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Abstract: Dome A is the summit of the Antarctic plateau, where the Chinese Kunlun inland station is
located. Due to its unique location and high altitude, Dome A provides an important observatory site
in analyzing global climate change. However, before the arrival of the Chinese Antarctic expedition
in 2005, near-surface air temperatures had not been recorded in the region. In this study, we used
meteorological parameters, such as ice surface temperature, radiation, wind speed, and cloud type, to
build a reliable model for air temperature estimation. Three models (linear regression, random forest,
and deep neural network) were developed based on various input datasets: seasonal factors, skin
temperature, shortwave radiation, cloud type, longwave radiation from AVHRR-X products, and
wind speed from MERRA-2 reanalysis data. In situ air temperatures from 2010 to 2015 were used for
training, while 2005–2009 and 2016–2020 measurements were used for model validation. The results
showed that random forest and deep neural network outperformed the linear regression model. In
both methods, the 2005–2009 estimates (average bias = 0.86 ◦C and 1 ◦C) were more accurate than the
2016–2020 values (average bias = 1.04 ◦C and 1.26 ◦C). We conclude that the air temperature at Dome
A can be accurately estimated (with an average bias less than 1.3 ◦C and RMSE around 3 ◦C) from
meteorological parameters using random forest or a deep neural network.

Keywords: Dome A; air temperature; skin temperature; linear regression; random forest model;
deep learning

1. Introduction

In the context of global warming, great efforts have been made to investigate surface
energy balance (SEB) at the Antarctic Ice Sheet, because it is a crucial factor affecting
the surface mass balance that could either mitigate or exacerbate the global sea level
rise [1,2]. On the Antarctic Ice Sheet, the surface energy flux is an important input variable
for the verification of climate models, and the air temperature can influence the surface
characteristics, such as albedo, limiting the absorption of the shortwave radiation and
emission of longwave radiation [3,4]. Given the ecological significance of air temperature,
acquiring real-time air temperature on the Antarctic Ice Sheet is vital to the surface energy
budget. However, due to the extreme weather in the Antarctic, in situ meteorological
observation has been sparse, and reanalysis products, such as ERA-40,NCEP, and JRA-25,
suffer from large uncertainties [5]. Although air temperature is very easily observed from
satellite sensors, larger errors exist very close to the surface and in extreme conditions, and
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the ice surface temperature can be retrieved with a bias of 2 K [6]. According to its close
correlation with the ice surface temperature, the air temperature could be estimated based
on thermodynamic mechanisms and statistical patterns.

Air temperature simulations have become an important application area of machine
learning. Artificial neural network and random forests are relatively widely used in
methods for obtaining air temperature products from remote sensing images of surface
temperatures and have been developed and progressed in most parts of the Earth. However,
in fact, air temperature estimations from remotely sensed land surface temperatures are far
from straightforward [7,8]. The difference between land surface temperature and air tem-
perature is strongly influenced by surface characteristics and atmospheric conditions [9,10].
However, machine learning has a strong ability to solve nonlinear relation fitting. Meyer
et al. [11] took MSG SEVIRI channel information, the NDVI, altitude, and solar zenith angle
as the input of a random forest model and adjusted the parameters by using 10-fold “leave-
location-and-time-out” cross-validation; the simulated air temperature in the independent
test set was 2.61 ◦C compared with the air temperature recorded at the weather station.
Choi et al. [12] took the 10th band and 11th band in Landsat-8, the NDVI and NDWI, and
surface temperature recorded in the Automated Synoptic Observing System (ASOS) as the
input layer of a deep neural network to simulate near-surface temperatures. The RMSE of
simulated air temperature and measured air temperature in the test set is 2.19 K. In general,
the accuracy of air temperature estimations based on remote sensing images is basically
controlled below 3 ◦C for most of the Earth [13].

Due to the special geographical environment in polar regions, there have been rel-
atively few relevant researches. Whether the connection between surface temperature
and air temperature is different from that in mid-latitude regions is still being explored.
Good [14] found that, at high latitudes, during the summer, when there are no clouds and
wind speeds are low, daytime land surface temperatures are higher than air temperatures.
However, land surface temperature and air temperatures are well-coupled in the spring,
autumn, and winter. Nielsen-Englyst et al. [15] found that snow surface temperatures de-
rived from IR radiometers are often lower than the air temperatures in the Arctic, because
a negative net surface radiation balance largely cools the surface, resulting in a surface-
driven air temperature inversion. Alden C et al. [16] found that the 2-m air temperature is
often significantly higher than the snow skin temperature measured in situ in Greenland
when incoming solar radiation and wind speed are both low. This finding may explain
the apparent biases between satellite products and 2-m air temperature. Fan et al. [17]
used Landsat-8 images to deduce the surface temperature in the Arctic sea ice region and
compared the measured parameter from buoys and automatic weather stations. The results
showed that the difference between the surface temperature and air temperature was only
1.26 K. Therefore, it is possible to combine surface temperatures with climate factors to
calculate air temperatures at the poles in terms of theory.

Nielsen-Englyst et al. [18] pointed out that the greatest limitation on satellite-derived
infrared surface temperatures is cloud cover and that the daily air temperature in the Arctic
region could only be estimated from the skin temperature using clear sky satellite images.
Meyer et al. [19] took instantaneous surface temperature products of MODIS, the slope,
aspect, clarity of sky, and season as the input of the random forest, generalized Regression
Models (GBM), and Cubist models, and using 40% randomly generated data from weather
station in Antarctica as the validation set, the RMSE was 6 ◦C. Nielsen-Englyst et al. [18]
used linear regression models to get air temperatures from satellite skin temperatures for
the Arctic region. In their study, the RMSE for the air temperature extracted from the sea
ice was 3.20 ◦C and 3.47 ◦C for land ice. Compared with related research in the Arctic,
the accuracy of the air temperature estimation based on satellite remote sensing images in
Antarctica needs to be further improved.

In the study of air temperature estimations by surface temperature, the following
problems remain unsolved: (1) Cloud blockage in the surface temperature dataset limits its
application [20]. As a result, most LST-based air temperature estimation methods are suitable



Remote Sens. 2022, 14, 1045 3 of 17

only for clear sky conditions. (2) This simple statistical method can achieve good results for
surface temperature and instantaneous air temperature but is difficult for air temperature
forecasts. A method providing estimations for instantaneous air temperature with great
accuracy is still lacking. (3) Due to severe climatic conditions, very few studies have been
conducted on the in situ air temperatures at inland Antarctica. Long-term air temperature
data are still largely unavailable needed in analyzing climate change in this continent.

The summit of the Antarctic Ice Sheet, i.e., Dome A, has been a focus area for polar
studies. The local air temperature has been an essential element of Antarctic meteorological
observations [1,21,22]. However, prior to the arrival of the Chinese Antarctic expedition in
2005, regular air temperature observations were not recorded in the Dome A region. This
study developed an approach estimating the instantaneous air temperature from the ice
surface temperature by using in situ air temperature observations ever since 2005 and the
ice surface temperature retrieved from AVHRR satellite data. Meteorological parameters,
including radiations, wind speed, and clouds, were taken into account, and the results from
three models (i.e., linear regression, random forest, and neural network) were then compared.
If the accuracy is guaranteed, instantaneous air temperature calculations can be carried out
in cloudy weather using satellite temperatures. Finally, we simulated the air temperature
data in 2004 with a better precision model to make up for the absence of in situ data in 2004.

2. Study Area and Materials
2.1. Study Area

Located at the center of the Antarctic Plateau, Dome A is the summit of the Antarctic
Ice Sheet and has a very flat and uniform surface [1]. Its unique location makes it the best
representative for the Central Antarctic Plateau [22]. In January 2005, an automatic weather
station (AWS) was set up at Dome A by the 21st Chinese National Antarctic Research
Expedition. This AWS is located at 80.37◦S, 77.35◦E, with an altitude exceeding 4000 m.
The location of Dome A (80.4◦S, 77.4◦E) is shown in Figure 1.

Figure 1. The location of Dome A and monthly mean measured temperature trend.
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2.2. Data

In this study, longwave radiation information, shortwave radiation information, sur-
face temperature, and cloud type were obtained from Advanced Very-High-Resolution
Radiometer (AVHRR) products. Since AVHRR products use MERRA reanalysis wind speed
data in calculating the surface temperature under cloudy conditions, wind speed informa-
tion was obtained from MERRA-2 reanalysis meteorological data to build the model, and
temperature data of 2 m in height were obtained from the automatic weather station at
Dome A. After multi-source data are matched for time, the statistics of the total data are
shown in Table 1.

Table 1. Analysis of the multi-source data from 2005 to 2020.

Date: 18 January 2005–31 December 2020, N = 11,640

Mean Max Min Std % Missing

Skin Temperature (/◦C) −43.69 −1.15 −76.15 15.25 4.80
Cloud type 38.05 99 0 24.51 0

Air temperature (/◦C) −52.43 −12.94 −80.88 12.72 8.24
Net shortwave radiation (Wm−2) 30.11 200.5 2.80 17.24 84.04
Net longwave radiation (Wm−2) −29.61 18 −80.40 22.98 50.8

2-m eastward wind (ms−1) −1.04 10.49 −11.06 2.42 0
2-m northward wind (ms−1) 0.16 10.75 −10.12 2.77 0

2.2.1. In Situ Data

Hourly air temperature measurements at 2 m in height have been recorded by the AWS
since 2005. Its FS23D sensor type can measure temperatures ranging from −10 ◦C to −99 ◦C,
has a 0.02 ◦C resolution, and records temperature in Universal Time Coordinated (UTC).
From Figure 2, the air temperatures recorded by AWS were compared with the product of
MERRA-2, the air temperature from MERRA-2, and AWS are well-coupled, especially when
the air temperatures at AWS were around −60 ◦C. The air temperature from MERRA-2 and
AWS are well-coupled, especially when the air temperatures at AWS were around −60 ◦C.
As shown in Figure 3, the highest monthly mean measured temperature occurred in January
2009 at −31.97 ◦C, while the lowest happened in June 2016 at −67.78 ◦C. In general, the
annual time scale of the air temperature follows the periodic law of first decreasing and
then rising.

Figure 2. The comparison between air temperature from MERRA-2 and AWS (3 is specified as the
radius and then each sample point is traversed, and the number of scattered points within the radius
of each sample point is calculated to indicate the density of the scattered point.).
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Figure 3. Skin temperature and air temperature at Dome A obtained from AVHRR and AWS.

2.2.2. Satellite Data

The APP-x used in this research is a thematic climate data record (TCDR) derived
from AVHRR satellite data. Based on the standard AVHRR Polar Pathfinder (APP) product,
the APP-x was originally developed for the NASA Pathfinder Program in the early 1990s,
involving surface, cloud, and radiative properties in both polar regions from 1982 to the
present. APP-x data products use local solar time rather than standard UTC times and
are mapped to a 25-km EASE grid at two local solar times: 04:00 and 14:00 for the Arctic
and 02:00 and 14:00 for Antarctica. Most APP-x parameters are compared with the field
campaign and meteorological station measurements in terms of bias and uncertainty (root
mean square error) for quantitative information of the error budget. More details on the
data products can be found in Key, J et al. [6]. In this study, the pixels closest to Dome
A were located in the AVHRR-X products and used as the sample pixels. The distance
from the center of each sample pixel to the AWS was 1.6 km. The surface temperature,
upward shortwave radiation, downward shortwave radiation, upward longwave radiation,
downward longwave radiation, and cloud type in the sample pixels were used as the
basic variables.

2.2.3. Reanalysis Data

Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-
2) is a NASA atmospheric reanalysis that began in 1980. The input meteorological observa-
tions for wind in MERRA-2 fall under two fundamental classifications: conventional and
satellite-based. Conventional observations are primarily direct observations of wind. Some
remotely sensed observations are also included in this classification. Satellite observations
for wind include derived retrievals for surface and upper-air wind [23]. In this study, the
2-m eastward wind and 2-m northward wind used were derived from the inst1_2d_asm_Nx
(M2I1NXASM), with 0.5◦ × 0.625◦ spatial resolution and 1-h temporal resolution in UTC.
The sample pixel covered an area of 3.56 km around the station.

In order to explain the rationality of climate factor at Dome A extraced from reanalysis
meteorological data and satellite data, the value of the grid where Dome A was located
was taken to subtract the value of each surrounding grid, respectively; then, their absolute
values were added and averaged. Therefore, an average value can be obtained for each file
to represent the heterogeneity at its time period. The average values for all files from 2005
to 2020 are represented as heterogeneity across the region in the Table 2.
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Table 2. Heterogeneity of the climatic factors in Dome A.

Climatic Factors Heterogeneity

Skin temperature 3.28 ◦C
Shortwave radiation 6.04 Wm−2

Longwave radiation 10.74 Wm−2

Eastward wind 1.04 ms−1

Northward wind 0.34 ms−1

Cloud type 11

3. Methods

Thermodynamic relationships exist between the air temperature and skin temperature.
The surface energy balance drives the surface temperature and surface melt, so it is impor-
tant to consider the surface energy balance [24]. Based on the features of the near-surface
layer of the Antarctic Ice Sheet [1], the surface energy balance can be written as:

S1 + Ln + G + H + LE= QS (1)

where S1 is the net shortwave radiative flux, Ln is the net longwave radiative flux, and G is
the subsurface conductive heat flux proportional to the temperature difference between
surface and medium below the surface. H and LE are the turbulent sensible and latent
heat flux, respectively, and QS is the net energy flux at the surface. Note that the turbulent
mixing of the lower atmosphere increases as a function of the wind speed.

For climate factors, the role of clouds in an energy exchange is complex. On the
one hand, clouds reflect and absorb shortwave radiation, which cools the skin. On the
other hand, they emit downwelling longwave radiation, which makes the skin warm. In
terms of seasonal variability, the skin–air temperature varies over the season, with the
smallest differences during the spring, fall, and summer in nonmelting conditions in the
Arctic [18]. Nielsen-Englyst pointed out that the Arctic’s seasonal cycle can be a predictor,
assumed to be the shape of a cosine function, to obtain the air temperature [18]. In this
paper, the temporal changes of skin temperature at Dome A were extracted using AVHRR
satellite data from 2005 to 2020, as shown in Figure 3. Note that skin temperatures at
the Dome A region also change periodically. The difference between air temperature and
skin temperature in 2005–2020 was extracted by season, as shown in Figure 4. It should
be emphasized that the seasons in Antarctica and the Arctic are comparatively different.
We follow the definition of a season from Chen (2010) et al. Spring occurs from October
to November, summer from December to January, autumn from February to March, and
winter from April to September [22].

From Figure 4, we can conclude that, in the spring (October to November) and autumn
(February to March), the surface temperature at Dome A is usually higher than the air tem-
perature. While the average difference of the temperature between the summer and winter
is usually lower than in other seasons, the relationship between the surface temperature
and air temperature varies seasonally. In this paper, the longwave and shortwave radiation,
wind speed, cloud type, skin temperature, and other seasonal factors were incorporated
into the model to predict the air temperatures up to 2 m high.

Among the predictors, the seasonal attribute parameter is a categorical variable, such
as the spring and summer. These are not numerical variables that can be put into a model
and be directly understood by the computer. One-hot encoding is an encoding technique
used in machine learning to process discrete features [25]. As shown in Table 3, after using
one-hot encoding, we obtained the attribute information for all the categorical variables.
For example, the spring is defined as [1, 0, 0, 0], and the summer is defined as [0, 1, 0, 0].
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Figure 4. The seasonal distribution of the temperature differences.

Table 3. The information of each parameter in linear regression.

Variables Coefficient Values P > |t|

Net shortwave radiation 0.0336 0.000
Net longwave radiation 0.0101 0.306

Cloud type −0.1714 0.000
2-m eastward wind 0.6496 0.000

2-m northward wind −0.2330 0.000
Skin temperature from AVHRR satellite data 0.4070 0.000

Spring −3.8488 0.000
Summer 0.2938 0.620
Autumn −5.4920 0.000
Winter −9.9169 0.000

Intercept −18.9640 0.000

In all modes, 80% of the data (N = 1725) were randomly selected for the training set
and 20% for the test set (N = 345) to judge the model accuracy. Ten-fold cross-validation
was used to adjust the parameters of random forest and neural network in 80% of the data
(1380) to ensure the independence of the training set and validation and test sets. The
training set and the test set were the same for all models.The skin temperature, shortwave
radiation, longwave radiation, and cloud type were obtained from the pixel nearest to
Dome A in the AVHRR-X product. The air temperature at Dome A (in situ data) and wind
speed from MERRA-2 perfectly matched the time of the two daily scenes of the AVHRR-X
product. It is important to note that the cloud type data is a continuous value; the value in
the tens place represents the type of cloud obtained by the CASPR algorithm analysis. For
example, “0” means no cloud, and “1” means that the cloud type is cirrus (each number
from 1 to 9 has a corresponding cloud type). The values in the ones place are the types of
clouds analyzed by the CLAVR algorithm. For example, “0” means “clear or partly cloudy”
and “1” means “fog”(each number from 1 to 9 has a corresponding cloud type). Although
it is the cloud type that is being read, some information about the cloud fraction can also be
inferred from the type of cloud.

3.1. Random Forest Model

Random forest belongs to the family of ensemble machine learning algorithms that
predicts a response (in this case, the respective climate parameters) from a set of predictors
(matrix of training data) by creating multiple decision trees (DTs) and aggregating their
results [26,27]. Every tree in a random forest is a Classification And Regression Tree (CART).
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The branch of CART used in solving regression problems is the mean square error (MSE),
and variance reduction is used as the criterion for feature selection. For a dataset containing
n samples, the samples are randomly selected each time and then returned to the original
dataset so that the samples may still be collected in the next sampling. The process is
repeated to obtain different trees that form the random forest. Note that the features are
randomly selected from the samples and that the decision tree is built automatically using
these features for the selected samples. In addition, not all characteristic variables are used
in the construction of each decision tree model, but a subset is randomly extracted from all
features to train the model. As for the data to be predicted, each parameter is decided by
each tree in the constructed random forest. Each vote has the same weight, and the output
is the average of each tree.

3.2. Deep Learning Model

Due to the rapid developments of deep learning, the algorithm has become widely
used in numerical prediction, image processing, and other fields [28–32]. Commonly used
network structures include the convolutional neural network, recurrent neural network,
and deep neural network. The convolutional neural network is often applied to images,
because when features are extracted from images, the image is regarded as a digital matrix,
and the correlation between pixels and local features can be extracted. A recurrent neural
network is often used to process time series data and considers the background signal
before and after the time period of the current input as being closely related. In general, a
deep neural network is often used for prediction; the input contains a series of numeric
column vectors, which are the influencing factors of the predicted value. For this study, the
main focus was the influence of various factors on the temperature. Due to the use of multi-
source data, a lot of data gaps could be found in the continuous time series, which could
introduce significant prediction errors into the next period. For long-time series predictions,
the recurrent neural network has the tendency of significant error accumulations. Therefore,
a deep neural network was used for air temperature prediction in this study.

The neuron receives input signals from n other neurons. These signals are transmitted
through weighted connections, and the total input value received by the neuron is compared
to the neuron’s threshold. The output of the neuron is produced by activation function
processing. The existence of the activation function makes the model have a nonlinear
structure to handle more complex things. In this study, ReLu was used as the activation
function. When the activation function threshold was reached, the neuron signal was
transmitted; otherwise, the neurons were suppressed.

In multi-layer network learning, an error Back Propagation (BP) algorithm is used
to train the datasets. The algorithm adjusts the weights and biases on each node through
learning and making the target closer to the real value. Using the connection weight as an
example, the weight adjustment is as follows:

∆whj = −η
∂Ek
∂whj

(2)

where ∆whj is weight change of connection between two neurons at layer h and layer
j, and ∂Ek is the mean square error between the output and the real value in the training
set. η ∈ (0, 1) is the learning rate that controls the step size of each round in the algorithm.
When the learning rate is too small, the convergence rate will be very slow, and the local
minimum will probably be found rather than the global minimum. When the learning rate
is too high, it will cause concussion.

Deep learning models are very deep neural networks. For neural network models, an
easy way to improve their understanding is to increase the depth of the network. The larger
the network depth, the more the parameters (e.g., neuron connection weight and threshold
value) available to complete more complex learning tasks. The complexity of the model can
also be increased by increasing the number of neurons in a single layer. However, errors are
constantly transmitted between neural layers. When the depth is too large, errors tend to
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diverge during transmission and fail to converge to a stable state, which could even cause
the gradient to disappear.

For this study, the neural network model needs to be optimized by artificially adjusting
the number of neurons in each layer and the depth and learning rate of the neural network.
As shown in Figure 5, a deep neural network (DNN) uses the numerical data as the input,
processes the data layer by the stratum through the hidden layer (11 layers; the number of
neurons in each layer is as follows in Figure 6, for example. The first layer has 16 neurons,
and the second layer has 32 neurons.) and, finally, generates the data through the output
layer. The process of adjustment for the parameters of neural networks will be mentioned
in Section 4.

Figure 5. Eleven layers of DNN. Fcn represents the full connection layer; each full connection layer
also connects to a ReLu layer.

Remote Sens. 2022, 13, x FOR PEER REVIEW 18 of 18 
 

 

 

 

 

Figure 6. The process of adjusting the parameters for random forest (The score is the average score
after 10-fold cross-validation.).
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Note that the attribute value of the seasonal factor is 1. It means the coefficient of one
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between the 2-m eastward wind and skin temperatures from the satellite image and air
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Dome A is generally a warming effect.

In the construction of the random forest model, one major problem is parameter
adjustment. The parameters that have to be adjusted include the number of trees in
the random forest (n_estimators), the maximum depth of the decision tree (max_depth),
and the maximum number of features in the selected feature subset (max_features). In
order to find the optimal value for the parameter needed to be adjusted, the parameter is
constantly being debugged within a reasonable range. When testing for the optimal value
of a single variable, the other variables are kept unchanged. After finding the optimal value
of one parameter, it is used in the subsequent tests to find the optimal value for the other
parameters.

The score indicates the prediction accuracy. In Figure 6, the score is determined using
Equations (3)–(5), where fi refers to the value in model regression, yi is the actual value
of sample i, and ŷ is the average of the real value. The larger the value of the score, the
higher the accuracy of the model. Both the test set and the training set were used in
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evaluating the model. The score of the training set represents the fitting strength of the
model, while the score of the test set indicates its generalization ability. As shown in
Figure 6, when the threshold is reached, the model accuracy does not increase even when
the n_estimator, max_depth, and max_features are increased. In the model, the values
for the n_estimator, max_features, and max_depth were set to 99, 9, and 22 (the optimal
parameters of n_Estimators was firstly found; then, the parameters of Max_depth and
Max_feature were adjusted).

score = 1− u
v

(3)

u =
N

∑
i=1

( fi − yi)
2 (4)

v =
N

∑
i=1

(yi − ŷ)2 (5)

Manual adjustment cannot be avoided in the construction of an artificial neural net-
work. Firstly, the number of layers of the neural network was adjusted. Through a large
number of pre-experiments, the network structure of 16-32-64-128-64-32-16-1 was deter-
mined to be the great structure, and the model was further optimized on this basis (This
network structure can be similarly understood as a decoder and encoder. Before the fourth
layer, it functions like an encoder. After the fourth layer, it functions like a decoder. This
pyramid structure enable neural networks to learn high-dimensional features.). Starting
with the fourth layer, we added more layers of 128 neurons. The results are shown in
Figure 7a, when the number of layers in which the number of neurons is 128 reaches five,
and the model is optimal from the mean error, mean absolute error, mean percentage
error, and RMSE. After the layers of the neural network were determined, we changed the
maximum number of neurons using 16-32-64-128-128-128-128-64-32-16-1 as the benchmark.
As shown in Figure 7b, the model reached the best from the mean error, mean absolute
error, mean percentage error, and RMSE when the maximum number of neurons was 128.
Finally, the model of the neural network was determined.

Figure 7. The process of adjusting the parameters for deep learning (the mean error, mean absolute
error, mean percentage error, and RMSE are the average in the process of 10-fold cross-validation).

The fitting effects for the three models are shown in Figure 8. Based on the results, the
values predicted by the linear regression model were generally lower than the true values,
and the random forest model had the best fit. The models were evaluated using mean bias,
MAE, MAPE, and RMSE, and a summary of the results is shown in Table 4.

For missing temperature measurements, we prefer to simulate the model using the
available reanalysis data and satellite data. In the above analysis, we used 15 years of data
for training to build a high-accuracy model.

When measured data is missing, can the model be used to simulate the temperature
regardless of the time difference? Given the high accuracy produced by the random
forest model and deep learning, we used the 2010–2015 data as the training set to find the
quantitative relationship between the climate factors and air temperature. The temperature
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data for 2005–2009 and 2016–2020 were then simulated, and the simulation results are
presented in Figure 9.
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Linear Regression −7.86 ◦C 8.38 ◦C 23.87% 9.50 ◦C
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From Table 5,The random forest and deep learning approaches yielded high-accuracy
simulation results for 2005–2009, with average biases of 0.86 ◦C and 1 ◦C and RMSE values
of 3.76 ◦C and 3.94 ◦C, respectively. The results suggest that it is possible to simulate past
missing data. Data from 2005 to 2020 were then put into the two models for training, and
the missing data for 2004 were simulated. The results are shown in Figure 10. Both models
estimate that the temperature starts to cool down in January and increases in October. In
both the random forest and deep learning methods, the highest temperature appeared in the
summer at Antarctica at −23.72 ◦C (2004/12/30) and −27.54 ◦C (2004/1/23), respectively.
The simulation results can be comparable with the actual maximum air temperature for
2005–2020, as presented in Table 6.
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Table 5. Accuracy of the simulated data.

Model Time Average Biases RMSE

Random Forest 2005 −0.29 ◦C 3.59 ◦C
2006 1.42 ◦C 3.95 ◦C
2007 1.61 ◦C 3.86 ◦C
2008 1.71 ◦C 4.09 ◦C
2009 0.04 ◦C 3.37 ◦C

2005–2009 0.86 ◦C 3.76 ◦C
2016 0.36 ◦C 3.25 ◦C
2017 0.61 ◦C 3.56 ◦C
2018 2.23 ◦C 6.34 ◦C
2019 1.47 ◦C 4.88 ◦C
2020 0.53 ◦C 4.82 ◦C

2016–2020 1.04 ◦C 4.61 ◦C
Deep Learning 2005 −0.28 ◦C 3.63 ◦C

2006 1.74 ◦C 4.49 ◦C
2007 1.43 ◦C 4.08 ◦C
2008 2.05 ◦C 4.14 ◦C
2009 0.20 ◦C 3.46 ◦C

2005–2009 1 ◦C 3.94 ◦C
2016 0.80 ◦C 3.81 ◦C
2017 0.67 ◦C 3.92 ◦C
2018 2.60 ◦C 5.73 ◦C
2019 1.96 ◦C 5.0 ◦C
2020 0.06 ◦C 4.26 ◦C

2016–2020 1.26 ◦C 4.56 ◦C

Figure 10. Simulated time series data using random forest and deep learning.

In addition, we compared the simulation at 2004 obtained by random forest and deep
learning with MERRA-2. The result is shown as Figure 11; the simulated values of the
two models have good coupling with MERRA-2. The average deviation of the simulated
instantaneous temperature is low, which indicates that the monthly average temperature
obtained by the aggregation of the simulated values is highly reliable.

For the deep learning results, both the simulated (2005–2009) and the predicted (2016–
2020) values tend to be about −30 ◦C, with a large number of points forming a horizontal
line, as shown in Figure 9. Therefore, the threshold for extracting the predicted and
simulated outliers was set to −30 ◦C (see Figure 10). As for the thermodynamic factors, the
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outliers have similar Pearson coefficients for longwave radiation (−0.51 and −0.38) and
northward winds (0.3 and 0.18) in Figure 12.

Table 6. Maximum air temperatures from automatic weather stations.

Annual Maximum Temperature Time

−22.14 ◦C 2005
−18.14 ◦C 2006
−24.98 ◦C 2007
−24.44 ◦C 2008
−21.92 ◦C 2009
−12.94 ◦C 2010
−20.42 ◦C 2011
−19.28 ◦C 2012
−22.32 ◦C 2013
−22.38 ◦C 2014
−18.32 ◦C 2015
−25 ◦C 2016
−21.22 ◦C 2017
−19.82 ◦C 2018
−17.84 ◦C 2019
−23.26 ◦C 2020

Figure 11. The comparison of the simulated values with MERRA-2.

Figure 12. Pearson coefficients of thermodynamic factors as outliers.
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5. Discussion

The accuracy is a very important criterion to judge the model; previous studies have
largely focused on nonpolar regions. Regardless of the method used, the RMSE in many of
these previous studies generally fell between 2 and 3 ◦C [13]. The polar regions amplify the
Earth’s climate and experience extreme weather conditions. Little research has been done
in these areas because of their harsh conditions. The error will also increase in relevant
experiments, especially in Antarctica. In this paper, the accuracy in the deep learning
(RMSE = 3.42 ◦C) was consistent with the accuracy of the model Nielsen-Englyst et al. [18]
came up with at Arctic, and the instantaneous air temperature could be estimated under
complex conditions.

In our study, for the deep learning model, there was a certain amount of simulation
value fluctuation at −30 ◦C in the simulations of 2005–2009 and 2016–2020. In terms of
the climatological factors, the simulated values of the first five years had similar Pearson
coefficients with those of the second five years for longwave radiation and northward-wind.
In general, the simulation accuracy of both models in the first five years was higher than
that in the last five years, so it is possible for both models to simulate the missing data in
the past.

As can be seen from Figure 3, the surface temperature achieved the maximum in
2018 to 2019. The simulation air temperatures at 2018 and 2019 both have large bi-
ases and variations. The random forest (2018: bias = 2.23 ◦C, RMSE = 6.34 ◦C; 2019:
bias = 1.47 ◦C, RMSE = 4.88 ◦C) and deep learning (2018: bias = 2.60 ◦C, RMSE = 5.73 ◦C;
2019: bias = 1.96 ◦C, RMSE = 5.0 ◦C) both produced large errors. Noguchi et al. [33] studied
the response of the Antarctic troposphere to a stratospheric warming event in September
2019 and pointed out that polar warming is great influenced by this very strong Brewer-
Dobson circulation. It is possible that the events of extreme weather in 2018 to 2019 changed
the connection between matter, and the model lacked the learning of extreme events when
training data from 2010 to 2015, so the accuracy of the machine learning decreased.

Compared with deep learning and random forest, the test set of linear regression
showed a large error. However, linear regression can be used to statistically analyze the
effects of different climatic factors on air temperature. For example, we learned that 2-m
eastward wind at the Dome A region has a warming effect on air temperature at a height of
2 m from the coefficient of linear regression. For deep learning and random forest, although
they both have high accuracy and a certain anti-interference ability, the model was just a
black box, and we could not analyze whether climate factors have a positive or negative
impact on air temperature.

The use of multi-source data also brings a series of problems. The first is the resolution
of different data. The in situ data comes from automated weather stations and represents a
point, while the individual pixel values of the reanalyzed data and the AVHRR satellite
data represent the values of an area. Are the in situ temperatures at the weather station
representative of the air temperatures over the area? Hall et al. [34] found that the surface
temperature of in situ data changes measured in the field were within 1 ◦C on a 1-km
scale over the Greenland Ice sheet in the Arctic, and the temperature variation was mainly
determined by surface roughness. Snyder et al. [35] pointed out that, in uniform and flat
surfaces that can be easily measured and characterized, including inland, water, sand, snow,
and ice, the measured temperature at the site can be used as a verification of the temperature
products at the pixel scale. That is, once the region is determined to be uniformly heated,
the measured data can represent the temperature of a certain region. Dome A sits on the
Antarctic Plateau, with thin air and low wind speeds, and has an extremely flat, smooth
surface. It is theoretically appropriate to treat the measured temperature as a regional
value. Secondly, the simulation of temperature depends on specific environmental factors;
that is to say, for the simulation of instantaneous temperature, when a certain kind of data
is missing in this time series, the model will not be used. Therefore, simulations for air
temperature in a time series from April to September is still lacking.
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6. Conclusions

In this study, we proposed three methods: linear regression, random forest, and
deep learning to estimate air temperature from satellite surface temperature. All models
incorporated seasonal factors, cloud type, wind speed, short-wave radiation, long-wave
radiation, and surface temperature as predictors of energy transfer over the surface of the
Antarctic Plateau. In terms of the accuracy of the model, the deep learning effect was the
best. The MAE of the test sets was 2.65 ◦C, and the RMSE was 3.42 ◦C. Random forest
followed with a MAE of 2.77 ◦C and RMSE of 3.70 ◦C. The ability of the model to simulate
missing data in the past was also evaluated. The data from 2010 to 2015 were trained by a
deep learning and random forest model; then, the air temperature data from 2005 to 2009
and 2016 to 2020 were estimated. In the random forest, the mean deviation of temperature
from 2005 to 2009 was 0.86 ◦C, and the RMSE was 3.76 ◦C. The average deviation from 2016
to 2020 was 1.04 ◦C, and the RMSE was 4.61 ◦C. In the deep learning model, the average
deviation of the temperature from 2005 to 2009 was 1 ◦C, and the RMSE was 3.94 ◦C. The
mean deviation of the temperature from 2016 to 2020 was 1.26 ◦C, and the RMSE was
4.56 ◦C. According to the simulation results, the generalization ability of random forest
was similar to that of deep learning in this modeling.

Finally, the data from 2005 to 2020 were trained in a random forest and deep learning
model to simulate the missing temperature data in 2004. In comparison with the simulated
values of 2004 and MERRA-2, it was found that the mean deviation of the instantaneous
temperature simulated by deep learning was low (−0.23 ◦C). This means that the monthly
mean air temperature aggregated from the simulated values had a high degree of confi-
dence. This paper provided a method to generate a supplement for the monitoring of 2-m
air temperatures at Dome A in a time series.
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