feature localization in multimodal remote sensing images 
and determines the center of the feature description regions. 

2. To make full use of the frequency information and dig out structural features in im-
age better, a joint local frequency information map that combines Log-Gabor filter 
responses over scales and orientations was constructed, which offers the main infor-
mation to the feature descriptors. 

3. The geometric and contrast invariant descriptors were generated through the selec-
tion of feature scales and the orientation statistics of the region to be described on the 
joint feature map, which is critical to achieve accurate registration. 

Figure 1. Nonlinear intensity difference and geometric deformation in multimodal images. (a) SAR-
Optical image pair. (b) Optical-Infrared image pair. Original images (top line) and matching results 
obtained by our method (bottom line). The endpoints of the yellow lines in the matching results 
represent the corresponding matching point pairs. 

Due to the improvements above, the proposed method is robust for multimodal re-
mote sensing image registration with large geometric variations and significant contrast 
differences (Figure 1). The rest of this paper is organized as follows: The related works of 

  

  

(a) (b) 

Figure 1. Nonlinear intensity difference and geometric deformation in multimodal images. (a) SAR-
Optical image pair. (b) Optical-Infrared image pair. Original images (top line) and matching results
obtained by our method (bottom line). The endpoints of the yellow lines in the matching results
represent the corresponding matching point pairs.

To alleviate the difficulty mentioned above, this paper presents a robust multimodal
remote sensing image registration framework using local statistical frequency information.
The main contributions of our paper can be summarized as follows:

1. The maximum phase congruency optimization method is proposed, which is a guar-
antee for stable structural feature localization in multimodal remote sensing images
and determines the center of the feature description regions.

2. To make full use of the frequency information and dig out structural features in
image better, a joint local frequency information map that combines Log-Gabor fil-
ter responses over scales and orientations was constructed, which offers the main
information to the feature descriptors.

3. The geometric and contrast invariant descriptors were generated through the selection
of feature scales and the orientation statistics of the region to be described on the joint
feature map, which is critical to achieve accurate registration.

Due to the improvements above, the proposed method is robust for multimodal
remote sensing image registration with large geometric variations and significant contrast
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differences (Figure 1). The rest of this paper is organized as follows: The related works of
registration for multimodal remote sensing images are reviewed and the main differences
of our proposed method from others are described in Section 2. Detailed description of the
proposed registration framework using local statistical information is given in Section 3.
Comparative experiments and analysis are performed in Section 4. Finally, conclusions are
drawn in Section 5.

2. Related Works

Over the years, a variety of multimodal remote sensing image registration methods
have been proposed, which can be classified into two categories: global intensity-based
methods and local feature-based methods [14]. Global intensity-based methods obtain the
optimum transformation parameters via maximizing the similarity of global intensities
between input images, mainly including mutual information [6], cross correlation [15],
phase correlation [16], Fourier transformation [17] and wavelet features [18]. These methods
perform well for the images with high correlation in global intensity or in transform domain.
However, contrast reversal, occlusion, small area overlaps, and clutters occur frequently in
some regions of input images, which makes the intensity-based methods unable to achieve
an accurate registration.

In contrast, local feature-based methods first achieve feature matching by extracting
and comparing local features in images and then compute the transformation via the corre-
spondence of features. The advantage of these methods is that they can deal with significant
geometric deformations as well as contrast differences in images. These methods can be
classified into three groups: typical feature-based methods, deep learning-based methods,
and local structural feature-based methods. The main idea of typical feature-based methods
is to manually design different feature extraction models according to different applied
scenarios. The related typical feature extraction methods include contour-based [19], line-
based [20], region-based [21], and gradient distribution-based [8,22–25]. These methods
have a good performance in the case that corresponding features are obvious or their gradi-
ent distribution is consistent in input images. The localization performance of several local
features was compared in [26]; the best result was obtained by Root-SIFT [25]. However,
they treat all image content equally, so they are highly sensitive to structural disparities
caused by insignificant structures, such as shadow, illuminance, and resolution. Therefore,
it will lead to severe degradation of matching performance when large contrast differences
appear in multimodal remote sensing images. In recent years, with the prosperous appli-
cation of deep learning in computer vision field, deep learning-based methods have been
developed for remote sensing image registration [27–29], which can automatically learn
high-level semantic features and get better matching performance compared to typical
feature-based methods in some complicated cases. Especially, superglue [30] outperforms
other learned approaches and achieves state-of-the-art results on the task of pose estimation
in challenging real-world indoor and outdoor environments. However, these methods
cannot deal with large geometric deformation (scale and rotation), and their performance
is usually affected by the size of training data. As a result, the multimodal registration
problem still cannot be effectively solved by the current deep learning-based methods.

Different from the methods of the first two groups, local structural features-based
methods can extract more robust common features from different modalities and are less
sensitive to contrast differences. Due to these advantages, they have been successfully
applied to multimodal image registration [9,10,31–34]. As a typical representative of
structural features, phase congruency of local frequency information was first proposed
by Morrone et al. [35]. Subsequently, to improve the robustness of phase congruency to
noise and contrast, Kovesi proposed a new sensitivity measure [36] and a highly contrast
invariant localized feature detector [37]. Recently, Liu et al. [9] proposed mean local
phase angle and frequency spread phase congruency by using local frequency information
on Log-Gabor wavelet transformation space, which improved the robustness compared
with traditional multimodal matching. To extract the structural features, Ye et al. [10]
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developed the histogram of orientated phase congruency descriptor, which outperforms
several methods in matching performance. Lately, they proposed channel features of
orientated gradients (CFOG) [38] as an extension of [10] with superior performance in
image matching and computational efficiency. Xie et al. [32] achieved multimodal image
registration through combining phase correlation and multi-scale structural information.

Moreover, a structural information orientation histogram descriptor is constructed by
concatenating the orientation of magnitude and the minimum moment [37]. Li et al. [33]
proposed RIFT method for multimodal images registration via constructing a maximum
index map (MIM) for feature description, which can achieve good performance on images
with radiation-variation. However, the above-mentioned methods based on phase congru-
ency are not enough to make full use of local frequency information, leading to limitations
in processing large geometric deformation.

To address the registration problem of infrared and visible image, we constructed the
maximally stable phase congruency (MSPC) descriptor using maximally stable extremal
regions (MSER) [39] and local frequency information [31], nevertheless, in which MSER
cannot obtain a higher repeatability for multimodal images. Subsequently, we developed
a robust matching method for electro-optical by combining phase congruency with ker-
nelized correlation filter (KCF) [40], which can first adjust the input images according to
the platform parameters, and then get the registration results [13]. To deal with the multi-
modal remote sensing image registration with large geometric deformation and contrast
difference, this paper extends our early works [13,31], by fully utilizing local frequency
information. The main process of the proposed framework is shown in Figure 2. We first
obtain the maximum phase congruency of local frequency information by optimizing the
control parameters, and then extract the salient feature points according to their optimized
phase congruency response. After that, we construct the geometric and contrast invariant
descriptors (GCID) based on a joint local frequency information map (JLFM) that combines
Log-Gabor filter responses over multiple scales and orientations. Finally, image matching
and registration can be achieved by the correspondence of descriptors. In the experimental
part, we performed a more thorough evaluation in terms of robustness and precision
for the proposed registration framework with four different multimodal remote sensing
image datasets.
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Figure 2. Illustration of a registration by the proposed framework. The framework consists of three
parts: feature point detection using optimized phase consistency, construction of geometric and
contrast invariant descriptors, feature matching and image registration.

3. Methodology

In this section, the robust multimodal remote sensing image registration framework
using local statistical frequency information is presented. Section 3.1 introduces the calcula-
tion method of the maximum phase congruency of local frequency information through
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parameter optimization, and further realizes the location of salient feature points on the
optimized feature map. Then, Section 3.2 presents the construction of GCID using JLFM in
detail. Finally, the entire multimodal remote sensing image registration framework is given
in Section 3.3.

3.1. Maximum Phase Congruency and Feature Detection

Phase congruency provides a measure that is independent of the overall magnitude
of the signal making it invariant to variations in image illumination and/or contrast. To
improve the insensitive to noise and provide good localization, Kovesi [36] proposed a
new sensitivity measure and noise compensation method for phase congruency, which can
locate the features that remain constant over scales. The new measure is calculated by the
following formula:

PC(x, y) =
∑
s

∑
o

wo(x, y)bAso(x, y)∆Φso(x, y)− Tc

∑
s

∑
o

Aso(x, y) + ε
, (1)

where wo is a factor that weights for frequency spread, Aso(x, y) is an amplitude of the
Fourier component at position (x, y), and ∆Φso is a phase deviation function. ε is a small
constant to avoid the denominator being zero, and T is a threshold that eliminates noise
influence. The symbol b c denotes that the enclosed quantity is equal to itself when its
value is positive and zero otherwise. Based on this new measure, Kovesi [37] presented a
highly localized feature detector whose responses are invariant to image contrast, which
can be achieved as follows:

(1) The moment analysis equations at each point are calculated as following:

A = ∑
o
(PC(θo) cos(θo))

2, (2)

B = 2∑
o
(PC(θo) cos(θo))(PC(θo) sin(θo)), (3)

C = ∑
o
(PC(θo) sin(θo))

2, (4)

(2) The maximum moment M and minimum moment m are given by,

M =
1
2

(
A + C +

√
B2 + (A− C)2

)
, (5)

m =
1
2

(
A + C−

√
B2 + (A− C)2

)
. (6)

A large value of M indicates an edge feature point and A large value of m means that
point should be a corner; therefore, M + m contains more features than anyone of them. To
highlight features and to reduce computational complexity, we adopted the sum of phase
congruency in multiple orientations as a candidate feature map (CFM) according to (7).

M + m = ∑
o

PC2(θo) ≤∑
o

PC(θo) (7)

However, a very important factor rarely considered in the previous literature for phase
congruency feature detection is the optimization and fine adjustment of control parameters.
To improve robustness of phase congruency to nonlinear radiation deformations, RIFT [33]
proposed MIM for feature description, nevertheless, other important structural information
is lost. The literature [41] presented that the 2D-MSPC parameters can be optimally and
automatically tuned by maximizing the norm of cost function formed by M and m; however,
their calculations are very complicated. In this paper, we use the similarity of CFMs
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extracted from two input images as the criterion of parameter optimization. The larger the
similarity of structural features, the better the parameters.

There are eight parameters that mainly affect the performance of phase consistency,
which can be denoted by [Ns, No, λmin, η, σ, k, Co, g] and described as Table 1. Among them,
Ns and No are the number of filter scales and orientations respectively. Optimal values of
Ns = 4 and No = 6 are verified through detailed experiments in [33]. The changes of λmin,
k, Co, and g do not have significant effect on the phase consistency extraction results, which
has been confirmed by our experiments. Therefore, the default values of those parameters
are used in this paper. The values of scaling factor between successive filters η and ratio
of the standard deviation of the Gaussian σ have a relatively large impact on the results,
which can be seen from Figure 3.

Table 1. List of phase congruency parameters.

Parameters Range Default Meaning

Ns [3~6] 4 Number of wavelet scales.
No [1~6] 6 Number of filter orientations.

λmin ≥3 3 Wavelength of smallest scale filter
η [1.3, 1.6, 2.1, 3] 1.6 Scaling factor between successive filters.
σ [0.1~1] 0.55 Ratio of the standard deviation of the Gaussian.
k [10~20] 2 Noise scaling factor.

Co (0~1] 0.5 The fractional measure of frequency spread.
g [1~50] 10 Controls the sharpness of the transition in the sigmoid function.
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The cosine similarity of CFMs extracted from the input images was used as the criterion
of optimizing parameters. The specific optimization process can be described as follows:

(1) CFMs are produced from the input images through changing the values of η and σ,
and keeping default values for other parameters.

(2) Compute the cosine similarity of CFMs by the following formula:
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where CFMre f and CFMsen are the corresponding CFMs of reference image and

sensed image respectively.
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(3) The average cosine similarity of different CFMs for a group parameter is computed,

and the optimal parameters can be determined according to the maximum cosine
similarity of CFMs obtained by different parameter combinations.

In the algorithm above, each η has 19 combinations by changing the value of σ within
the range of (0.1, 1) at 0.05 intervals. Therefore, the optimal parameters are determined by
comparing the cosine similarity between 76 CFM pairs, those obtained from one multimodal
remote sensing image pair with different parameters. In this paper, the optimal parameters
for CFMs of a category image can be determined by their average cosine similarity. CFMs
extracted from infrared and visible images by using optimized and default parameters are
shown in Figure 3, from which we can see that the optimized CFMs (OCFMs) contained
more structural information than those obtained by default parameters.

After the extraction of optimized CFMs from multimodal remote sensing image pairs,
feature points will be detected from those CFMs by using FAST [42] and response ranking,
which can be performed as follows:

(1) FAST is applied on OCFMs obtained from input multimodal remote sensing image
pairs to get plentiful candidate feature points.

(2) To enhance the saliency of feature points, the extracted candidate feature points
are ranked according to their response value in CFMs, and the top-k points will be
selected as salient feature points.

(3) To ensure the uniform distribution of feature points, non-maximum suppression is
implemented on their n× n neighborhood.

Among the above feature point detection methods, OCFMs and response ranking
can ensure the saliency of feature points, and non-maximum suppression can promote the
uniformity of their distribution. Examples of feature point detection on a multimodal image
pair are shown in Figures 3d and 4, in which, the remote sensing images were acquired
by different sensors (Infrared and Visible) or by the same sensor (Visible) but at different
times, which leads to an obvious contrast difference between the input images. It can be
seen from the results that the feature points detected by our proposed method had high
saliency and repeatability and that their distributions were very uniform.
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3.2. Construction of GCID

Salient feature points imply that there is important structural information around
them. How to extract and describe structural information make descriptors have geometric
deformation and contrast invariance, which are crucial for multimodal remote image
registration. To explore the solution, GCID was constructed in this section. First, we built
JLFM by combing Log-Gabor filter responses over scales and orientations, which could
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achieve a robust description for local feature under large contrast difference and geometric
deformation. Then, the regions with scale and orientation invariance based on JLFM were
located. Finally, GCID were generated by using BRIEF [43] in those located regions.

Li et al. [33] proposed that phase congruency maps are not suitable for feature de-
scription because they have small value and are sensitive to noise without obvious edge
features in the image. Therefore, they presented the MIM measure instead of the PC map
for feature description; however, the important frequency information that can reflect
structural features is discarded. To make full use of frequency information and dig out
structural features in an image better, we constructed a JLFM by combing Log-Gabor filter
responses over scales and orientations as follows:

JLFM(x, y) =
1
s ∑

s
∑
o

√
Eso(x, y)2 + Oso(x, y)2, (9)

[Eso(x, y), Oso(x, y)] = [I(x, y) ∗ LGe(x, y, s, o), I(x, y) ∗ LGo(x, y, s, o)]. (10)

where Eso(x, y) and Oso(x, y) are response components produced by convolving the im-
age I(x, y) with the even-symmetric and the odd-symmetric Log-Gabor wavelets. JLFM
has two advantages for feature description. First, it can integrate multi-orientation and
multi-scale local frequency information that reflects structural features (Figure 5c) more
comprehensively than phase congruency (Figure 5b). Second, the invariance of geomet-
ric deformation can be achieved through statistics of the response of JLFM at different
scales and orientations, which is an important guarantee to obtain accurate matching of
multimodal remote sensing images (Figure 5d).
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rendering good matching results (d).

3.2.1. Scale-Invariant Description Region

Scale and rotation are the main geometric deformation between multimodal remote
images. Morel et al. [44] proposed that complex global transformations can be locally
approximated by similarity transformations. Therefore, the scale and rotation invariance of
structural feature descriptors are the main problems to be solved in this paper. First, the
scale invariance of the description region is selected by the following steps:
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(1) The scale of point (x, y) can be computed as follows:

σp(x, y) = argmax
s∈{1,2,...Ns}

(As(x, y)), (11)

As(x, y) = ∑
o

√
Eso(x, y)2 + Oso(x, y)2, (12)

where σp(x, y) is the assigned scale of point (x, y) in the neighborhood of the feature
point, which means that point (x, y) has the maximum response at σp(x, y) over Ns
scales. As(x, y) is the sum of filter responses of point (x, y) in all orientations at scale s.

(2) In the n× n neighborhood of the feature point, count the number of points that have
the same σp and use the scale σF with the largest number of points as the scale of the
feature point, which can be formulated as:

σF = argmax
(x,y)∈NF ,σp∈{1,2,...Ns}

(
Number(σp(x, y))

)
, (13)

where NF is the n× n neighborhood of the feature point.
(3) The central frequency of Log-Gabor filter controls their scales; therefore, reciprocal of

that is adopted to determine the description region radius of a feature point as follows:

RF = R0 · λmin · ησ−1, (14)

where λmin is the minimum wavelength, η is the scale factor between successive filters,
and R0 is the initial radius. The above adaptive determination of the description
regions can realize the scale invariance of the feature.

3.2.2. Rotation-Invariant Description Region

After the description regions are selected, the rotation invariance of the feature can
be achieved by the statistics of histogram on the orientation map (ORM), which is defined
as follows:

ORM(x, y) = arctan

∑
o

cos(θ)∑
s

Oso(x, y)

∑
o

sin(θ)∑
s

Oso(x, y)

, (15)

where θ is the orientation of Log-Gabor filter and Oso(x, y) is the response component
generated by the odd-symmetric Log-Gabor wavelet.

Similar to SIFT [45], the dominant orientation of a feature point is determined by the
histogram statistics in its description region on ORM, which can be described as follows:

(1) To improve the stability of description on image contrast, the range of the histogram
is (0~180◦); therefore, the histogram contains 36 bins, and every 5◦ is counted as one
bin. Each bin can be calculated by ORM and Gaussian weighted JLFM as follows:

hist(s) = hist(s) + JLFM(i, j) ∗W(i, j), s ∈ [0, 255], (i, j) ∈ NRF , (16)

W(i, j) = exp(−(i2 + j2)/2 ∗ (1.5 ∗ σF))), (17)

where NRF is the description region of a feature point.
(2) Smoothing of the histogram is performed; the highest peak of the histogram is taken

as the dominant orientation; the second highest peak that exceeds 80% of the highest
peak is regarded as the auxiliary orientation.

Figure 6 shows the calculation process of scale and orientation invariant features from
visible and NIR images. Description regions of two corresponding points are obtained by
using Formulas (10)–(13), which are shown in the middle part of Figure 6a. Orientation
histograms of description regions based on ORM and JLFM are given in Figure 6b. From
the results of histogram statistics, dominant orientations of their description regions were
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assigned as 27.5◦ and 105◦, respectively. Rotated description regions of the two correspond-
ing points on JLFMs are shown in Figure 6d. From those results, we can see that the content
of the corresponding feature point description regions on JLFMs had good similarity and
consistency. After adjusting the scale and orientation of the description region of feature
points, BRIEF was used for the construction of GCID as follows:
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Figure 6. Execution process of image feature scale and rotation invariance. (a) The scale invariance of
the corresponding feature descriptor is achieved. (b) Orientation histograms of description regions
obtained by using ORM and JLFM. (c) Dominant orientations of the description regions. (d) Rotated
description regions of on JLFMs. (b–d) ensure the rotation invariance of the descriptor.

In the description region of a feature point on JLFM, a pair of points were selected
randomly and compared by the formula as follows:

τ(p; x, y) =

{
1, i f p(x) < p(y)
0, otherwise

(18)

where p(x) and p(y) are the response values of random points x = (u1, v1) and y = (u1, v1),
respectively. According to the above criteria, N pairs of random points were selected
in the description region, and the binary assignment was performed to form a binary
code, that is, BRIEF descriptor. The selection of random points in this paper obeyed the
anisotropic Gaussian distribution; the Hamming distances were adopted to match the
BRIEF descriptors.
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3.3. Registration Framework by Using GCID

After the feature detection and GCID construction proposed in Sections 3.1 and 3.2,
the entire multimodal remote sensing image registration framework is given in this Section.

The workflow of the proposed multimodal remote sensing image registration frame-
work is shown in Figure 7, and its steps can be described as follows:

(1) OCFMs are first computed from IIn f and ISen by Formulas (1)–(8), respectively and
then feature points are detected by FAST and non-maximum suppression on OCFMs.

(2) JLFMs are obtained from IIn f and ISen by combing Log-Gabor filter responses over
scales and orientations by Formulas (9) and (10).

(3) GCIDs from IIn f and ISen are generated by using JLFMs and feature points obtained
by steps (1) and (2) according to Formulas (11)–(18), respectively.

(4) Matching results of GCIDs from IIn f and ISen are computed by their distance similarity;
the outliers are removed by random sample consensus (RANSAC).

(5) Transformation is estimated according to the matching results; the registration of IIn f
and ISen are achieved.
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The image registration workflow shown above was fully automatic, where parameter
optimization could be done based on 2–3 image pairs from the same modal. The registration
framework proposed in Figure 7 mainly included three parts: feature detection (orange),
feature description (aqua green), feature matching and registration (green). Feature points
localization implies that there are significant structural features around them, while the
construction of GCID realizes the invariant description of structural features about the
feature points. The main innovative work of this paper was the detection of salient features
and the description of invariant structural features.

4. Experiment Results and Analysis

To demonstrate the effectiveness of the proposed method, four multimodal datasets
were employed in comparative and evaluative experiments in this section. Those different
sets of images are introduced in Section 4.1. To show the effect of parameter optimiza-
tion, experiments with parameter optimization in image matching are implemented in
Section 4.2. Then, robustness of the proposed method to geometric deformation is tested
under different degrees of rotation and scale changes in Section 4.3. Finally, the comparative
experimental results of the proposed method and state-of-the-art methods (Root-SIFT [25],
RIFT [33], CFOG [38], SuperGlue [30]) are analyzed in Section 4.4. In addition, more visual
matching results obtained by the proposed method are given in this section.

To quantitatively evaluate the matching performance, performance measures such as
precision, root mean square error (RMSE), and median error (MEE) were adopted, which
can be expressed as:

Precision =
NCM
NTM

, (19)
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where NCM and NTM is the number of correct matched and total matched point pairs,
respectively.

RMSE =

√√√√ 1
L

L

∑
i=1

(pi
In f − T(pi

Sen))
2, (20)

MEE = median

{√
(pi

In f − T(pi
Sen))

2
}L

i=1

, (21)

where
{

pi
In f , pi

Sen

}
indicates the corresponding matched point pair, pi

In f and pi
Sen are the

feature point coordinates extracted from inference image and sensed image, respectively.
T is the ground-truth transformation between the two images, which can be obtained by
manually selecting the corresponding point pairs. L represents the number of matched
point pairs, and median{·} returns the median value of a set.

4.1. Multimodal Remote Sensing Datasets

Multimodal image datasets (Figure 8) employed in comparative and evaluative exper-
iments consist of the following four parts:

(1) Remote sensing dataset [14]: the dataset contains 78 image pairs, which can be divided
into 7 modal types, such as UAV cross-season images, visible day-night, LiDAR depth-
optical, infrared-optical, map-optical, optical cross-temporal, and SAR-optical images.
These images have different resolutions ranging from 500× 500 to 713× 417, while
the corresponding images have the same resolution; therefore, differences in contrast
and inconsistencies in detail are the main changes between them.

(2) Computer vision dataset [14]: this dataset contains 54 image pairs, which includes
4 modal types, such as visible-infrared images, visible cross-season, day-night, and
RGB-NIR images. These images have different resolutions ranging from 256× 256 to
2133× 1600; the corresponding images have the same resolution. Contrast difference
and geometric deformation are the main changes between the image pairs.

(3) UAV dataset [13]: those visible and infrared images were captured at the same time
from EOP on UAV, which consisted of 160 image pairs with discontinuous focus
length change from 25 to 300 mm for the infrared camera and from 6.5 to 130.2 mm
for the visible camera. The infrared images were captured by a mid-wavelength
infrared camera operated in the 3–5 µm waveband with a size of 640 × 512. The
visible images were captured by a lightweight CCD camera with a size of 1024 × 768.
Therefore, large geometric deformation and contrast differences occurred between
those image pairs.

(4) NIR-VIS dataset: this dataset was captured by Gaofen-14 satellite, which contained
40 image pairs. Near infrared (NIR) images were taken by a medium wavelength
infrared camera and the visible images were taken by a visible camera; contrast
difference is the main change between those image pairs.

Examples of the above four image datasets are shown in Figure 8. The dataset has a
total of 9 modalities and 332 image pairs. We can see that geometric deformation and con-
trast changes between multimodal images are obvious. Their ground truth transformations
were determined in advance by manual registration, and the match was considered correct
if the RMSE was less than 3; otherwise, it was false.

4.2. Parameter Optimization Experiments

According to the parameter optimization description in Section 3.1, this section gives
matching performance experiments before and after optimization to demonstrate the
effectiveness of the method. The parameters to be optimized and their ranges are given in
Table 2; from the table, we can see that the determination of a pair of optimal parameters
[σ, η] required the calculation of 76 combinations. In this experiment, CFMs were first
extracted by calculating the sum of phase congruency in multiple orientations, and then the
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optimal parameters could be determined according to the maximum of the cosine similarity
of CFMs obtained by different parameter combinations.
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Table 2. The range of optimization parameters.

Parameters Optimization Range

σ [0.1, 0.15, . . . , 0.95, 1] (Interval 0.05)
η [1.3, 1.6, 2.1, 3]

Three types of multimodal remote sensing images (infrared-optical, SAR-optical, and
depth-optical) were selected to test the matching performance in the case of optimized
parameters adopted in the process of feature extraction. The matching results before and
after parameter optimization are shown in Figure 9; from the results, we can see that the
number of correct matching point pairs was significantly increased, and that the distribution
was more uniform after optimization. In addition, four types of multimodal remote sensing
images were employed to measure the performance of optimized parameters in terms of
average NCM. The comparative results are shown in Table 3, which shows a double times
improvement in average NCM after parameter optimization over the pre-optimization.

4.3. Geometric Deformation Resistance Experiments

To verify the robustness of the proposed method to geometric deformations, visible
and infrared image dataset captured from UAV and remote sensing image dataset were used
as experimental data, which had large geometric deformations and contrast differences.
Since rotation and scale transformation are the most important geometric deformations,
this section mainly tested the robustness of our method to these two deformations.
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Table 3. Average NCM in different modal datasets by using optimized and default parameters.

Datasets Optimized Parameters
[ηInf,σInf,ηSen,σSen]

Average NCM Default Parameters
[ηInf,σInf,ηSen,σSen]

Average NCM

Infrared-Optical [1.6, 0.50, 1.6, 0.60] 86 [1.6, 0.70, 1.6, 0.70] 63
Depth-Optical [1.3, 0.50, 1.6, 0.45] 204 [1.6, 0.70, 1.6, 0.70] 101
SAR-Optical [1.6, 0.45, 1.6, 0.45] 96 [1.6, 0.70, 1.6, 0.70] 58
Map-Optical [1.6, 0.45, 2.1, 0.65] 147 [1.6, 0.70, 1.6, 0.70] 61

4.3.1. Rotation Robustness Test

In this part, five images pairs were randomly selected from remote sensing and UAV
datasets first, and then, for each pair of images, the sensed image was rotated from 30◦ to
180◦ at intervals of 30◦ to generate 6 rotated images. Therefore, 30 pairs of new images were
obtained and used to test the robustness of the proposed method to rotational changes. The
number of correct matches (NCM) of those images is shown in Figure 10; from the results,
we can see that rotation had little effect on the matching results. The average fluctuation of
NCM with rotation did not exceed 30%, which was mainly due to the rotation-invariant
design of the proposed method. The matching results of the fifth image pair at different
rotation angles are shown in Figure 11. The average NCM of the six rotated image pairs
was more than 50, which was enough for accurate image registration. The proposed
method successfully matched the rotated image pairs, although the sensed images had
scale and rotation changes, which confirmed the effectiveness of the proposed method on
rotation changes.
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4.3.2. Scale Robustness Test

Robustness to scale changes is key to testing the performance of registration methods;
therefore, 20 visible and infrared image pairs from the UAV dataset were employed to
evaluate the matching performance of the proposed method in this section.

We first chose a visible image as the inference image and then sequentially selected
20 infrared images with discontinuously varying focus lengths from 25 to 300 mm in the
same scene as the sensed images. The scale difference between the input images changed
from 0.8 to 3.2, examples of which are shown in Figure 12. The upper left image is the
reference image, and the other images with scale changes are the sensed images, the scale
of which gradually became larger. The NCM of visible image and 20 infrared image pairs
selected from the UAV dataset is given in Figure 13. Although the NCM decreases as the
scale becomes larger, the NCM obtained by our method was all above 20, which could
meet the needs of image registration. Matching results of Figure 12 by using the proposed
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method are shown in Figure 14; from the results, we can see that the proposed method
could handle large-scale changes due to the scale invariance processing in the descriptor
GCID. The registration results in the lower right corner demonstrate the good performance
of the proposed method under large scale differences.
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4.4. Comparative Experiments

To comprehensively evaluate the performance of the proposed method, compara-
tive experiments were achieved via a comparison with state-of-the-arts (Root-SIFT [25],
RIFT [33], CFOG [38], SuperGlue [30]) in terms of precision, RMSE, and MEE. The four
methods chosen for comparison are excellent algorithms for image matching based on local
features, among which Root-SIFT is a typical method for local feature description based
on gradient distribution that has excellent performance in visual place recognition and
localization. RIFT and CFOG are the representative works of multimodal remote sensing
image registration in the past two years. SuperGlue won IMC-2020, as well as two other
competitions at CVPR 2020.

For intuitive evaluation of matching performance, six multimodal remote sensing
image pairs with geometric deformation and contrast difference were selected from a remote
sensing dataset, a UAV dataset, and an NIR-VIS dataset. Figure 15 shows the matching
results of six image pairs by using the five different methods, respectively. The matching
result consists of two groups, each with five rows. The first group of images mainly
contained contrast differences, subtle structural changes, and rotational changes, while
the second group of images contained geometric deformations and contrast differences.
The matching results of each group were obtained from top to bottom by Root-SIFT, RIFT,
CFOG, SuperGlue, and the proposed method, respectively. For images with large contrast
changes from the same sensor (the first pair of the first group), all five methods could
obtain good matching point pairs, among which Root-SIFT obtained the least NCM, and
RIFT obtained the most NCM. However, CFOG and SuperGlue failed for rotated images
from different sensors (the third pair of the first group), mainly because they could not
cope with large geometric transformations. Especially for SAR-Optical images with small
structural changes and large contrast differences (the second pair of the first group), only
the proposed method worked well, which was mainly due to the design of JLFM and the
construction of GCID in our method. Due to the lack of ability to handle geometric changes,
CFOG could not cope with infrared and visible images containing scale changes (the first
pair of the second set), while other methods worked well. For multimodal images with
large contrast differences (the second and third pairs of the second group), only RIFT and
the proposed method were effective; obviously, our method obtained more NCM. Overall,
the proposed method had the best matching performance. The registration results obtained
by using the proposed method for six image pairs used above are shown in Figure 16; our
method could achieve good registration results for multimodal images with large contrast
differences and geometric deformations.

In addition, we selected ten representative images from the four datasets to compare
the matching accuracy of the above five related algorithms. The comparative results are
given in Figure 17. From the matching accuracy of remote sensing image datasets with
contrast differences and inconsistencies in details, we could see that the average precisions
obtained by CFOG and Root-SIFT were both below 65%, and those obtained by RIFT and
SuperGlue were also below 80%. While the average precision of the proposed method
was higher than 85%, because CFOG could not deal with inconsistencies in details and
Root-SIFT was sensitive to the contrast differences. Due to the large geometric deformation
in the UAV dataset, CFOG and RIFT had much lower average precisions than Root-SIFT
and SuperGlue; however, none of these four methods achieved an average precision above
85%, while the proposed method achieved average precision over 90%. On the NIR-VIS
dataset with mainly contrast difference, RIFT and the proposed method obtained higher
precision than the other three methods. Due to the contrast difference and geometric
deformation contained in the computer vision dataset, the matching accuracy of the other
four methods fluctuated greatly, and their average precisions was lower than 80%, except
that the precision of our method was higher than 85%.
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To evaluate the proposed method more comprehensively, we compared the matching
precision of the five methods on all image pairs of the four datasets. The comparison
results are given in Table 4, the performance of the proposed method is significantly better
than other methods on UAV, remote sensing, and computer vison datasets. The average
precision of our method on the three datasets was 99.14%, 79.31%, 80.13% and 81.48%,
respectively. On the NIR-IR dataset only, the average precision of our method was slightly
lower than that of CFOG, but still higher than the other three methods. Table 5 shows the
quantitative evaluation results of the proposed method on different types of images. The
average precision of the proposed method on different types of multimodal images was
higher than 75%; the average NCM was more than 100. The average RMSE of registration
on the datasets was less than 3 pixels; the MEE was less than 1.5 pixels, which met the
requirements of practical application. Finally, RMSE of registration obtained by the five
methods on different types of images are shown in Figure 18. The RMSEs of SuperGlue
and Root-SIFT for different types of image data fluctuated greatly; their respective average
values were higher than 5 pixels. The RMSEs of CFOG and RIFT were relatively stable;
however, their respective average values were still higher than 4 pixels. The average RMSE
of the proposed method was less than 3 on each type of images, which indicates that our
method was robust to contrast differences and large geometric deformation between the
multimodal remote sensing images.

Table 4. Comparison of Average Precision for five different methods.

METHOD
AVERAGE PRECISION/%

NIR-IR UAV Remote Sensing Computer Vision

SUPERGLUE 76.46 40.24 44.72 63.31
CFOG 99.17 0 61.50 63.29
RIFT 99.10 12.57 77.68 39.31

ROOT-SIFT 98.15 53.69 41.14 47.98
OURS 99.14 79.31 80.13 81.48

Table 5. Quantitative evaluation of proposed method on different types of images.

Metric Cross-Season Day-Night Opti-Opti Depth-Opti Map-Opti SAR-Opti IR-Opti NIR-Opti VIS-IR

MEE 1.446 0.9649 1.1478 1.026 1.3842 0.8799 1.1324 1.089 1.50
NCM 99 135 154 204 147 96 183 668 125
RMSE 2.4648 1.9649 1.8412 1.4847 2.378 1.2567 1.3177 1.6547 2.629

Precision 0.7678 0.8508 0.7816 0.8266 0.7595 0.8716 0.9347 0.9914 0.7931
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The above verification and comparison experiments show that the proposed method
had good adaptability to contrast difference and geometric deformation, which was mainly
due to the following two points: (1) Parameter optimization in the process of local struc-
tural information extraction; (2) Construction of joint local frequency information map and
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design of scale and rotation invariance in the feature description process. More match-
ing results of the proposed method on multimodal image pairs are shown in Figure 19,
which demonstrates the effectiveness of our method for multimodal image matching with
different variations.
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In addition, the calculation of our algorithm mainly consisted of three parts: feature
detection, feature descriptor construction, feature matching and image registration. The
calculation of the feature detection part was mainly the generation of OCFMs. Assume
that the maximum resolution of the image is M × N, then computational complexity
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of the feature detection is O(M ∗ N ∗ log(M ∗ N)). In the feature description part, the
computational complexity of GCID is O(L ∗ R2), which is related to the number of extracted
feature points L and their description regions R× R. For the last part, the complexity of
feature matching is O(L2) and image registration are O(M ∗ N), respectively. Therefore,
the total computational complexity of our method is O(M ∗ N ∗ log(M ∗ N)) + O(L ∗ R2).
The running time of the proposed registration method on the i7-9700@3.00GHz computer
was less than 3 s when the resolution of the image was lower than 1000× 1000 and the
number of feature points was less than 1000.

5. Conclusions

To improve the robustness of multimodal remote sensing image registration with large
contrast differences and geometric deformations, a robust local statistical information-based
registration framework was developed in this paper. Salient feature points were firstly
located according to the phase congruency response map that were optimized by control
parameters. Then the geometric and contrast invariant descriptors were constructed based
on a joint local frequency information map that combines Log-Gabor filter responses over
multiple scales and orientations. Finally, geometric and contrast invariant descriptors are
used to match the multimodal remote sensing image pairs and the registration can be
achieved by the matching results. Four different multimodal image datasets were used
to verify the effectiveness of the proposed method; and the results show that our method
was robust to contrast and geometric variations. Through the comparative experimental
analysis with the current popular four methods, it is shown that the matching accuracy and
registration accuracy of the proposed algorithm are better than the four current popular
methods, which confirms the superiority of the algorithm.
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