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Abstract: With the development of radio technology, passive bistatic radar (PBR) will suffer from
interferences not only from the base station that is used as the illuminator of opportunity (BS-IoO),
but also from the base station with co-frequency or adjacent frequency (BS-CF/AF). It is difficult for
clutter cancellation algorithm to suppress all the interferences, especially the interferences from BS-
CF/AF. The residual interferences will seriously affect target detection and DOA estimation. To solve
this problem, a novel target detection and DOA estimation method for PBR based on compressed
sensing sparse reconstruction is proposed. Firstly, clutter cancellation algorithm is used to suppress
the interferences from BS-IoO. Secondly, the residual interferences and target echo are separated
in spatial domain based on the azimuth sparse reconstruction. Finally, target detection and DOA
estimation method are given. The proposed method can achieve not only target detection and DOA
estimation in the presence of residual interferences, but also better anti-mainlobe interferences and
high-resolution DOA estimation performance. Numerical simulation and experimental results verify
the effectiveness of the proposed algorithm.

Keywords: passive bistatic radar (PBR); target detection; DOA estimation; co-channel interference;
compressed sensing sparse reconstruction

1. Introduction

Passive bistatic radar (PBR) itself does not emit an electromagnetic signal but uses
the third-party non-cooperative emitter as the illuminator of opportunity (IoO) for tar-
get detection and tracking [1,2]. Compared with the traditional active radar, it has the
following advantages: (1) No need to build transmitter, low cost, and small size; (2) No
specific frequency distribution and no electromagnetic pollution; (3) The radiation sources
are widely distributed, which is convenient for information fusion, radar networking and
multi-station positioning. Therefore, in recent years, PBR has attracted extensive atten-
tion [3–6]. At present, the feasibility and detection performance of different civil signals,
including frequency modulation (FM) broadcast signal [7,8], digital television broadcast
(DVB-T) [9,10], China mobile multimedia broadcasting (CMMB) [11], Global Navigation
Satellite System (GNSS) [12], long-term evolution (LTE) signal [13–15] and so on, have been
studied as IoO. Moreover, many research results have been obtained.

In PBR, the direction of arrival (DOA) is an important parameter to be estimated [7,16].
For example, people can locate a target through the estimated target bistatic distance and
DOA. In a passive multi-static radar, DOA can help to reduce the false associations between
the targets and measurements [17,18]. DOA estimation in PBR has been intensively studied
and many methods have been proposed [19–21]. For example, in [22], using a pair of Yagi–
Uda antennas, a DOA estimation method based on interfere metric is proposed. In [23],
the ADCOCK antenna is used as a PBR receiving antenna for DOA estimation, which can
realize a 360◦ unambiguous angle measurement of the target. Subsequently, in [24], an
improved DOA estimation has been proposed, which can realize DOA estimation when
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the reference signal is mixed with target echo. In [19], a robust target DOA estimation
is discussed by accurately estimating the actual antenna steering vector. In [20], a DOA
estimation method based on the joint processing of nonuniform linear arrays and multi-
channel is studied, which can achieve high-precision non-ambiguous angle measurements.
In [18], a deep learning-based method for DOA estimation in PBR is proposed. In [25], a
multi-target super-resolution DOA estimation method is proposed and discussed.

In order to estimate target DOA, it is necessary to detect the target first in PBR. How-
ever, unlike the traditional active radar, the weak target echo in PBR is usually embedded in
the background of strong direct and multipath interferences (DMI) due to the bistatic and
continuous wave transmitting and receiving system [26]. Therefore, in the traditional target
detection and DOA estimation method of PBR, the clutter cancellation method should be
first used to suppress DMI. Following this, the range-Doppler cross-correlation (RDCC) is
conducted to further increase the target signal to clutter plus noise ratio (SCNR). Assuming
that all strong DMI are suppressed effectively, the target echo is detected. Finally, using
the data corresponding to the target range and doppler unit, the target DOA is estimated
according to the phase differences of the RDCC results corresponding to different antenna
array elements [19–21]. In the traditional PBR based on FM and analog TV, which adopt
the frequency division multiple access (FDMA) technique, the interferences mainly include
the DMI from the base station that is used as the IoO (BS-IoO) [7,22]. At present, many
clutter cancellation methods [26] have been proposed, such as least mean square (LMS) [27],
extended cancellation algorithm (ECA) [28], sub-carrier domain algorithm [29,30], etc.
These methods have been proved to be effective in suppressing DMI from BS-IoO [26,31].
However, with the development of radio technologies such as communication, navigation
and radar, frequency reuse is becoming more and more common, resulting in more and
more serious mutual interference between different radios. This means that PBR will suffer
from interferences not only from BS-IoO, but also from the base station with co-frequency
or adjacent frequency (BS-CF/AF) [32,33]. For example, in mobile communication systems
(including 2G, 3G, and 4G), due to the cellular network site layout structure and dense
site layout, the transmitted signals of different base stations cannot be distinguished by
frequency. Therefore, the echo antenna in mobile communication signal-based PBR will
receive DMI sent by multiple BS-CF/AF (in this paper, the DMI from BS-CF/AF is called
co-channel interference). Since different base stations transmit different signals in the
mobile communication systems, it is impossible to eliminate the interferences of BS-CF/AF
using the reference signal of BS-IoO [15,34,35]. At the same time, for densely distributed
Wi-Fi signal with only 2.4 GHz and 5 GHz frequency bands, and digital terrestrial mul-
timedia broadcasting (DTMB) stations working in the same frequency band with similar
space but different broadcast contents, when these signal sources are used as IoO for target
detection, there will also be residual interferences after clutter cancelation [33]. When there
are strong interferences surplus, the preconditions of the traditional method in [17–24] will
no longer be met (because the SCNR of target is very low). Therefore, its performance will
be seriously degraded. In order to suppress these residual interferences, adaptive digital
beamforming (ADBF) is usually used [35,36]. However, the DOA estimation performance
of ADBF is related to the 3 dB half beam width of the antenna when all spatial degrees of
freedom are used to suppress residual interferences. Therefore, in order to obtain good
DOA estimation performance, high-cost large-scale array antenna should be used [36].

It is necessary to find a new method to realize both target detection and accurate DOA
estimation for PBR in the presence of residual interferences. However, the target echoes in
PBR are usually very weak. In order to improve SCNR, RDCC should be carried out first.
Because there is only one snapshot data after RDCC, it is difficult to use traditional spatial
spectrum estimation algorithms such as MUSIC and ESPRIT. Moreover, the compressed
sensing sparse reconstruction algorithm can realize spatial spectrum estimation in the case
of single snapshot data, which is very suitable for PBR. Therefore, in this paper, a novel
target detection and DOA estimation method in PBR based on compressed sensing sparse
reconstruction is proposed. In this method, compressed sensing sparse reconstruction
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is introduced to process the signal after clutter cancellation. The processing flow of the
proposed method is as follows. Firstly, clutter cancellation algorithm is used to suppress
the interferences from BS-IoO. Secondly, RDCC is conducted to further increase SCNR.
Thirdly, the azimuth sparse reconstruction is performed in each range-Doppler unit. Finally,
after rearranging the sparse reconstruction results, target detection and DOA estimation
are carried out. Compared with the traditional target detection and DOA estimation meth-
ods, the proposed method has the following advantages: (1) Considering that the target
echo and residual interferences come from different direction, the compressed sensing
sparse reconstruction algorithm can separate residual interferences and target echo in
spatial domain. Therefore, different from the traditional DOA estimation method based
on phase interference principle [19–21], the influence of residual interferences on target
detection and DOA estimation can be eliminated using the proposed method; (2) Com-
pressed sensing sparse reconstruction algorithm is essentially a super-resolution estimation
algorithm [37,38]. Therefore, in the process of target detection, it can obtain better anti-
mainlobe interferences and performance than traditional ADBF, and in the process of target
DOA estimation, it can achieve high-resolution target DOA estimation. Therefore, the pro-
posed method can not only achieve target detection and DOA estimation in the presence of
residual interferences, but also better anti-mainlobe interference and high-resolution DOA
estimation performance. The simulation and experimental results show that the proposed
algorithm has a good level of performance.

The organizational structure of this paper is as follows. Section 2 describes the signal
model. Section 3 elaborates on the proposed target detection and DOA estimation algo-
rithm based on compressed sensing sparse reconstruction. Sections 4 and 5 demonstrate
the numerical simulations and experimental data processing. Finally, Section 6 draws
a conclusion.

2. Signal Model

In this paper the global system for mobile communication (GSM) signal is consider as
IoO for target detection and tracking. Figure 1 shows the schematic diagram of radar target
detection structure for GSM-based PBR. As can be seen from Figure 1, due to the cellular
network site layout structure and dense site layout, the received signal of the GSM-based
PBR includes the signal reflected by the moving target and interferences from both BS-IoO
and BS-CF/AF.

Figure 1. Schematic diagram of radar target detection structure for GSM-based PBR.
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When a uniform linear antenna array with M elements is exploited, the received signal
of each array antenna element can be represented as:

sm [n] =
Nk

∑
k=1

Qk[n]ej2πm d
λ sin(φk) +

NH

∑
h=1

Gh[n]ej2πm d
λ in(φh)+

NTa

∑
c=1

Bc[n]ej2πm d
λ sin(ϕc)

+zm[n] m = 1, · · · , Mn = 0, · · · , N − 1
(1)

where: Qk[n] is the complex envelope of the k-th DMI from BS-IoO, Gh(n) is the complex
envelope of the h-th co-channel interference (DMI from BS-CF/AF), Bc(n) is the complex
envelope of the c-th target echo.

φk is the DOA of the k-th DMI from BS-IoO, φh is the DOA of the h-th co-channel
interference, ϕc is the DOA of the c-th target echo.

Nk is the total number of interferences from BS-IoO, NH is the total number of co-
channel interferences, NTa is the number of target echoes.

zm[n] is thermal noise in the m-th array element, N is the total number of the signal
samples, d is the distance between the adjacent array elements, λ is the signal wavelength.
In this paper d is set as λ

2 unless otherwise specified.
As can be seen from Equation (1) and previous analysis, with the development of

cognitive radio technology, electromagnetic spectrum reuse will become more and more
common. At the same time, restricted by the signal transmission characteristics of some
radiation sources (such as the cellular network communication structure of mobile com-
munication system), the echo antenna of PBR will receive the interferences not only from
BS-IoO but also from BS-CF/AF. After using clutter cancellation algorithm to suppress the
interferences from BS-IoO, the residual co-channel interferences will still seriously affect
target detection and DOA estimation. In the following, we will introduce a compressed
sensing sparse reconstruction method to process the signal after clutter cancellation, which
can realize target detection and DOA estimation in the presence of interference residue.

3. Algorithm Description

The proposed target detection and DOA estimation method based on compressed
sensing sparse reconstruction is shown in Figure 2. It can be seen from Figure 2 that the
proposed method in this paper mainly includes the following steps:

1. Clutter cancellation: Firstly, using the reference signal of BS-IoO obtained by dig-
ital beamforming (DBF) and purification, the DMI from BS-IoO in each channel is
suppressed by clutter cancellation algorithms such as ECA-B.

2. Range-Doppler cross-correlation (RDCC): RDCC between the reference signal of BS-
IoO and the cancelled signal is conducted to improve the SNR of targets. Additionally,
since the residual co-channel interferences are not related to the reference signal of
BS-IoO, the target signal to clutter ratio (SCR) can also be greatly improved. Therefore,
the impact of residual interferences (mainly weak interferences) on target detection
and DOA estimation can be reduced.

3. Sparse coarse reconstruction of each range-Doppler unit in Azimuth: After RDCC,
the azimuth sparse coarse reconstruction is performed in each range-Doppler unit to
obtain the signal energy in all directions. Considering that the target echo and residual
interferences come from a different direction, the residual interferences and target
echoes can be separated in spatial domain. Then the influence of residual interferences
on target detection and DOA estimation can be eliminated.

4. Construct range-Doppler matrix in each direction and target detection: After sparse
reconstruction, the results in the same direction are arranged together to form a new
range-Doppler two-dimensional matrix. Then the target echoes in different direction
are detected, and the coarse estimation results of target DOA can be obtained.

5. Sparse fine reconstruction of target range-Doppler unit in azimuth: Accurate DOA
estimation results are obtained by fine azimuth reconstruction of detected target
range-Doppler unit.
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Figure 2. The proposed target detection and DOA estimation algorithm.

The steps of the algorithm are described in detail below.

3.1. Clutter Cancellation and Range-Doppler Cross-Correlation (RDCC)

As seen in Figure 2, firstly, the reference signal of BS-IoO is obtained by DBF and
purification. It can be written as follows:

Sref[n] = Are f Q1[n] + Zre f [n] n = 0, . . . , N − 1 (2)

where, Q1[n] represents the direct signal of BS-IoO, Are f represents the complex amplitude,
Zre f [n] represents the combination of noise and other DMI from both BS-IoO and BS-CF/AF.
It should be noted that the PBR system is usually located within the scope of BS-IoO service.
Therefore, in order to meet the need of communication services, the power of direct signal
of BS-IoO received by each array element is much larger than the other signals. Then after
DBF pointing to BS-IoO and purification, the reference signal Sref[n] of BS-IoO with high
SNR can be obtained.

After acquiring the reference signal Sref[n], strong DMI corresponding to BS-IoO
in each channel is suppressed using clutter cancellation algorithms such as ECA-B. The
cancelled signal of each channel can be written as follows:

ssurm [n] =
NH

∑
h=1

Gh[n]ejπm sin(φh)+
NTa

∑
c=1

Bc[n]ejπm sin(ϕc)

+zcm [n] m = 1, · · · , Mn = 0, · · · , N − 1
(3)

where ssurm [n] is the cancelled signal of m-th th channel (i.e., the m-th array element), zcm [n]
is the combination of the noise and residual weak DMI from BS-IoO. Then, RDCC between
the reference signal of BS-IoO and the cancelled signal is conducted.

sm[τ, fd] =
N

∑
n=1

ssurm [n]s ∗ref [n− τ]e−j2π fdn/N (4)

where τ and fd are the delay unit and Doppler unit respectively. * represent conjugation.
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After RDCC, Equation (3) can be expressed as the following form:

sm[τ, fd] =
NH

∑
h=1

Ch[τ, fd]ejπm sin(φh)+
NTa

∑
c=1

Ec[τ, fd]ejπm sin(ϕc)

+Zm[τ, fd]

(5)

where:

Ch[τ, fd] =
N

∑
n=1

Gh[n]s ∗re f [n− τ]e−j2π fdn/N

represents the complex envelope of cross-correlation between residual co-channel interfer-
ences and the reference signal of BS-IoO;

Ec[τ, fd] =
N

∑
n=1

Bc[n]s ∗re f [n− τ]e−j2π fdn/N

represents the complex envelope of cross-correlation between target echoes and the refer-
ence signal of BS-IoO;

Zm(τ, fd) =
N

∑
n=1

zcm(n)s ∗re f [n− τ]e−j2π fdn/N

represents the complex envelope of cross-correlation between thermal noise (including
residual weak DMI from BS-IoO) and the reference signal of BS-IoO:

Write Equation (5) in vector form as:

s[τ, fd] = [s1[τ, fd], · · · , sM[τ, fd]]
T

=


ejπ sin(φ1) · · · ejπm sin(ϕNTa )

...
...

...
ejπM sin(φ1) · · · ejπM sin(ϕNTa )


 C1[τ, fd]

...
ENTa [τ, fd]

+

 Z1[τ, fd]
...

ZM[τ, fd]

 (6)

It is easily to see that the signal s[τ, fd] in Equation (6) can be regarded as a linear com-
bination of target echoes and residual interferences. Moreover, after RDCC, the target SCNR
will be greatly improved. For example, in GSM-based PBR, when the signal bandwidth is
80 kHz and the accumulation time is set as 0.5 s, the cross-correlation gain will reach 43 dB
(considering an accumulated gain loss of 3 dB). Therefore, the data in each range-Doppler
unit can be regarded as only composed of some residual strong interference sidelobes
or the mainlobe of the target echo corresponding to this unit (the noise and sidelobe of
weak interferences can be regarded as noise uniformly). In the following, we propose to
reconstruct the cancelled signal in Equation (6) using the sparse reconstruction method to
eliminate the influence of residual interferences on target detection and DOA estimation.

3.2. Sparse Coarse Reconstruction of Each Range-Doppler Unit in Azimuth

In the traditional method based on the principle of phase interference, target echo
is detected using the signal sm[τ, fd] in Equation (5). Following this, the target DOA is
estimated by using the data of detected range and Doppler unit. However, when there
are strong interferences surplus, it is difficult for the traditional method to detect target
echo. In order to eliminate the influence of residual interference on target detection and
DOA estimation, the sparse reconstruction algorithm proposed in [39] is introduced to
reconstruct s[τ, fd] in azimuth. The basic idea of this algorithm is to solve the following L1
norm minimum optimization problem:

min
x
‖Ax[τ, fd]− s[τ, fd]‖

2
2 + γ‖x[τ, fd]‖1 (7)
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A is the observation matrix, which is composed of steering vectors in all directions (the
linear array corresponds to −90◦ to 90◦). It can be written as follows:

A =


ej2π d

λ sin (
−NA
2NA

π) ej2π d
λ sin (

−NA+1
2NA

π) · · · ej2π d
λ sin (

−NA+2NA
2NA

π)

ej2·2π d
λ sin (

−NA
2NA

π) ej2·2π d
λ sin (

−NA+1
2NA

π) · · · ej2·2π d
λ sin (

−NA+2NA
2NA

π)

· · · · · · · · · · · ·

ejM·2π d
λ sin (

−NA
2NA

π) ejM·2π d
λ sin (

−NA+1
2NA

π) · · · ejM·2π d
λ sin (

−NA+2NA
2NA

π)

 (8)

where 2NA is the number of grids divided by azimuth space−90~90◦. From Equation (8), it
can be seen that in sparse coarse reconstruction, the signals in all direction are reconstructed.

x[τ, fd] is the signal vector to be solved. It represents the complex envelope of s[τ, fd] in
all directions, including the complex envelope Ch[τ, fd] of the target echoes and the complex
envelope Ec[τ, fd] of the residual interferences. This is as well as the signal dimension of
x[τ, fd] is 2NA × 1.

γ is a constant, ‖x[τ, fd]‖1 represents the L1 norm of x[τ, fd].
Since Equation (7) is a non-convex optimization problem, it needs to be transformed

into a convex optimization problem as shown in the Equation (9):

minimize
∥∥∥∥Ã
[

xRe
xIm

]
− ~

s[τ, fd]

∥∥∥∥2

2
+ γ1Tu

s.t.
√

xRe[m]2 + xIm[m]2 ≤ u[m], m = 1, · · ·M
(9)

where:

Ã =

[
Re(A) −Im(A)
Im(A) Re(A)

]
s̃[τ, fd] =

[
Re(s[τ, fd])
Im(s[τ, fd])

]
u = [u[1], · · · , u[M]] is a new real vector introduced to solve x[τ, fd]. xRe and xIm

represent the real and imaginary parts of x[τ, fd] respectively.
According to the interior point method [39], the optimization problem with con-

straints in Equation (7) can be transformed into the following optimization problem
without constraints:

minmize t
∥∥∥∥Ã
[

xRe
xIm

]
− ~

s[τ, fd]

∥∥∥∥2

2
+ tγ1Tu + φ(xRe, xIm, u) (10)

where φ(xRe, xIm, u) = −
M

∑
m=1

log(u[m]2 − xRe[m]2 − xIm[m]2), t is a scalar. Equation (9) is a

standard quadratic convex optimization problem, which can be solved by the method in
reference [39].

By solving Equation (10), the amplitude of s[τ, fd] in the direction of θm (θm = m
NA
∗

90− 90) can be obtained as:

x[τ, fd]

[
θm] =

√
xRe[m]2 + xim[m]2 (11)

If the target echoes and residual interferences come from a different direction, the
target echoes and residual interferences will be separated into their respective directions
after sparse reconstruction. The method proposed in this paper needs sparse reconstruction
of all range-Doppler units, which has a huge amount of computation. Fortunately, sparse
reconstruction can be processed in parallel, and GPU has become a common digital signal
processor in PBR. In practical engineering, the powerful parallel computing power of GPU
can be used to improve the computing efficiency to meet the needs of real-time processing.
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3.3. Target Detection and DOA Estimation

The sparse reconstruction results x[τ, fd][θm] are rearranged, and the results in the
same direction are arranged together to form a new range-Doppler two-dimensional matrix
sθm , as shown in the following equation:

sθm =


x
[
τ1, fd1

]
[θm] · · · x

[
τ1, fdND

]
[θm]

· · · · · · · · ·
x
[
τNt , fd1

]
[θm] · · · x

[
τNt , fdND

]
[θm]

 (12)

where:
sθm represent the range-Doppler two-dimensional matrix in direction of θm, θm is set

from −90◦ to 90◦;
τ1, fd1

represent the first delay unit and the first Doppler unit respectively;
Nt, ND represent the total number of delay units and Doppler units respectively.
After sparse reconstruction and rearrangement, the target echoes and residual interfer-

ences will be distinguished into the range-Doppler two-dimensional matrix x[τ, fd][θm] of
their respective directions. Considering that the target detection is performed in x[τ, fd][θm]
of each direction, the influence of residual interferences on target detection and DOA esti-
mation can be eliminated.

In the following, the constant false alarm rate (CFAR) algorithm is used to detect the
target echo in the two-dimensional range-Doppler matrix sθm of all directions (from −90◦

to 90◦), then the time-delay τta, Doppler-shift fdta
and DOA rough estimation θTar of the

target can be obtained. In this paper, if a target echo is detected in sθm , then the DOA rough
estimation θTar of the detected target is set as θm.

Finally, in order to obtain accurate DOA estimation and super-resolution DOA estima-
tion of the target, the azimuth fine reconstruction is performed on the range-Doppler data
s[τta, fdta ] corresponding to the detected target. The difference between fine reconstruction
and coarse reconstruction is that the segmentation dimension NA of observation matrix A
of fine reconstruction is larger. Compared with the coarse reconstruction, the fine recon-
struction has higher computational complexity (fortunately, only the target range-Doppler
unit needs fine reconstruction), but better target DOA estimation accuracy. In addition, the
DOA fine estimation θTaf can be acquired according to the peak within the range of the
DOA rough estimation θTar .

4. Simulation Analysis

In this section, the performance of the proposed method is analyzed using simulation
data. In this simulation, the GSM signal is used as IoO, and the echo antenna array is
composed of 16 array elements with half-wavelength spacing. The signals received by the
echo antenna include 15 DMI from BS-IoO, 10 co-channel interferences and 1 target echo
signal. The co-channel interferences can be divided into four strong interferences and six
weak interferences. Detailed simulation parameters are shown in Table 1. It should be
noted the SNR of a target in Table 1 corresponds to that of the original signal received by
each antenna array element. After RDCC, a target-accumulated gain of about 43 dB can be
obtained when it is assumed that the signal bandwidth of the GSM signal and accumulation
time of RDCC are set to 80 kHz and 0.5 s, respectively.

Firstly, the RDCC between the signal received by the echo antenna and the reference
signal of BS-IoO is carried out. The result is shown in Figure 3. It can be seen from Figure 3
that due to the existence of strong DMI from BS-IoO, the target echo is covered under the
sidelobes, so the target echo cannot be detected.

Following this, the ECA-B algorithm proposed in [28] is used to cancel the DMI from
BS-IoO. The range-Doppler result of the cancelled signal is shown in Figure 4. It can be
seen from Figure 4 that the zero Doppler peak caused by the DMI of BS-IoO has been
eliminated, but the target echo cannot be detected at this time, indicating that the residual
interferences still seriously affect the detection of target echo. Therefore, the traditional
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method based on the principle of phase interference in [17–24] is difficult to be applied to
the case of residual interferences.

Table 1. Simulation parameters.

Signal Components Signal Parameters

15 DMI from BS-IoO • The INR range of 15 DMI are set as 0–40 dB
• The DOA and INR of direct signal of BS-IoO are set as −50◦ and 40 dB

4 strong co-channel interferences
from BS-CF/AF

• The INR of 4 strong co-channel interferences are set as 25 dB, 23 dB, 22 dB and 21 dB
• The DOA of 4 strong co-channel interferences are set as −35◦ , −15◦ , 20◦ and 41◦ , respectively

6 weak interferences from BS-CF/AF • The INR range of 6 weak interferences are set as 0–5 dB
• The DOA of 6 weak interferences are set randomly

1 target echo • The relative bistatic range and doppler of target echo are set as 1.3 km and 100 Hz, respectively.
• The SNR and DOA of target are set as −30 dB and 3.3◦ , respectively.

Figure 3. RDCC result between the original signal received by the echo antenna and the reference
signal of BS-IoO.

Next, in order to eliminate the influence of residual interference on target detection
and DOA estimation, the azimuth sparse coarse reconstruction is performed on the signal
of each range-Doppler unit. In the process of coarse reconstruction, the dimension of
the observation matrix NA is set to 16. The sparse reconstruction result corresponding
to target range-Doppler unit is shown in Figure 5. It can be seen from Figure 5 that
there is a peak caused by the target echo in the direction of 5.6◦ and peaks caused by
strong interference sidelobes in the directions of −33.6◦ and −16.8◦. This shows that the
sparse reconstruction algorithm used in this paper can accurately reconstruct the signals
in spatial domain. Therefore, when considering the residual interferences and target
echo coming from different directions, they can be separated in spatial domain using
sparse reconstruction.

After sparse reconstruction of each range-Doppler unit, the range-Doppler two-
dimensional matrix in different directions (from −90◦ to 90◦) is constructed using the
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method described in Formulation (9). Figure 6 shows only the results corresponding to the
direction near the target. It can be seen from Figure 6 that a peak caused by target echo
can be detected in both 0◦ and 5.6◦ directions (as shown in Figure 6b,c), while no peak is
detected in the −5.6◦ and 11.2◦ directions (as shown in Figure 6a,d). This indicates that
there is a target in the azimuth region of 0◦ to 5.6◦.

Figure 4. RDCC results after clutter cancellation, (a) Range-Doppler projection, (b) Enlarged view of
target area.
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Figure 5. Sparse coarse reconstruction result of target range-Doppler unit.
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In order to improve the DOA estimation accuracy of the target, the azimuth sparse
fine reconstruction is performed on the range-Doppler unit corresponding to the target.
In the process of fine reconstruction, the dimension of the observation matrix NA is set to
180. The result of fine reconstruction is shown in Figure 7. It can be seen from Figure 7 that
there is an obvious peak at 3.5◦. Combined with the prior information of target azimuth (in
the azimuth region of 0◦ to 5.6◦) obtained by coarse reconstruction, it can be estimated that
the accurate DOA of the target is 3.5◦, which is consistent with the simulation.

Figure 7. Sparse fine reconstruction result of target range-Doppler unit.

4.1. Performance Analysis of Target Detection

This section analyzes target detection performance. The simulation conditions are as
mentioned above. It is still assumed that the signals received by the echo antenna include
15 DMI from BS-IoO, 10 co-channel interferences (including 4 strong interferences and
6 weak interferences) and 1 target echo signal. The DOA of the target is set to 0◦. The DOA
of three strong co-channel interferences are set to random values, but not within the range
of the target mainlobe. Thus, when the number of antenna elements is set to 16, the target
detection performance of the proposed method and ADBF used in [35,40] is compared
and analyzed. Figure 8 shows the results of 800 Monte Carlo experiments using these two
methods, which describes the relationship between the SCNR of the target echo and DOA
of the 4-th strong co-channel interference.

It can be seen from Figure 8 that when all strong co-channel interferences are not
located in the target mainlobe, the sparse reconstruction algorithm used in this paper and
ADBF in [35,40] both can obtain good target detection performance (a detection SCNR of
more than 12 dB can be acquired). When there is a strong co-channel interference signal
within the target mainlobe, the performance of these two methods will decrease sharply
due to the limitation of antenna freedom. However, it should be noted that, benefitting
from the high resolution of sparse reconstruction algorithm, the proposed method has
better anti-mainlobe interference ability than ADBF in [35,40]. For example, when the
number of antenna array elements is 16, to obtain a target SCNR of 12 dB using ADBF, the
angular spacing between the 4-th strong co-channel interference and the target echo should
be 6.5◦. However, using the sparse reconstruction algorithm proposed in this paper, the
target SCNR of 12 dB can be obtained only when the angular spacing is only 5.5◦. This
means that compared with the traditional ADBF method, the method in this paper can get
better anti-main lobe interference effects.
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Figure 8. Target SCNR after sparse reconstruction varying with the DOA of the 4-th strong co-
channel interference.

4.2. Performance Analysis of Single Target DOA Estimation

This section analyzes the performance of DOA estimation when there is only a sin-
gle target in a range-Doppler unit. It is assumed that all strong co-channel interferences
are located outside the target mainlobe, and the DOA of target is set to random. Other
simulation conditions are the same as above. Figure 9 shows the results of comparing
the performance of the proposed method with 3 dB half beam width through 800 Monte
Carlo experiments when the number of antenna elements is different. As can be seen from
Figure 9, the DOA estimation accuracy obtained by the sparse estimation reconstruction
algorithm is significantly better than the 3 dB half beam width of the antenna. For example,
when the number of antenna elements is 16, the 3 dB half beam width of the array antenna
is 3.17◦, while the DOA estimation accuracy by the proposed method is 0.7◦. Considering
that in ADBF [35,36,40] where all spatial degrees of freedom are used to suppress inter-
ferences, there are no airspace resources for accurate DOA estimation and the antenna
beam pattern will also be distorted, resulting in the inability to use sum difference and
amplitude comparison angle measurement. Moreover, the DOA estimation performance of
ADBF is correspondent to the 3 dB half beam width of the antenna. Therefore, the DOA
estimation accuracy of the proposed method will also be significantly better than that of
traditional ADBF.

Thus, the relationship between the DOA estimation accuracy of the proposed method
and target SNR is analyzed. Figure 10 shows the target DOA estimation accuracy obtained
using 800 Monte Carlo experiments when the target SNR ranges from −40 dB to −12 dB
(in this simulation, it is assumed that the number of antenna elements is 16). It can be
seen from Figure 10 that when the target SNR is higher, the DOA estimation will be higher.
For example, the −12 dB SNR of the target echo correspond to the 0.29◦ DOA estimation
accuracy, while the −39 dB SNR of the target echo correspond to the 1.49◦ DOA estimation
accuracy (it is still much better than the 3.17◦ DOA estimation accuracy of ADBF, the
performance of which is related to the 3 dB half beam width of the antenna when all spatial
degrees of freedom are used to suppress residual interferences [35,36]).
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Figure 9. Result of DOA estimation accuracy varying with the number of antenna elements.

Figure 10. Result of DOA estimation accuracy varying with target SNR.
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4.3. Performance Analysis of Multi-Target High-Resolution DOA Estimation

Due to the super-resolution characteristics of sparse reconstruction algorithm [37,38],
the proposed method can not only realize DOA estimation when there is only one target in
a range-Doppler unit, but it can also realize high-resolution target DOA estimation when
there are multiple targets in a range-Doppler unit. Using the simulation conditions as above
and assuming two targets’ echoes within a range-Doppler unit (the DOA of these two
targets are set as 0◦ and 5◦, respectively), the sparse reconstruction results corresponding
to the target range-Doppler unit is shown in the Figure 11. It can be seen from Figure 11
that when the DOA interval (5◦) of the two targets is less than the 3 dB beam width (6.34◦)
of the antenna, the sparse reconstruction algorithm used in this paper can achieve effective
target separation and accurate DOA estimation.

Figure 11. Sparse reconstruction results when two targets are in a range-Doppler unit.

Next, the variation of high-resolution DOA estimation probability with the number
of array elements and target angular spacing is simulated. It should be noted that in this
paper, it is assumed that correct high-resolution target detection and DOA estimation can
be achieved when two peaks in the target range-Doppler unit can be detected, and the
difference between the estimated target DOA and the actual target DOA does not exceed
3 dB half beam width. Figure 12 shows the results obtained by using 800 Monte Carlo
experiments. It can be seen from Figure 12 that the larger the number of antenna elements,
the stronger the super-resolution DOA estimation ability. For example, when the number
of antenna elements is 8 (3 dB beam width is 12.7◦), in order to achieve a high-resolution
DOA estimation probability of more than 60%, the angular spacing between the two targets
should be greater than 9◦. When the number of antenna elements is 20 (3 dB beam width
is 5◦), the high-resolution DOA estimation probability of more than 85% can be achieved
only when the angular spacing between two targets is 3◦.
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Figure 12. The probability of super-resolution DOA estimation varying with the number of array
elements and target angular spacing.

5. Field Experiment Results

To prove the validity of the proposed method, we developed a PBR system. The
uniform linear array of eight array elements was used as the receiving antenna to receive
the moving target echo and DMI from both BS-IoO and BS-CF/AF. The array element
spacing is 0.16 m, and the photograph of the antenna is shown in Figure 13. A field
experiment was conducted in Xian, China, where the GSM signal was used as the IoO
with a carrier frequency of 957 MHz, and the landing or civil aircraft take-off was set as
the target of interest. The normal direction of the antenna was aligned to the direction of
the airport runway, that is, the DOA of the target was set to about 0◦. The sketch of the
radar setup is shown in Figure 14. Where β and α are set as the bistatic angle and the angle
between radar line of sight and target flight path. From Figure 14, we can see that when
the aircraft is taking off, the DOA of the target is gradually getting closer to the normal
direction of the radar.

Figure 13. Photograph of radar antenna.
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Figure 14. Sketch of radar setup.

The signals received by each array element are transformed into digital baseband
signals after analog-to-digital conversion, digital down conversion, filtering, extraction
and other operations. Moreover, the digital baseband echo signals with a sampling rate of
200 kHz are processed offline on a personal computer. The processing flow is shown in
Figure 15. As can be seen from Figure 15, after channel equalization processing, the digital
baseband echo signal is divided into echo channel and reference channel for processing,
respectively. Following this, the reference signal of BS-IoO is obtained by the DBF in the
reference channel. In the echo channel, the time-domain clutter cancellation is performed
on the received signal of each array element to eliminate the DMI from BS-IoO, and then
RDCC is performed to improve the target SCNR. Finally, sparse reconstruction algorithm
is used for target detection and DOA estimation.

Figure 15. The processing flow of the digital baseband echo signal in the computer.

Figure 16 shows the result of RDCC of the original echo signal received (for all results
of RDCC, the adopted coherent integration time is about 0.5 s in field experiment results.
Because the signals received by the antenna include interferences both from BS-IoO and
BS-CF/AF, and the energy of these interferences are much stronger than that of the target
echo, the weak target echo is masked under the sidelobes of these strong interferences and
cannot be detected.

Thus, the ECA-B clutter cancellation algorithm in [28] and non-adaptive beamformer
are performed on the received signal in turn, and the result of RDCC in the 0◦ direction is
shown in Figure 17. It should be pointed out that the weight vector of the non-adaptive
beamformer is the steering vector of the antenna. It can accumulate target echo energy in
spatial dimension but cannot suppress interferences adaptively in spatial dimension. It
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can be seen from Figure 17 that the spikes in the zero Doppler unit have been eliminated,
indicating that the interferences from BS-IoO have been effectively suppressed. However,
due to the residual co-channel interferences, it is still impossible to detect the target echo.

Figure 16. The RDCC result of the original echo signal.

Figure 17. The RDCC result of the non-adaptive beamformer.

In order to suppress residual co-channel interferences, the data after the clutter cancel-
lation are processed using ADBF in [35,40] and sparse reconstruction algorithm, respectively.
The corresponding results of which, in the 0◦ direction, are shown in Figure 16. As can be
seen from Figure 18, both these methods can effectively suppress the residual co-channel
interferences and detect the target. However, the target DOA estimation accuracy of ADBF
is related to the 3 dB beamwidth of the antenna. When the number of antenna elements
is small, the DOA estimation accuracy is very poor. For example, the target DOA estima-
tion accuracy of ADBF is about 6.3◦ (see Figure 9) when 8-element array antenna is used.
Moreover, the sparse reconstruction algorithm can not only effectively suppress residual
co-channel interference, but also realize accurate DOA estimation. From the simulation
results of Figure 9, it can acquire target DOA estimation accuracy of about 2◦.
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Figure 18. The RDCC results of ADBF and sparse reconstruction, (a) ADBF, (b) Sparse reconstruction.

Figure 19 shows the result of sparse fine reconstruction of the target range-Doppler
unit. It can be seen that it has an obvious peak at−5◦. Combined with the prior information
of coarse reconstruction in Figure 18, it can be determined that the accurate DOA of the
target is −5◦. Spikes in other directions are the sidelobes formed by the residual co-
channel interferences.

Figure 20 shows the target trajectory tracking results obtained after multi-frame pro-
cessing using the sparse reconstruction algorithm. Figure 20a shows the range-Doppler
cumulative observation results of a landing aircraft. It should be noted that since the band-
width of the GSM is about 80 kHz, corresponding to the distance resolution of about 1.8 km,
the target is located in the same distance unit during the observation time. Figure 20b
shows the target Doppler trajectory tracking results. It can be seen that the stability de-
tection of the landing aircraft can be realized by using the method proposed in this paper.
Figure 20c shows the target DOA trajectory tracking results. It can be seen that during the
observation time, the DOA of the target changes from −6◦ to −1◦, which is consistent with
the actual target detection scene shown in Figure 14.
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Figure 19. Sparse reconstruction results of the target range-Doppler unit.

Figure 20. Cont.
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Figure 20. Target trajectory tracking result. (a) Range-Doppler accumulated observation result;
(b) Target Doppler trajectory tracking result; (c) Target DOA trajectory tracking result.

6. Conclusions

In this paper, a target detection and DOA estimation based on compressed sensing
sparse reconstruction is proposed for coping with the case in PBR when there are surplus
interferences. It is shown that in this paper, when PBR suffer from co-channel interferences,
it is difficult for the clutter cancellation algorithm to suppress all the interferences. Thus,
the preconditions of the traditional method based on the principle of phase interference
will no longer be met, and the performance of which will be seriously degraded. Analytical
derivation shows that the signal after the clutter cancellation and RDCC can be regarded
as a linear combination of the target echo and residual interferences. Therefore, in this
paper, compressed sensing sparse reconstruction is proposed to reconstruct the cancelled
signal s[τ, fd] in Equation (6), so as to separate the residual interferences and target echo
in spatial domain. Thus, the influence of residual interferences on target detection and
DOA estimation can be eliminated. The proposed method can achieve target detection
and DOA estimation in the presence of residual interferences. In addition, due to the
high resolution of the sparse reconstruction algorithm, the proposed method has better
anti-mainlobe interference ability compared with the traditional ADBF algorithm as shown
in Figure 8, and has high-resolution DOA estimation performance when there are two
targets in a range-Doppler unit as shown in Figure 12. Numerical simulation results and
experimental results verified the effectiveness of the algorithm.
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