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Abstract: Accurate cloud-masking procedures to distinguish cloud-free pixels from cloudy pixels are
essential for optical satellite remote sensing. Many studies on satellite-based cloud-detection have
been performed using the spectral characteristics of clouds in terms of reflectance and temperature.
This study proposes a cloud-detection method using reflectance in four bands: 0.56 µm, 0.86 µm,
1.38 µm, and 1.61 µm. Methodologically, we present a conversion relationship between the normalized
difference water index (NDWI) and the green band in the visible spectrum for thick cloud detection
using moderate-resolution imaging spectroradiometer (MODIS) observations. NDWI consists of
reflectance at the 0.56 and 0.86 µm bands. For thin cloud detection, the 1.38 and 1.61 µm bands were
applied with empirically determined threshold values. Case study analyses for the four seasons from
2000 to 2019 were performed for the sea surface area of the Yellow Sea and Bohai Sea. In the case
studies, the comparison of the proposed cloud-detection method with the MODIS cloud mask (CM)
and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data indicated a probability
of detection of 0.933, a false-alarm ratio of 0.086, and a Heidke Skill Score of 0.753. Our method
demonstrated an additional important benefit in distinguishing clouds from sea ice or yellow dust,
compared to the MODIS CM products, which usually misidentify the latter as clouds. Consequently,
our cloud-detection method could be applied to a variety of low-orbit and geostationary satellites
with 0.56, 0.86, 1.38, and 1.61 µm bands.

Keywords: cloud detection; cloud mask; NDWI; visible; near-infrared; ocean color; MODIS

1. Introduction

Cloud information is significant for weather analysis, climate change, and other short-
term environmental issues [1,2]. Satellite remote-sensing plays a crucial role in monitoring
the Earth’s surface and atmosphere. For remote sensing of the Earth’s surface, clouds pose
an obstacle, as they cover a large area of the Earth’s surface and need to be effectively
removed. Thus, cloud detection is a preliminary prerequisite step and one of the most
difficult problems in satellite remote-sensing [3,4].

Many studies on satellite-based cloud detection have been performed which measured
the spectral characteristics of clouds, such as high reflectance and low temperature in the
visible (VIS), near-infrared (NIR) [5], shortwave infrared (SWIR) [6], and longwave infrared
(LWIR) [7–9] bands. Brightness temperature difference (BTD) methods are also used for
cloud detection in satellite remote sensing. For example, a BTD between 11 and 12 µm
is useful for detecting stratiform clouds such as cirrus [10]. The BTD between 3.9 µm
and 11 µm is useful for detecting low-level water clouds in most scenes and partial or
thin cloud coverage at night [10]. Furthermore, there have been a number of studies to
accurately identify clouds over ice and water using the SWIR band [11], mid-wave infrared
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(IR) bands [12], VIS bands, and NIR bands [13]. Recently, cloud detection has been explored
through various deep learning techniques, including convolutional neural networks [14,15],
machine learning methods, such as the support vector machine [16] and random forest
method [17], as well as classical cloud detection algorithms including threshold-based
technique [18] and dynamic threshold [19].

Traditionally, cloud-detection methods based on simple VIS and IR window threshold
values have been widely applied [20,21] in many projects, such as the International Satellite
Cloud Climatology Project, Clouds from the Advanced Very High Resolution Radiometer
(AVHRR; National Oceanic and Atmospheric Administration), and AVHRR Processing
scheme Over cLouds, Land and Ocean [22], because clouds are generally characterized by
a higher reflectance and lower temperature than the underlying Earth’s surface [23].

In addition, NASA’s earth-observing system anchored several active and passive
satellite sensors with unprecedented observation capabilities in a formation called the
afternoon constellation or the A-Train [24]. The A-Train has been regarded as among
the most accurate sensors for detecting clouds globally [25]. The Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observation (CALIPSO) also provides global cloud and
aerosol data with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard
CALIPSO, observing the backscattered signal at 0.532 and 1.064 µm bands [26]. The
Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask (CM) product has
been the most fundamental of the MODIS land, ocean, and atmosphere products [27,28].
This is because of its long temporal record, wide swath and sampling, and broad spectral
range [25]. The MODIS CM was established based on global analyses using calibrated
MODIS radiance data in the VIS and IR bands [28].

The MODIS products provide the cloud detection product referred to as MOD35 [29,30],
relying on a series of sequential tests on reflectance (R) and radiances (or brightness
temperatures (BT)) in the instrument field of view (FOV). The MOD35 CM includes many
cloud test thresholds of reflectance, such as R0.67µm and R0.87µm for thick low and high
clouds, R1.38µm for high thin and thick clouds, and R1.6µm for low and high clouds over
snow. Additionally, the MOD35 CM includes many IR cloud test thresholds; such as
BT11µm for oceans, BT13.9µm for all nonpolar regions, BT difference (BTD) BT6.7µm for all
polar regions except Antarctic night, surface temperatures at BT11µm, BT11µm−12µm for all
land except Antarctica, BT8.6µm−11µm for all oceans, BT11µm−3.9µm for day snow, ice, land,
and ocean, BT3.9µm−12µm for day snow, ice, and land, BT7.2µm−11µm for night ice, land,
and ocean, and BT8.6µm−7.2µm for night ocean [31]. The thresholds of the MODIS cloud
detection algorithm vary depending on the region or conditions [31–33]. Consequently, the
MOD35 CM products provide a variety of information on cloud mask, sun glint, snow/ice,
heavy aerosol, thin cirrus, shadow, and information on whether it is day/night and if the
clouds are present over land and water [30]. However, the problem with the MODIS CM is
that it misidentifies snow [30,32,34] and ice [35] as clouds.

The objective of this study is to explore a method for detecting daytime clouds over
the ocean. We selected the Yellow Sea and Bohai Sea as the study areas. We used only four
channels of MODIS sensors in the VIS and NIR spectral bands. We verified our method
for several case studies by comparing it with MODIS CM. Figure 1 shows the MODIS
red–green–blue (RGB) image using 0.56, 0.86, and 1.6 µm bands [36] and the MODIS CM
(MOD35_L2) over the Yellow Sea and Bohai Sea on 3 January 2013, 03:15 UTC. The current
MODIS CM misidentifies sea ice over the Bohai Sea as clouds (pink).
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Figure 1. Example of misidentifying sea ice as clouds by MODIS CM. (a) MODIS RGB image using
0.56, 0.86, and 1.6 µm bands [36]; (b) MODIS CM (MOD35_L2) on 3 January 2013, 03:15 UTC.

2. Methods
2.1. Cloud Detection Method

This study used four bands—one VIS (0.56 µm, green band) and three NIR (0.86, 1.38,
and 1.61 µm) bands for cloud detection. For thick cloud detection, we used the normalized
difference water index (NDWI), a satellite-derived index from the combination of the
green band and NIR band [37,38]. The green and NIR bands of the Landsat Thematic
Mapper were used to produce the NDWI [39]. The water surface reflects the most radiance
in VIS bands but absorbs strongly in NIR bands [38]; thus, NDWI is sensitive to liquid
water changes.

This study proposes a relationship between NDWI and the 0.56 µm band for cloud
detection over the sea surface. Our thick cloud detection method consists of the follow-
ing steps:

First, we chose cloud pixels from the MODIS RGB image. Figure 2 presents an example
of Terra MODIS RGB images on 1 June 2017, 02:15 UTC used in this study.

Figure 2. MODIS RGB image on 1 June 2017, 02:15 UTC and the selection of clouds. The pink box
indicates clouds.
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Second, we adopted the NDWI. In this study, NDWIobs indicated the NDWI values
calculated using the green and NIR bands of MODIS data as follows [37]:

NDWIobs =
R0.56µm − R0.86µm

R0.56µm + R0.86µm
(1)

Here, NDWIobs is the NDWI observed from the MODIS reflectance data. R0.56µm and
R0.86µm are the reflectances of 0.56 and 0.86 µm, respectively.

Third, we presented NDWIcal , which is a regression relationship fitting the distribution
of the observed pixels in the NDWI-R 0.56µm plane. Herein, NDWIcal was defined in a
quadratic form as follows:

NDWIcal = a0 + a1·R0.56µm + a2·R2
0.56µm (2)

where NDWIcal is the NDWI calculated from reflectance data of the MODIS 0.56 µm band
in the NDWI-R 0.56µm plane. a0, a1, and a2 are regression coefficients.

Real cloud pixels were distributed around the NDWIcal curve (Equation (2)) (see
Figure 5). Thus, we determined the threshold values of the NDWI for cloud detection using
the standard deviation (σ) of the Gaussian distribution of cloud pixels around the NDWIcal
curve (Equation (2)), for the area marked by the pink box (in Figure 2), as follows:

NDWIcal − k·σ1 < NDWIobs < NDWIcal + k·σ1 (3)

where k is the coefficient empirically determined from the histogram distribution of the
pixels for clouds. In this study, we set k = 1. σ1 is the standard deviation of the histogram
distribution of pixels in the cloud.

Fourth, the method based on Equations (1)–(3) without other band observations often
misidentified thin clouds as non-cloud pixels. Thus, we combined the NDWI-based method
for thick cloud detection with the threshold methods using 1.38 and 1.61 µm bands for
thin cloud detection. The 1.38 µm band is commonly called the “cirrus band” because of
its sensitivity to water vapor above and within the cirrus [40,41] and is therefore useful
for optically thin cirrus detection [42–46]. The 1.61 µm band has a lower reflection and an
absorption effect on cloud ice particles [41]. This 1.61 µm band is often used in the form of
Normalized Difference Snow Index [37–39].

We applied thresholds to the reflectances R1.38µm and R1.61µm at 1.38 and 1.61 µm
bands, respectively, as:

R1.38µm > σ2 and R1.61µm > σ3 (4)

where σ2 and σ3 are the threshold values empirically determined from the histogram
distributions of the pixels for thin clouds at the 1.38 and 1.61 µm bands, respectively. For
this study, we used σ2 = 0.006 and σ3 = 0.04, which were chosen from statistical comparison
results (the best values of correlation coefficient (CC) and root mean square error (RMSE))
between MODIS CM and our CM including 1.38 and 1.61 µm bands.

2.2. Comparison

The proposed cloud detection method is compared with data from MOD35_L2.
MODIS detected various types of clouds, including thin cirrus clouds. The statistical
analysis of the proposed cloud detection algorithm with MODIS35_L2 was performed
using the probability of detection (POD), false-alarm ratio (FAR), and Heidke Skill Score
(HSS) as follows:

POD =
A

A + C
(5)

FAR =
B

B + D
(6)

HSS =
2(AD − BC)

(A + C)(C + D) + (A + B)(B + D)
(7)
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where A indicates that both the proposed CM and MODIS CM indicate a cloud pixel; B
implies that the proposed CM is a cloud pixel, but MODIS CM is not a cloud pixel; C infers
that the proposed CM is not a cloud pixel, but MODIS CM is a cloud pixel; and D infers
that both CMs are not clouds. The POD and HSS are close to 1, and the FAR is close to 0
for the best possible and perfect detections [47]. The contingency tables are presented in
Table 1.

Table 1. 2 × 2 contingency table.

CMs MODIS CM = 1 (Yes) MODIS CM = 0 (No)

Proposed CM = 1 (Yes) A B
Proposed CM = 0 (No) C D

Figure 3 shows a flowchart of the cloud detection method presented in this study.
First, the MODIS calibrated radiance data (MOD021KM) at the VIS and NIR bands were
converted to reflectance values. Next, the cloud and no-cloud flags were retrieved using
the proposed cloud detection algorithm, using the NDWI, the green band, 1.38 µm, and
1.61 µm band reflectances. Finally, our CM method was compared with MODIS CM.

Figure 3. Flowchart of the proposed cloud detection method.

3. Study Area and Data
3.1. MODIS

In this study, we used data from the MODIS onboard Terra satellite to develop a cloud
detection method. The MODIS sensor has 36 spectral bands from VIS (0.4 µm) to IR (14 µm).
This study selected four MODIS bands; 0.56 µm (band 4), 0.86 µm (band 2), 1.64 µm (band
6), and 1.38 µm (band 26). MODIS CM (MOD35_L2) was used to compare the results of the
cloud detection results proposed in this study. This study used “cloudy” and “probably
cloudy” as a classification of cloudiness in MODIS CM based on the unobstructed FOV
quality flags (“cloudy,” “probably cloudy,” “probably clear,” and “confident clear”) from
the MODIS CM.

We chose the Yellow Sea and Bohai Sea regions as the study area for the cloud detection
method development because sea ice and clouds often coexist in this region during winter.
The ice crystals of clouds have properties similar to those of ice over the sea and hence are
difficult to distinguish, making this region suitable for testing the cloud detection algorithm.
Figure 4 displays the study area (in the red box) selected for cloud detection in the Yellow
Sea and the Bohai Sea. Table 2 summarizes the 2000 to 2019 case studies used to develop
and compare a cloud detection method.
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Figure 4. Study area including the Yellow Sea and Bohai Sea.

Table 2. Case studies used in this study.

Year Date Purpose

2000 May 20 (03:00 UTC), July 27 (02:35 UTC), October 02
(03:05 UTC) Test, Comparison

2001 January 01 (02:45 UTC), April 02 (02:25 UTC), July 05
(02:35 UTC), October 11 (02:20 UTC) Test, Comparison

2002 January 08 (02:10 UTC), April 21 (02:15 UTC), July 03
(02:10 UTC), October 07 (02:10 UTC) Test, Comparison

2003 January 02 (02:15 UTC), April 08 (02:15 UTC), July 07
(02:50 UTC), October 08 (02:20 UTC) Test, Comparison

2004 January 01 (02:40 UTC), May 22 (02:50 UTC), July 22
(02:20 UTC), October 01 (02:25 UTC) Test, Comparison

2005 January 01 (02:50 UTC), May 06 (02:20 UTC), July 09
(02:20 UTC), October 29 (02:20 UTC) Test, Comparison

2006 January 15 (02:30 UTC), April 19 (02:45 UTC), July 15
(02:50 UTC), October 23 (02:25 UTC) Test, Comparison

2007 January 04 (02:20 UTC), April 13 (02:50 UTC), June 25
(02:45 UTC), October 06 (02:50 UTC) Test, Comparison

2008 January 03 (02:45 UTC), April 15 (02:50 UTC), July 26
(02:15 UTC), October 17 (02:45 UTC) Test, Comparison

2009 January 02 (02:15 UTC), March 03 (02:40 UTC), July 29
(02:15 UTC), October 11 (02:50 UTC) Test, Comparison

2010 January 05 (02:15 UTC), April 27 (02:15 UTC), August 11
(02:50 UTC), October 07 (02:45 UTC) Test, Comparison

2011 January 06 (02:25 UTC), April 17 (02:45 UTC), August 27
(20:20 UTC), September 15 (02:50 UTC) Test, Comparison

2012 January 02 (02:20 UTC), April 19 (02:45 UTC), August 25
(02:45 UTC), October 16 (02:20 UTC) Test, Comparison

2013 January 04 (02:20 UTC), April 06 (02:45 UTC), June 06
(02:15 UTC), September 29 (02:45 UTC) Test, Comparison

2014 January 07 (02:20 UTC), April 29 (02:20 UTC), July 11
(02:15 UTC), October 02 (02:45 UTC) Test, Comparison

2015 January 06 (02:45 UTC), April 16 (02:20 UTC), June 12
(02:20 UTC), September 12 (02:40 UTC) Test, Comparison

2016 January 06 (02:15 UTC), April 18 (02:20 UTC), August 08
(02:20 UTC), October 04 (02:15 UTC) Test, Comparison

2017 June 01 (02:15 UTC) Method development
January 11 (02:45 UTC), April 14 (02:15 UTC), July 10

(02:20 UTC), October 10 (02:45 UTC) Test, Comparison

2018 January 05 (02:50 UTC), April 04 (02:45 UTC), August 19
(02:40 UTC), October 06 (02:40 UTC) Test, Comparison

2019 January 01 (02:45 UTC), April 07 (02:45 UTC), July 03
(02:50 UTC), October 04 (02:20 UTC) Test, Comparison
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3.2. CALIPSO

This study used the CALIPSO vertical feature mask (VFM) data (version 4.200 of
CAL_LID_L2_01km CLay-Standard data) with cloud layer information at a 1 km spatial
resolution to validate the proposed CM because cloudy pixels are included in the CALIPSO
data feature classification flags. To ensure spatial and temporal colocation, CALIPSO laser
footprints that were found within the bounds of and acquired at nearly the same time as
the MODIS image were chosen.

4. Results

Figure 5a displays the distribution of cloud pixels (pink color) selected in Figure 2 in
the NDWI–green band plane. Cloud pixels are distributed within the range of NDWI ≤ 0
and green band reflectance > 0.3 in the NDWI–green band plane. Figure 5b shows the rela-
tionship between NDWI and the reflectance of the green band (0.56 µm) for cloud detection.
The blue pixels indicate cloud pixels, including thin and thick clouds. The red line indicates
the regression relationship obtained using (2). In this case, the regression coefficients a0, a1,
and a2 were calculated as 0.079, −0.4, and 0.312, respectively. The standard deviation value
(σ), including the uncertainty of cloud detection using the relationship between NDWI and
MODIS R0.56µm, was estimated to be 0.0377 using Equation (3) on 1 June 2017, 02:15 UTC.

Figure 5. (a) Distribution of cloud pixels and (b) regression relationship between NDWI and MODIS
R0.56µm for cloud pixels on 1 June 2017, 02:15 UTC. The pink pixels in (a) are clouds selected from
the RGB image. The grey pixels in (a) denote all MODIS pixels on the same date. Blue pixels in (b)
indicate the cloud pixels. The red line in (b) is the regression relationship for cloud pixels.

Figure 6 displays the variation of CC, bias, RMSE, POD-FAR, and HSS values between
the MODIS CM and the proposed CM according to variations in threshold values, which
were σ2 for the 1.38 µm and σ3 for the 1.61 µm bands. Both of these cases showed concave
shapes in CC, HSS, and FOD-FAR values, and convex shapes in RMSE values between the
MODIS CM and proposed CM. In this study, we determined values of σ2 = 0.006 for the
1.38 µm band, and σ3 = 0.04 for the 1.61 µm band when the bias = 0.

Figure 7 shows a qualitative comparison of CM using the proposed cloud-detection
method with four case studies: 29 April 2014, 02:20 UTC (spring); 12 June 2015, 02:15 UTC
(summer); 4 October 2019, 02:15 UTC (autumn); and 6 January 2016, 02:15 UTC (winter).
We applied the regression coefficients (a0 = 0.079, a1 = −0.4, and a2 = 0.312) and σ = 0.0377,
which were obtained from MODIS data on 1 June 2017, 02:15 UTC for all the cases. The first
column shows the MODIS RGB images, and the second column displays the results of cloud
detection when we applied only the NDWI–green band relationship to our CM algorithm.
We can identify that the NDWI–green band relationship was useful for detecting thick
clouds but missed parts of thin clouds. The third column shows the results using R1.38µm,
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which detected cirrus clouds. The fourth column displays the results using R1.61µm, which
detected most of the thin and high clouds. The fifth column shows the final results of our
CM including the NDWI–green band relationship, R1.38µm, and R1.61µm, which detects
thin and thick clouds. Consequently, the NDWI–green band relationship in the proposed
cloud-detection method detected fewer cloud pixels than the MODIS CM in the Yellow Sea
and Bohai Sea because the proposed method excludes semitransparent clouds and optically
thick clouds. However, the proposed method based on the combination of NDWI–green
band relationship and threshold values of 1.38 and 1.61 µm bands was much better at
detecting thin clouds than the MODIS CM, as shown in Figure 7. These results demonstrate
that the proposed CM requires 0.56 µm, 0.86 µm, 1.38 µm, and 1.61 µm bands for the best
detection of clouds.

Figure 8 shows a quantitative comparison of the proposed CM and MODIS CM for
four cases: spring (29 April 2014, 02:20 UTC), summer (12 June 2015, 02:15 UTC), autumn
(4 October 2019, 02:15 UTC), and winter (6 January 2016, 02:15 UTC). The light cyan color
indicates that both CMs detect a pixel as a cloud. The red pixels indicate that only MODIS
CM detects the pixel as a cloud. The green pixels indicate that only the proposed method
detects pixels as cloud pixels. Blue indicates the pixels in which both CMs are detected
as cloud-free sea surfaces. The tan pixels indicate the land masks. Table 3 summarizes
the statistical scores of POD, FAR, and HSS for the four case studies. The POD values
were >0.923. The overall values of FAR and HSS were <0.091 and >0.835, respectively.
The MODIS CM misidentified sea ice in the Bohai Sea as clouds, while the proposed CM
correctly distinguished cloud pixels from sea ice pixels on 6 January 2016, 02:15 UTC.

Figure 6. Threshold value-dependent statistical scores obtained from the comparison between MODIS
CM and the proposed CM for the (a) 1.38 and (b) 1.61 µm bands using the test dataset found in the
pink box (Figure 2), for 1 June 2017, 02:15 UTC. Cyan, green, yellow, blue, and red lines indicate CC,
RMSE, bias, HSS, and POD-FAR values, respectively.

Figure 9 shows the validation results using the MODIS RGB image, MODIS CM, the
proposed CM, and the CALIPSO data on 25 March 2020 (spring), 15 July 2020 (summer), 26
September 2020 (autumn), and 16 January 2021 (winter). The observation times between
MODIS and CALIPSO differed by 9, 16, 27, and 28 min, respectively. The CALIPSO data
with cloud (cyan color) and clear (blue color) flags were delineated by overlaying on the
MODIS and the proposed CMs. The validation results with the CALIPSO data for the four
cases showed qualitatively good agreement between the MODIS CM and the proposed CM.
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Figure 7. Case studies: (first column) MODIS RGB images, (second column) cloud mask using only
NDWI–green band relationship, (third column) cloud mask using only R1.38µm method, (fourth
column) cloud mask using only R1.61µm method, and (fifth column) cloud mask using the proposed
cloud detection method (combination of (b–d)) on (a) 29 April 2014, 02:20 UTC (spring); (b) 12 June
2015 02:15 UTC (summer); (c) 4 October 2019, 02:15 UTC (autumn); and (d) 6 January 2016, 02:15
UTC (winter).
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Figure 8. Quantitative comparison of the proposed CM and MODIS CM for the four cases for (a)
spring (29 April 2014. 02:20 UTC), (b) summer (12 June 2015, 02:15 UTC), (c) autumn (4 October 2019,
02:15 UTC), and (d) winter (6 January 2016, 02:15 UTC). The light cyan colors indicate that both CMs
detected the pixel as a cloud. The red pixels indicate that only MODIS CM detected the pixel as a
cloud. The green pixels indicate that only the proposed CM detected the pixel as a cloud pixel. The
blue colors indicates that both CMs detected the pixel as cloud-free sea surfaces. Tan colors indicate
the land mask.

Table 3. Statistical comparison between the proposed CM and MODIS CM.

Case POD FAR HSS

29 April 2014, 02:20 UTC 0.984 0.010 0.903
12 June 2015, 02:15 UTC 0.935 0.091 0.850

4 October 2019, 02:15 UTC 0.950 0.010 0.943
6 January 2016, 02:15 UTC 0.923 0.002 0.835

Figure 10 shows the CALIPSO VFM data on 25 March 2020, 05:14 UTC, 15 July 2020,
05:21 UTC, 26 September 2020, 05:27 UTC, and 16 January 2021, 05:28 UTC in Figure 8. We
classified the vertical atmospheric and surface features of CALIPSO observations based on
the feature classification flags of the CALIPSO VFM data. In the legend for Figure 9, no
signal, subsurf, surface, strato, aerosol, cloud, and clear indicate no signal (complete signal
attenuation), subsurface, surface, stratospheric aerosol, tropospheric aerosol, cloud, and
clear air, respectively. The MODIS CM and the proposed CM were in qualitatively good
agreement with the CALIPSO VFM data for the four cases. The statistical scores of POD,
FAR, and HSS also show quantitatively consistent results between the MODIS CM and
the proposed CM. Table 4 summarizes the validation results using the CALIPSO data in
Figure 8, which demonstrates that the proposed CM is consistent with the MODIS CM.
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Figure 9. (a) spring case: 25 March 2020 (05:05 UTC (MODIS) and 05:14 UTC (CALIPSO)); (b) summer
case: 15 July 2020 (05:05 UTC (MODIS) and 05:21 UTC (CALIPSO)); (c) autumn case: 26 September
2020 (05:00 UTC (MODIS) and 05:27 UTC (CALIPSO)); (d) winter case: 16 January 2021 (05:00 UTC
(MODIS) and 05:28 UTC (CALIPSO)). The first, second, and third rows indicate the MODIS RGB
image, the proposed CM, and MODIS CM, respectively. CALIPSO laser footprints are overlaid in the
second and third columns where cyan and blue colors indicate cloud or no cloud pixels, respectively.
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Figure 10. CALIPSO VFM plots on cases in Figure 8, (a) 25 March 2020 05:14 UTC; (b) 15 July 2020
05:21 UTC; (c) 26 September 2020 05:27 UTC; (d) 16 January 2021 05:28 UTC. The legends of no signal,
subsurf, surface, strato, aerosol, cloud, and clear denote no signal (complete signal attenuation),
subsurface, surface, stratospheric aerosol, tropospheric aerosol, cloud, and clear air, respectively.
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Table 4. Statistical comparison of the proposed CM and MODIS CM using the CALIPSO data.

Dates
CALIPSO vs. MODIS CM CALIPSO vs. Proposed CM

POD FAR HSS POD FAR HSS

Spring (25 March 2020) 0.72 0.00 0.64 0.85 0.01 0.78
Summer (15 July 2020) 0.79 0.09 0.77 0.76 0.08 0.75

Autumn (26 September 2020) 0.91 0.05 0.91 0.89 0.03 0.91
Winter (16 January 2021) 0.97 0.06 0.70 0.97 0.02 0.84

Figure 11 shows temporal variations of POD, FAR, and HSS between MODIS CM
and our CM for the 79 case studies, from 2000 to 2019. The POD and HSS values between
MODIS CM and our CM tended to increase. The FAR tended to decrease between the two
CMs. Relatively large discrepancies occurred on 20 May 2000, 03:00 UTC; 7 July 2003, 02:50
UTC; 1 January 2004, 02:40 UTC; 29 April 2006, 02:45 UTC; 25 June 2007, 02:45 UTC; 17
October 2008, 02:45 UTC; 27 April 2010 02:15 UTC; and 4 April 2018, 02:45 UTC due to haze
or seasonally turbid water in this region. In comparison, the results of the cloud fraction
between MODIS, onboard the Aqua satellite, and the Visible Infrared Imaging Radiometer
Suite sensor, onboard the Suomi National Polar-orbiting Partnership satellite [48], were
similar to ours.

Figure 11. Temporal variations of POD, FAR, and HSS between MODIS CM and our CM from 2000
to 2019.

5. Discussion

The proposed method has the advantage of being able to distinguish sea ice from
clouds. Figure 12 shows an example of the qualitative comparison of the proposed CM and
MODIS CM for the particular case of coexistence of clouds and sea ice pixels in MODIS
observations on 6 January 2011, 02:25 UTC; 6 January 2016, 02:15 UTC; and 5 January 2018,
02:50 UTC. Clouds over the Yellow Sea are shown in the left column. In this region, the
cold air from the Siberian air mass in winter moves southward and meets the relatively
warm and humid air over the Yellow Sea and then generates ocean clouds. The proposed
method (middle column) delineates the cloud distribution and details of their patterns in
the RGB image, while MODIS CM (right column) misidentifies the sea ice over the Bohai
Sea as clouds and overestimates the cloud distribution and covers the Yellow Sea.
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Figure 12. RGB images of a mixture of clouds and sea ice (left column), the proposed CM (middle
column), and MODIS CM (right column) on (a) 6 January 2011, 02:25 UTC; (b) 6 January 2016, 02:15
UTC; and (c) 5 January 2018, 02:50 UTC.

The proposed method has the additional advantage of being able to distinguish dust
from clouds. Figure 13 shows the particular cases of coexistence of clouds and dust pixels
in MODIS observations for 1 April 2001, 02:25 UTC; 8 April 2003, 02:15 UTC; and 16 April
2015, 02:20 UTC. The presence of dust and clouds over the Yellow Sea can be detected in
the MODIS RGB images. Here, the yellow dust (Hwang-sa) occurs over the desert areas of
China and Mongolia during spring as a unique regional meteorological phenomenon. This
yellow dust moved to the east and south over the Yellow Sea and the Korean Peninsula.
The proposed method distinguishes dust from clouds, while MODIS CM misidentifies dust
over the Bohai Sea as clouds and overestimates the extent distribution of clouds over the
Yellow Sea.
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Figure 13. RGB images of a mixture of clouds and dust (left column), the proposed CM (middle
column), and MODIS CM (right column) on (a) 2 April 2001, 02:25 UTC; (b) 8 April 2003, 02:15 UTC;
and (c) 16 April 2015, 02:20 UTC.

6. Conclusions

Cloud information plays an important role in weather analysis, climate change, and
many other geo-science applications. Currently, satellite remote-sensing is widely used
to detect and analyze cloud information. An accurate cloud-masking procedure to distin-
guish cloud-free pixels from cloud pixels is essential for the unhindered analysis of many
parameters on the Earth’s surface, such as ocean color study in satellite remote-sensing.
Generally, cloud-detection algorithms depend on the spectral characteristics of clouds, such
as high reflectance and low temperature in the VIS, NIR, SWIR, and LWIR bands. Generally,
split-window measurements, in other words, BTD in IR bands such as 10.8 µm and 12.0 µm
depending on thresholds, have been widely used to detect or mask clouds from satellite
observations. In particular, MODIS CM has been widely used because of its long temporal
record, wide swath and sampling, and broad spectral range. However, it is well known that
the MODIS cloud detection algorithm often misidentifies clouds when sea ice is present.
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Thus, this study proposes a unique cloud-detection method using the relationship
between NDWI and reflectance of the green band with the uncertainty of standard deviation
in addition to 1.38 and 1.61 µm bands for thin cloud detection. Multiple case studies using
MODIS observation data were performed for the spring, summer, autumn, and winter
seasons from 2000 to 2019 over the Yellow Sea and Bohai Sea. The comparison of the
proposed cloud detection method with MODIS CM showed improved performance and
detailed cloud information compared to the MODIS CM. For the period 2000–2019, the
average POD, FAR, and HSS were 0.853, 0.069, and 0.719, respectively. Relatively poor
statistical results often appear due to the coexistence of clouds and sea ice in the winter
and haze or dust in the spring. The time series analysis using the 79 case studies from
2000 to 2019 demonstrated that the POD and HSS values tended to increase, while the
FAR values decreased between MODIS CM and our CM. A few cases displayed relatively
large discrepancies due to the presence of haze or semitransparent clouds in the scene
and seasonally turbid water in the study area. In addition, the proposed cloud-detection
method has the advantage of distinguishing cloud pixels from sea ice or yellow dust, which
is a difficult problem that the current MODIS CM algorithm cannot mitigate.

Visual inspection of MODIS data indicated the presence of atmospheric cover resem-
bling haze or semitransparent clouds at the location of most case studies. The classification
of these pixels as clouds often depends on the user’s need for their own atmospheric or
sea-surface studies. Currently, the thresholds used in our method for thin clouds have not
been optimized. Thus, the proposed approach occasionally identified optically thin clouds,
despite visual inspection determining them to be cloud-free. However, these disadvantages
may be overcome with additional modification of thresholds and the use of other spectral
bands sensitive to various types of clouds according to user needs.

Consequently, the proposed cloud detection method can be applied to a variety of
other optical sensors with VIS and NIR bands, such as the Geostationary Ocean Color
Imager-II from 0.38 to 0.86 µm bands onboard the GEO-KOMPSAT-2B satellite combined
with the Advanced Meteorological Imager with 1.38 and 1.61 µm bands onboard the GEO-
KOMPSAT-2A satellite collocated with the GEO-KOMPSAT-2B satellite over the Equator at
128◦E longitude.
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