
����������
�������

Citation: Zhang, X.; Yuan, X.; Liu, H.;

Gao, H.; Wang, X. Soil Moisture

Estimation for Winter-Wheat

Waterlogging Monitoring by

Assimilating Remote Sensing

Inversion Data into the Distributed

Hydrology Soil Vegetation Model.

Remote Sens. 2022, 14, 792. https://

doi.org/10.3390/rs14030792

Academic Editor: Songhao Shang

Received: 31 December 2021

Accepted: 6 February 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Soil Moisture Estimation for Winter-Wheat Waterlogging
Monitoring by Assimilating Remote Sensing Inversion Data
into the Distributed Hydrology Soil Vegetation Model
Xiaochun Zhang * , Xu Yuan, Hairuo Liu, Hongsi Gao and Xiugui Wang

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,
Wuhan 430072, China; yummix@whu.edu.cn (X.Y.); hairuo0210@whu.edu.cn (H.L.); gggghs@whu.edu.cn (H.G.);
wangxg@whu.edu.cn (X.W.)
* Correspondence: xczhang@whu.edu.cn

Abstract: Waterlogging crop disasters are caused by continuous and excessive soil water in the upper
layer of soil. In order to enable waterlogging monitoring, it is important to collect continuous and
accurate soil moisture data. The distributed hydrology soil vegetation model (DHSVM) is selected as
the basic hydrological model for soil moisture estimation and winter-wheat waterlogging monitoring.
To handle the error accumulation of the DHSVM and the poor continuity of remote sensing (RS)
inversion data, an agro-hydrological model that assimilates RS inversion data into the DHSVM is
used for winter-wheat waterlogging monitoring. The soil moisture content maps retrieved from
satellite images are assimilated into the DHSVM by the successive correction method. Moreover, in
order to reduce the modeling error accumulation, monthly and real-time RS inversion maps that truly
reflect local soil moisture distributions are regularly assimilated into the agro-hydrological modeling
process each month. The results show that the root mean square errors (RMSEs) of the simulated
soil moisture value at two in situ experiment points were 0.02077 and 0.02383, respectively, which
were 9.96% and 12.02% of the measured value. From the accurate and continuous soil moisture
results based on the agro-hydrological assimilation model, the waterlogging-damaged ratio and
grade distribution information for winter-wheat waterlogging were extracted. The results indicate
that there were almost no high-damaged-ratio and severe waterlogging damage areas in Lixin County,
which was consistent with the local field investigation.

Keywords: soil moisture; waterlogging monitoring; model data assimilation; DHSVM; remote
sensing inversion

1. Introduction

Crop waterlogging disasters, which affect crop growth and reduce grain yield [1,2],
are caused by excessive water in the crop root zone that disturbs the equilibrium between
water and air. The main factors that influence the occurrence of waterlogging are precipi-
tation, topographic conditions, soil physical properties, farming methods, and drainage
and irrigation conditions [3]. According to statistics, waterlogging reduces winter-wheat
production by more than 50–70%, and long-term waterlogging of farmland aggravates
soil salinization [4]. Waterlogging has become an important limiting factor of agricultural
development and jeopardizes national food security. Therefore, accurate assessment and
real-time analysis of waterlogging are critical for regional waterlogging prevention, which
can lay a solid foundation for improving agricultural production capacity. The existing
monitoring methods of waterlogging either consider redundant factors, resulting in exces-
sive investment in human and material resources, or adopt insufficient influencing factors,
resulting in low accuracy of waterlogging monitoring.

There are three main ways to study waterlogging damage. One traditional research
method is to construct a waterlogging damage classification model by sorting and analyz-
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ing historical point observation data. However, this method needs a lot of manpower and
material resources to obtain data in situ. Its research results are only representative in the
small area near the observation point [5]. Another method is to retrieve soil moisture by
remote sensing (RS) according to the correlation between the backscattering coefficient and
soil water content [6–8]. The RS inversion soil moisture data are then used to monitor water-
logging damage [9]. Liu et al. mapped waterlogging damage on winter wheat at the parcel
level using high-spatial-resolution satellite data [10]. Sentinel-1 and Sentinel-2 data were
also used to estimate soil moisture in recent years. Maurya and Singh [11] made an attempt
to use Sentinel-1 data to estimate soil moisture by minimizing the effect of other signal
contributors. Chatterjee et al. [12] established an empirical model for surface soil moisture
using Sentinel-1 data and ancillary data. Montaldo et al. [13] offered a simplified ap-
proach for estimating the surface roughness by Sentinel-2 optical observations to assimilate
Sentinel-1 observations in a land surface model. The accuracy of remote sensing technology
is relatively high for a large area. However, the same area can be observed again only after a
revisit cycle, thereby failing to reflect the continuous process of waterlogging [14]. In recent
years, hydrological models combined with DEM, vegetation distribution, soil distribution,
and meteorological data have been used to simulate farmland moisture movement and
waterlogging monitoring [15]. Singh et al. simulated the groundwater level change of
farmland with a spatial agro-hydro-salinity model (SAHYSMOD) to monitor waterlogging
and salinization [16,17]. Xiong monitored the subsurface waterlogging of summer crops
using a distributed hydrology soil vegetation model (DHSVM) [18]. Hydrological models
simulate the continuous temporal variation of soil moisture as needed to monitor the
continuous process of waterlogging damage. However, the errors in the model gradually
accumulate and distort the model results [19].

Various hydrological models have been used to simulate time-continuous soil moisture
data at the regional scale, such as the system hydrological European (SHE) model [20], the
Xinanjiang model [21], and the DHSVM [22]. Agro-hydrological models included in the
hydrological models are built in order to link both agronomical processes with spatially
explicit hydrological fluxes [23], such as the distributed agro-hydrological topography
nitrogen transfer and transformation (TNT2) [24] model. The transport of soil water and
salt in agricultural farmlands is mainly one-dimensional vertical flow, and is described by
one-dimensional dynamic agro-hydrological models, such as the soil-water-atmosphere-
plant (SWAP) model [25] and Hydrus model [26]. However, the authenticity and reliability
of the simulation are not as good as remote sensing reversion or field measurement. It is
difficult to truly reflect the surface soil moisture by a single method, regardless of microwave
remote sensing, field measurement devices, or model simulations. Effective multisource
data fusion or model–data assimilation have been the important means for acquiring
accurate and regional data. Delphine et al. [27] assimilated soil moisture ocean salinity
(SMOS) soil moisture into the DHSVM model and discussed the impacts on the simulations
of the water cycle variables. Xiong et al. [14] extracted the spatial distribution of subsurface
waterlogging using an antecedent precipitation index and RS inversion soil moisture data.
Zhu [28] and Yang [29] took the Hetao irrigation area and Weigan–Kuqa River Basin as
examples to verify the effectiveness of multisource data assimilation. Compared with other
methods, the model–data assimilation methods meet the requirements of both the regional
scale and time continuity [30,31].

According to the monitoring results of soil moisture and agro-meteorological disasters,
waterlogging damage mostly occurs when the soil relative humidity is more than 90% and
lasts for many days [3,14,32]. Meanwhile, accurate and time-continuous soil moisture data
are provided by assimilating remote sensing observations and model simulations [20,21].
Therefore, in order to monitor the continuous process of regional waterlogging damage, it
is necessary to assimilate multi-temporal area observations from remote sensing inversion
into a hydrological model with good continuity. In this paper, the soil moisture data
obtained by Sentinel-1 image inversion are used as observations and the initial state files in
order to drive the DHSVM hydrological model. The soil moisture files with remote sensing
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inversion are periodically assimilated into the DHSVM model in the simulation process.
The data assimilation theory efficiently reduces the uncertainty of the original DHSVM
model, and provides an effective method for obtaining the spatiotemporal-continuous
distribution information of soil moisture, which is used to monitor waterlogging.

Lixin County in Anhui Province, China, was selected as the study area of waterlogging
monitoring. The DHSVM model was used to simulate the hydrological characteristics
of the Xifei River watershed including Lixin County. In order to reduce the errors that
the uncertainty in model parameters leads to, we conducted parameter optimization
steps including sensitivity analysis, calibration, and optimal spatiotemporal resolution
selection using the DHSVM model. The remote sensing inversion data of soil moisture were
acquired from the Sentinel-1 images based on the water cloud model (WCM) first proposed
by Attema and Ulaby [33]. The agro-hydrological assimilation model constructed by
assimilating RS inversion data into the DHSVM was used for winter-wheat waterlogging
monitoring. The assimilation method for incorporating remote sensing inversion data
into the DHSVM is the successive correction method first proposed by Cressman [34].
In order to obtain accurate and time-continuous soil moisture data, the feasibility and
improvement effect of the data assimilation model were also discussed. The winter-wheat
waterlogging distribution area in Lixin County was finally obtained through the assimilated
soil moisture data. The monitoring results support real-time monitoring and effective
control of waterlogging damage, contributing to the stable increase of grain production
and the safety assurance of national agricultural production.

2. Study Area and Data Acquisition
2.1. Study Area

This study aimed to monitor winter-wheat waterlogging in Lixin County. Lixin County
has an area of 1950 km2 and is located in the northwest of Anhui Province, China. An area
of sandy ginger-black soil accounts for 95.7% of the county’s soil area. Lixin County has
a warm, temperate semi-humid monsoon climate, which is rainy in summer and dry in
winter. The annual average temperature is 14.7 ◦C, the annual frost-free period is more than
200 days, and the annual average rainfall is more than 850 mm. The geographical location
of Lixin County is shown in Figure 1b. The Xifei River, originating from Taikang County in
Henan Province, is the main river in Lixin County. The river has a length of 250 km and
a drainage area of 4750 km2, which is partly located on the Huaibei Plain. The boundary
of the Xifei River Basin, including Lixin County, was obtained for the agro-hydrological
model by analysis of the complete watershed information. The geographical location of the
Xifei River Basin is shown in Figure 1a.

Figure 1. (a) Location of the Xifei River Basin; (b) location of Lixin County; (c) location of smart soil
moisture monitoring instrument (SSMMI).
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2.2. Data Acquisition
2.2.1. Data for the DHSVM

The DHSVM input files included the digital elevation model (DEM) data, soil type,
land use type, river network data, flow direction data, and meteorological data. The DEM
data included a 90 m resolution Shuttle Radar Liner Mission DEM dataset and a 30 m
resolution ASTER Global DEM dataset downloaded from the China Geospatial Data Cloud
website. The types of soil data were obtained from the website of the Institute of Soil
Science, Chinese Academy of Sciences. The map of land use types was extracted from
Gaofen-1 (GF-1) satellite images downloaded from the website of the China Resources
Satellite Application Center. The river network and flow direction data were based on the
DEM and analyzed by ArcGIS software. The meteorological data of a single grid were
interpolated from the monitoring data of three meteorological stations, Lixin, Shangqiu,
and Kaifeng, and the data of meteorological stations were obtained from the daily dataset
of the China Meteorological Data Service Centre.

2.2.2. Satellite Data

Sentinel-1 imagery data were used to retrieve the soil surface moisture area. The
Sentinel-1 data were downloaded from NASA’s Earth Science Data Program and pre-
processed to eliminate interference. GF-1 satellite data were used for normalized difference
vegetation index (NDVI) calculation and crop planting structure extraction.

2.2.3. Field Measured Data of Soil Moisture

The measured soil moisture data for calibration and verification were obtained from
the smart soil moisture monitoring instrument (SSMMI) installed in Lixin County. The
smart soil moisture monitoring instrument is based on the principle of dielectric constant
and frequency domain reflectometry [35]. The instrument can monitor soil moisture and
temperature dynamically, and comprehensively analyze soil moisture and environmental
meteorological information at different depths. The instrument can be used to deeply study
soil and crop root water consumption, and its accuracy can reach ±2%. Two instruments
were installed in the study area at Location A (33◦13′57′′ N, 116◦11′39′′ E) and Location B
(33◦13′49′′ N, 116◦′07′′ E), and the specific locations of instruments are shown in Figure 1c.
The instruments were used to monitor the soil surface volumetric water content including
the 10 cm depth, 20 cm depth, and 30 cm depth volumetric water content at 1 h intervals.
The volumetric soil water content data obtained by the DHSVM were the average values of
the 0–30 cm layer. The averaged values of four soil layers monitored by the instruments
were used for comparison with the simulated values. The dates from 25 August 2020
to 31 December 2020 were selected as the rating period of the model. The dates from
1 January 2021 to 31 June 2021 were selected as the validation period of the model.

3. Methods

This section presents the profile of the DHSVM, the parameter optimization method,
the remote sensing (RS) inversion, the method of assimilating RS inversion data into the
DHSVM, and the identification criterion of waterlogging damage.

3.1. The Profile of DHSVM

Being a fundamental hydrological model, the DHSVM is a spatially distributed,
physics-based hydrology model based on the principle of energy balance and water balance.
It takes into account the hydrological interaction and feedback mechanism of rainfall, light,
temperature, vegetation, soil, and snow. There are seven computing modules, including
the double canopy evapotranspiration module, upper canopy snow melt module, surface
snow and snow melt module, unsaturated soil mid-flow module, saturated soil mid-flow
module, surface runoff module, and river confluence module. The mass balance equation
used for each grid cell in DHSVM [22] is expressed as:
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∆SS1 + ∆SS2 + . . . + ∆SSn + ∆Sio + ∆Siu + ∆W = P − Eio − Eiu − Eto − Etu − ES − P2 (1)

where ∆SS1, ∆SS2, and ∆SSn refer to the variation in water storage in each soil layer (m3)
and ∆Sio and ∆Siu represent the variation in water storage in each canopy of plants in a
single grid (m3). ∆W is the variation of snow cover (m3); P is the external water accepted
by the cell, including precipitation (mm) and water obtained from the upstream (m3); ES,
Eio and Eiu are the evaporation of soil, vegetation canopy, and lower canopy (m3). Eto and
Etu are the transpiration of the upper and lower canopy of vegetation (m3), and P2 is the
outflow water of cells (m3).

The Nash–Sutcliffe efficiency coefficient was used to evaluate the results of the model.
The NSE formulate can be expressed as:

NSE = 1−
∑n

i=1 (M obs,i−Msim,i

)2

∑n
i=1 (M obs,i−Mobs

)2 (2)

where Mobs,i is the actual observed soil volume moisture and Msim,i is the soil volume
moisture simulated by the model. Mobs is the mean of the measured soil moisture. The
NSE ranges from negative infinity to 1, and a zero value of NSE means that the simulation
results are close to the average level of measured values. The closer the NSE is to 1, the
better the simulation quality of the model is. When NSE is far less than 0, the model is not
credible. It is generally believed that when NSE is greater than 0.5, the result is excellent.

3.2. Parameter Optimization for the DHSVM

It is important to conduct the parameter optimization steps including sensitivity
analysis, calibration, and optimal spatiotemporal resolution selection on the DHSVM model,
because uncertainty in model parameters increases as the model running-time goes on and
affects the model outputs [36]. The sensitivity of numerous DHSVM parameters is analyzed
to determine which parameters have a great impact on the model. The highly sensitive
parameters are calibrated to get the optimal value. The appropriate spatial resolution
of DEM data and temporal resolution of meteorological data were selected to simulate
the complex physical processes [37]. The optimal spatiotemporal resolution was set by
comparing different NSE values of different spatiotemporal resolutions. The parameter
sensitivity analysis and calibration methods are introduced in the following sections.

3.2.1. The Parameter Sensitivity Analysis

The parameters in the DHSVM model mainly include global parameters, vegetation
parameters, and soil parameters. The global parameters, which include the decline rate
of precipitation, the decline rate of temperature, and other parameters, are the spatial
attributes of the basin. Since these global parameters are considered constants in the
study, we did not conduct sensitivity analysis on global parameters. In crop areas, the
changes in vegetation and soil parameters were mainly considered, and the extended
Fourier amplitude sensitivity test (EFAST) method was used to analyze the sensitivity of
vegetation and soil parameters.

The EFAST method adopts the idea of model variance analysis and is a global sensitiv-
ity analysis method combining the Sobel method and Fourier amplitude sensitivity test.
The first-order sensitivity indices and the total sensitivity indices of the input parameters
can be obtained by establishing the search curve to convert a multidimensional integral of
all the input variables to a one-dimensional integral [36].

The variance of input variables and the variances of the interaction among the variables
contribute to the total variance of model outputs. The first-order sensitivity index reflects
the direct contribution of the variable to the total variance of model output. Both the
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first-order sensitivity index and the higher-order sensitivity indices of variables can be
obtained by normalization:

Si = Vi/V, Sij = Vij/V, Sijm = Vijm/V (3)

where V is the total variance of the model output, Vi is the variance of variable i, Vij is
the variance of the interaction between variables i and j, Vijm is the variance of interaction
among variables i, j, m. Si is the first-order sensitivity index, and Sij and Sijm are the
higher-order sensitivity indices.

The sensitivity index reflects the direct contribution rate of parameters to the total
variance of the model outputs. The total sensitivity can be expressed as:

STi = Si + Sij + Sijm + . . . + S12 . . . i . . . k (4)

The total sensitivity index reflects the sum of the direct contribution rate of param-
eters and the indirect contribution to the total variance of the model output through the
interaction and coupling with other parameters. The total sensitivity reflects the influence
of parameter changes on the model and determines the parameters with higher sensitivity.

3.2.2. The Parameter Calibration

The PSO algorithm [38] is used as the parameter calibration method in this study. The
PSO algorithm has several advantages, such as easy implementation, fewer parameter
settings, and fewer iterations [39]. Each particle is given two attributes: position and
velocity. Each particle separately searches for the optimal solution in the search space,
which is recorded as the current individual extreme value. The individual extreme value is
shared with other particles in the whole particle swarm. The optimal individual extreme
value is treated as the current global optimal solution of the whole particle swarm. All
particles in the particle swarm adjust their velocity and position according to the current
individual extremum and the current global optimal solution.

The number of the particle swarm is set as N, the count of sensitive factors is set as D,
the number of iterations is set as A, and the maximum velocity is set as vimax. The initial
position and velocity of each particle is defined as xn,d, vn,d respectively, where the swarm
number n belongs to [1, N], and the sensitive factors number d belongs to [1, D]. These
initial positions and velocities are randomly defined within the range of allowable values.
The specific steps are as follows.

1. The particle swarm settings are input to the DHSVM to calculate the fitness of
these settings.

2. Each particle’s best fitness setting Pbest is compared to update the group particle best
fitness Gbest.

3. The positions and velocities are updated, and the value beyond the boundary needs
to be adjusted. It can be expressed as:

va+1
n,d = ωva

n,d + c1r1

(
Pa

best,d − xa
n,d

)
+ c2r2

(
Ga

best,d − xa
n,d

)
(5)

xa+1
n,d = xa

n,d + va+1
n,d (6)

where ω is the inertia weight, which is the number of [0, 1]; c1 and c2 are acceleration
coefficients, which are usually fixed at 2.0; and r1 and r2 are random numbers in [0, 1].

4. Iterating to the maximum number or NSE coefficient meets the requirements.

3.3. Remote Sensing Inversion Method of Soil Moisture Data

The water cloud model (WCM) is used for the remote sensing inversion of soil moisture.
It is a vegetation contribution model applied in soil moisture retrieval over vegetated areas.
The model suggests that the scattering echo is accepted by the radar sensor due to the
scattering between vegetation and soil. It assumes that the layer of vegetation water is
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evenly distributed. WCM simplifies the complex scattering effect between the vegetation
layer and soil layer. WCM removes the influence of vegetation on the backscattering
coefficient and obtains the total backscattering coefficient from the vegetation scattering
coefficient and soil surface backscattering coefficient. The specific steps are as follows.

1. The backscattered radar signal in linear scale (σ0) is defined as the sum of the
contribution of the vegetation canopy (σ0

veg), the scattering from the soil layer (γ2σ0
soil), and

soil–vegetation scatterings. The soil–vegetation interactions in the WCM are neglected for
simplicity. The WCM formulations are listed in the following.

σ0 = σ0
veg + γ2σ0

soil (7)

σ0
veg = AV1 cos θ·

[
1− γ2

]
(8)

γ2= e−2BV2/ cos θ (9)

where V1 and V2 are the vegetation’s descriptors. The values of vegetation parameters A
and B are 0.0018 and 0.138, which are acquired directly from Bindlish et al.’s study [40].
Bindlish et al. offer different land-cover vegetation parameters including for winter wheat,
and consider that V1 is equal to V2, and also the vegetation water content. Therefore,
although several parameters such as vegetation water content (VWC), leaf area index, and
the NDVI can be used as the vegetation’s descriptors [41], VWC is used as V1 and V2 in
our study. Moreover, VWC is calculated according to the empirical model of Jackson [42].

2. According to the incident angle, vegetation moisture, and total backscattering
coefficient, the soil backscattering coefficient considering crop cover is calculated under
the condition of VV polarization. After converting the unit of backscattering coefficient
into the decibel unit in Equation (10), we used the linear function to invert the SAR soil
backscatter into soil moisture values in Equation (11).

σ0
soil−db = 10× log10σ0

soil (10)

SM = C + D× σ0
soil−db (11)

where σ0
soil−db is the soil backscattering with the unite of decibel (db); SM is soil moisture;

and C and D are empirical coefficients (slope and intercept) in different phenological stages.
Through field investigation in the study area, we determined that winter wheat is sown

in October and harvested in June next year. The growth period of winter wheat is divided
into the following: sowing time, tillering stage, overwintering period, returning green
stage, jointing stage, heading stage, milky stage, and maturity stage. Water requirements of
winter wheat are different in different phenological stages. In our study, according to the
water requirement changes, the whole growth period was divided into three phenological
stages: sowing–tillering, overwintering, and greening–maturity stages. We also built the
linear relationship between the backscattering coefficient and soil moisture based on the
above three phenological stages, and Equation (11) is a piecewise linear function. The
empirical parameters C and D are different in different stages and Table 1 shows the values
of C and D parameters acquired from Zhang et al.’s study [9].

Table 1. Values of C and D parameters during different phenological stages.

Phenological Stages Time C D

sowing–tillering Oct. 2020–Dec. 2020 0.103 −0.025
overwintering Jan. 2021–Mar. 2021 0.668 0.020

greening–maturity Apr. 2021–Jun. 2021 0.125 −0.008

3. In conclusion, the soil moisture content is calculated by combining the phenological
characteristics of specific crops in the study area. The distribution of soil moisture content
is obtained by establishing the relationship between the backscattering coefficient and
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surface soil moisture content. The specific remote sensing inversion method based on crop
phenological traits is shown in Zhang et al.’s study [9].

3.4. The Agro-Hydrological Assimilation Model for Winter-Wheat Waterlogging Monitoring

According to our field investigation and Shi’s research [43], winter wheat is grown on
a large scale in Lixin County, and the irrigation system of farmland is adjusted according to
the annual rainfall. Since the complex artificial irrigation and drainage system in farmland
has a great influence on soil moisture content, the actual soil moisture content distribution
is difficult to obtain by the hydrological model only. Meanwhile, the remote sensing (RS)
inversion method based on satellite images has the advantage of clearly reflecting the
spatial distribution of soil moisture at the specific moment. In order to give consideration
to both the hydrological model’s and the RS inversion method’s advantages, we built
an agro-hydrological assimilation model for winter-wheat waterlogging monitoring by
assimilating RS inversion data into the DHSVM hydrological model.

The assimilation method for the agro-hydrological assimilation model was the suc-
cessive correction method proposed by Cressman [34]. The assimilation process includes
the following steps: (1) the initial values of grid points are given by the simulation results;
(2) the next step is calculating the increment of each point between the value obtained by
RS inversion and the initial value within the influence radius; (3) different weights are
given to the increments within the influence radius, and then the increment is added to the
initial value to obtain the revised soil moisture content distribution; (4) the previous steps
are iterated.

The iterative formula is expressed as:

Tn+1
i = Tn

i +
∑

Kn
i

b=1[ω
n
ib(T

o
b−Tn

b)]

∑
Kn

i
b=1 ω

n
ib

(12)

where Tn
i is the value of the ith grid point after n iterations, To

b is the bth observation point
within the influence radius of grid point i, Tn

b is the nth estimation of observation point b,
and Kn

i is the total number of observation points within the influence radius.
The original method of determining weights for successive correction is a quadratic

weight function inversely proportional to the square of the distance. In our study, the unit
of the distance was the meter. Barnes [44] adds the convergence factor to the Gaussian
distribution weight in order to obtain a new weight function, which was used in the study.
The convergence factors are expressed as:

ωn
ib =

 e
−r2

ib
γ , r2

ib< R2

0, r2
ib> R2

(13)

where r2
ib is the square of the distance between observation point b and grid point i, R is the

radius of influence, and the convergence factor γ is 0.5, iterating twice in total.

3.5. The Identification Criterion of Waterlogging Damage Distribution

Since waterlogging damage in farmland soil is caused by excessive soil water in the
upper layer continuously over a long time [3], the time-continuous feature is considered
when extracting waterlogging damage. In this paper, the average value of soil moisture
content for five consecutive days was used as the fifth day’s value. Thus the soil moisture
content value every day was reassigned as the above average value. It was defined as
the standard for marking waterlogging damage at a specific grid point that the moving
reassignment value of soil moisture content was greater than 95% for five consecutive
days [14]. This waterlogging extraction method avoids the misjudgment of waterlogging
damage due to the abnormal value of a certain day. Two further extraction methods were
used to evaluate the disaster degree of waterlogging damage, which are as follows.
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(1) Waterlogging damage ratio calculation by using soil moisture data during winter
wheat growth period.

Winter wheat is usually sown in early October and harvested at the end of May on the
Huaibei Plain. The simulated soil moisture maps of 243 days from 1 October 2020 to 31 May
2021 were chosen to monitor the waterlogging damaged-ratio distribution in Lixin County.
According to the above waterlogging damage standards, the sum of waterlogged days
at a certain point was obtained by programming in the IDL language. The waterlogging
damage ratio was calculated by the following formula.

R = n /(N − 8) (14)

where n is the sum of waterlogged days, and N is the total number of days of crop growth.
The daily soil moisture content for waterlogging monitoring was the five-day moving

average value. The actual soil moisture values from 1–5 October 2021 were used to calculate
the moving average value of 5 October 2021. Therefore, the date of soil moisture average
values used for winter-wheat waterlogging extraction was from 5 October 2021. Moreover,
the occurrence of waterlogging damage requires that the soil moisture content exceed the
standard for at least five days. Therefore, the first occurrence date of waterlogging damage
was from 9 October 2021. Eight was subtracted from N in Equation (14).

The study areas were consequently classified as having four waterlogging-damaged
ratios: extremely low damaged-ratio areas (R less than 0.1), low damaged-ratio areas (R
greater than 0.1 and less than 0.3), medium damaged-ratio areas (R greater than 0.3 and
less than 0.6), and high damaged-ratio areas (R greater than 0.6).

(2) Grade distribution extraction of waterlogging damage by using soil moisture data
during certain periods with heavy rain.

The grade distribution of waterlogging damage was used for evaluating the disaster
degree of the study area during certain periods with heavy rain. The average soil moisture
data during certain periods with heavy rainfall from 1 May to 17 June 2021 were input
into the IDL program to make the change process map of waterlogging damage grade
distribution. The disaster degree distribution maps from 7–17 June 2021 were finally
recorded as a result of the waterlogging accumulation characteristics. The grades of the
waterlogging damage degree depended on how long the moving average value of soil
moisture content continuously exceeded 95%, which are as follows: mild waterlogging
damage (more than 5 days and less than 12 days), moderate waterlogging damage (more
than 12 days and less than 20 days), and severe waterlogging damage (more than 20 days).

4. Results
4.1. The Parameter Optimization Results of the DHSVM Model
4.1.1. Results of Parameter Sensitivity Analysis

There were eleven parameters for the sensitivity analysis by EFAST, including the
lateral conductivity, maximum infiltration, field capacity, Manning coefficient, wilting
coefficient, pore size distribution, bubbling pressure, leaf area index, vegetation albedo,
critical humidity, and minimum stomatal resistance. A total of 715 combinations for the
above eleven parameters were produced by EFAST analysis in order to simulate soil
moisture in Lixin County. Since the model inversion error gradually accumulated as the
simulation time increased, we used a shorter simulation time to determine the sensitivity of
the model parameters. The simulation time period was from 25 August 2020 to 6 September
2020. The simulation results were used to analyze the first-order sensitivity and global
sensitivity of the parameters. The first-order sensitivity is the sensitivity when the value of
a single parameter is changed separately, and the total sensitivity refers to the sensitivity
when parameters are correlated with each other. Sensitivity analysis results of parameters
are shown in Table 2.
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Table 2. Parameter sensitivity.

Parameter First Order Sensitivity 1 Total Sensitivity 2

vegetation albedo 0.80 0.90
leaf area index 0.24 0.65

lateral conductivity 0.08 0.51
field capacity 0.03 0.35

wilting coefficient 0.15 0.27
minimum stomatal resistance 0.02 0.25

Manning coefficient 0.02 0.09
critical humidity 0.01 0.05

pore size distribution 0.01 0.02
maximum infiltration 0.01 0.01

bubbling pressure 0.01 0.01
1 First-order sensitivity is the sensitivity when the parameters are changed separately. 2 Global sensitivity refers to
the sensitivity when parameters are correlated with each other.

The first-order and the total sensitivity indexes were calculated for each input variable,
and the total sensitivity indexes were used for the sensitivity analysis of parameters in
the study. According to Table 2, the vegetation parameters such as the vegetation albedo,
leaf area index, and minimum stomatal resistance, the soil parameters such as the lateral
hydraulic conductivity, field water holding capacity, and wilting coefficient have high
global sensitivity to soil moisture. Therefore, the above six most sensitive parameters were
selected according to the EFAST total order index, and are further calibrated in Section 4.1.2.
The parameters of vegetation albedo, leaf area index, lateral conductivity, field capacity,
wilting coefficient and minimum stomatal resistance need to be calibrated.

4.1.2. Results of Parameter Calibration

The PSO algorithm was used for calibrating six parameters: vegetation albedo, leaf
area index, lateral conductivity, field capacity, wilting coefficient, and minimum stomatal
resistance. The soil moisture data used for calibration were the field measured data at the
SSMMI A and B locations in Lixin County from 25 August 2020 to 1 January 2021. The NSE
of simulation results at two SSMMI locations was taken as the fitness function. In the study,
the PSO algorithm set the population number as 10, and the number of iterations as 20.
The absolute value of the maximum velocity of each particle was not greater than 0.2 of
the value range of each particle. The range of parameter values and results are shown in
Table 3.

Table 3. Calibration results of parameters.

Parameter Unit Range of Parameter Calibration Value

vegetation albedo - 0.20–0.25 0.237
leaf area index m2/m2 0.5–10.0 5.38

lateral conductivity m/s 10−5–10−2 5.2 × 10−3

field capacity m3/m3 0.25–0.41 0.34
wilting coefficient m3/m3 0.10–0.22 0.20

minimum stomatal resistance s/m 200–500 266.84

4.1.3. Results of Spatiotemporal Resolution Selection

After setting the calibrated parameters in the DHSVM model, we ran the model under
different spatiotemporal resolution combinations including 90 m+ 24 h, 90 m+ 3 h, and
30 m+ 24 h. We compared the simulation results with field measured values at the SSMMI
B location to determine which spatiotemporal resolution was the best combination. The
results with different spatial resolutions are shown in Figure 2a, and the results with
different temporal resolutions are shown in Figure 2b. The NSE coefficients of the models
under different spatiotemporal conditions are shown in Table 4.
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Figure 2. (a) Simulation results with different spatial resolutions from the SSMMI B location;
(b) simulation results with different temporal resolutions from the SSMMI B location.

Table 4. NSE of each spatiotemporal resolution combination.

Spatial and Temporal Resolution Combination (m + h) NSE

90 m + 24 h 0.68
90 m + 3 h 0.73
30 m + 24 h 0.45

We analyzed the spatiotemporal resolution selection two ways. (1) First, the temporal
resolution of weather data was fixed on 24 h, and the results with different spatial resolu-
tions were compared. When the temporal resolution was 24 h, under the same parameter
combination, DEM data of 30 m and 90 m were put into the model. As Figure 2a shows, the
results indicate that there was no obvious difference between the two simulation results
from two spatial resolution inputs at the early stage of the model operation, while the
model with 90 m resolution input performed better than that with 30 m resolution input in
the latter half stage. Then DEM data with 90 m were selected for the model. (2) Second, the
spatial resolution of DEM was fixed on 90 m, and the results with different temporal reso-
lutions were compared. When the spatial resolution was 90 m, under the same parameter
combination, weather data of 24 h and 3 h were put into the model. As Figure 2b shows,
the model using 3 h temporal resolution with 0.73 NSE worked better. Then weather data
with 3 h were selected for the model. Finally, the spatiotemporal resolution combination of
90 m + 3 h was selected for the DHSVM.

4.2. The Improvement Effect of the Agro-Hydrological Assimilation Model for Winter-Wheat
Waterlogging Monitoring

Figure 3 presents the simulation results of soil moisture by the DHSVM model without
assimilation. It was found that the simulation values of soil moisture content at two
closely spaced locations were difficult to distinguish. The simulated values at SSMMI
A and B locations were almost the same without the assimilation, but the measured soil
moisture values at two locations were different. It was also found that at SSMMI A and
B locations, the change trend of the simulated soil moisture content was the same as that
of the measured value, but there was always a certain deviation between the simulated
value and the measured value at the SSMMI A location. The reason for this phenomenon
may be that the initial values of soil moisture for the DHSVM model without assimilation
were the same at each pixel point, which cannot reflect the actual local situation at a certain
moment. Meanwhile, as shown in Figure 3, the initial value of soil moisture was closer to
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the measured value at SSMMI B than that at SSMMI A, so the NSE coefficient at the SSMMI
B location was relatively high.

Figure 3. The simulation results of soil moisture by the DHSVM model without assimilation.

Therefore, this study took the soil moisture maps made using RS inversion as the
initial values of soil moisture when running the agro-hydrological assimilation model for
winter-wheat waterlogging monitoring. One RS inversion map was assimilated into the
DHSVM every month. The improvement effect of the assimilation model is shown in
Figure 4.

Figure 4. The improvement effect by assimilating RS inversion maps for SSMMI A. (a) The effect by
assimilating one RS inversion map; (b) the effect by assimilating two RS inversion maps; (c) the effect
by assimilating three RS inversion maps; (d) the effect by assimilating four RS inversion maps.
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Figure 4a–d shows the results of assimilating 1, 2, 3, and 4 inversion maps respectively.
The red points in the figure are the timing points when assimilating the RS inversion map.
Figure 4a shows that assimilating one RS inversion map into the model effectively made
the simulated value close to the measured value during the initial stage. However, it is
also shown in Figure 4a that irregular and artificial drainage and irrigation in farmland
may affect the simulation results, leading to errors between the simulated values and the
measured values during the later stage of running the model. It can be seen from Figure 4
that the simulation results of soil moisture were closer and closer to the measured value with
assimilation of an increasing number of RS inversion maps. The corresponding NSE values
in four conditions with different assimilation numbers are 0.540, 0.576, 0.711, and 0.715,
respectively, which are also higher and higher with an increasing assimilation number.

Figure 5 shows the final improvement effect by assimilating five RS inversion maps
into the DHSVM. It also shows the comparison between the simulation results of the agro-
hydrological assimilation model and the field measured data at two SSMMI locations. From
Figure 5, the initial value at SSMMI A was 33.97%, and the value at SSMMI B was 31.47%,
which are both close to the corresponding measured values. The difference of the initial
values between SSMMI A and B locations is reflected in the agro-hydrological assimilation
model. The corresponding NSE values at SSMMI A and B locations were 0.790 and 0.712
respectively, which shows that the simulation effect at two SSMMI locations is good.

Figure 5. The final improvement effect of the agro-hydrological assimilation model (a) for SSMMI A
and (b) SSMMI B.

4.3. Accuracy Verification of the Agro-Hydrological Assimilation Model for Winter-Wheat
Waterlogging Monitoring

The field measured soil moisture data from 1 January to 31 June 2021 were used as
the verification data. The RMSE between the measured data and the simulated values was
calculated to assess the accuracy of the agro-hydrological assimilation model. The accuracy
verification results are shown in Figure 6. The RMSEs at two SSMMI locations were 0.02077
and 0.02383 respectively, which were 9.96% and 12.02% of the measured data.
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Figure 6. The accuracy verification of the agro-hydrological assimilation model (a) for SSMMI A and
(b) SSMMI B.

4.4. The Soil Moisture Distribution Results by the Agro-Hydrological Assimilation Model

The soil moisture distribution maps in Lixin County from January to June 2021 were
simulated by the agro-hydrological assimilation model for winter-wheat waterlogging mon-
itoring. In Figure 7, parts of the soil moisture simulation maps are presented as examples.

Figure 7. The monthly samples of soil moisture distribution results from the agro-hydrological
assimilation model in Lixin County.
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The soil moisture contents in Lixin County were high from January to February in
2021. The reason may be that the region during this period was in a relatively cold winter,
and the evapotranspiration of soil and crops was low. With the arrival of spring, the soil
moisture content in Lixin County decreased to a lower level from March to May. During
this period, with increasing temperature, the evapotranspiration of soil and crops increased
correspondingly. The soil moisture content increases in summer, which is consistent with
the climate characteristics of abundant summer rain in Lixin County. The soil moisture
content of Lixin County was even in the spatial distributions, which is consistent with Lixin
County’s flat topography.

4.5. Monitoring Results of Damaged Ratio and Grade Distribution for Winter-Wheat Waterlgging

The winter-wheat waterlogging monitoring results include the damaged ratio and
grade distribution of waterlogging damage. The daily soil moisture results by the agro-
hydrological assimilation model were input into the Interactive Data Language (IDL)
program to obtain the waterlogging damaged ratio map during the wheat growth period
from October 2020 to May 2021, as shown in Figure 8. The area of each ratio level is shown
in Table 5. The IDL program was also used to obtain the grade distribution of waterlogging
damage from 7–17 June 2021 during the period of abundant rainfall, as shown in Figure 9.
The area change of the three damage grades is shown in Figure 10.

Figure 8. The waterlogging damaged ratio map during the wheat growth period from October 2020
to May 2021.
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Figure 9. Grade distribution maps of waterlogging damage from 7–17 June 2021.
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Figure 10. The area change of three damage grades from 7–17 June 2021.

Table 5. Area of four damaged ratio levels.

Damaged Ratio Level Measure of Area (km2) Percentage of County Area (%)

Very low damaged ratio 392.45 19.57
Low damaged ratio 44.03 2.20

Medium damaged ratio 104.44 5.21
High damaged ratio 0.80 0.04

From the damaged ratio distribution map (Figure 8) and the area of damaged ratio
levels (Table 5), it was found that the damaged ratio level in most of the study area was
very low, and a small number of medium damaged ratio areas was mixed, which indicates
that the difference of spatial distribution in Lixin County is not obvious.

From the grade distribution maps (Figure 9) and the area change of damage grade
(Figure 10), it can be found that during the abundant-rain period, the waterlogging damage
grade in most of study area was mild waterlogging damage, which indicates that the local
drainage conditions were good and the surface ponding water was drained in time.

5. Discussion
5.1. Parameter Optimization Analysis of the DHSVM Model

As shown in Table 2, the vegetation albedo, leaf area index, transverse hydraulic
conductivity, and field capacity had high sensitivity in the DHSVM model. In Zhao
et al.’s research about a cold alpine basin, the most sensitive parameters in order were the
transverse hydraulic conductivity, field capacity, leaf area index, and vegetation albedo [45].
The order of the parameter sensibility was different from that in our study. The reason
may be that the climate and the planting structure in our study area were different from
Zhao et al.’s. During the crop growth period in Lixin County, crop growth changes greatly,
and soil moisture changes little. However, in Zhao et al.’s high cold mountain study area,
soil moisture also changed greatly during the crop growth period. Therefore, vegetation
parameters are more sensitive than soil parameters in Lixin County.

In Figure 2, when the model had the same parameters and temporal resolution, the
model result using DEM data with 90 × 90 m resolution was better than that using DEM
data with 30 x 30 m resolution. In a study about the DHSVM, Amorim et al. also found
that the simulation accuracy decreases when the spatial resolution is more accurate [46].
Indicators such as NS, PBIAS, and RMSE of the model with a resolution of 100 x 100 m are
better than those with a resolution of 45 × 45 m. There is no positive correlation between
high spatial resolutions and excellent results. For different environmental factors, the
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optimal spatial resolution of DEM was different. The DHSVM had no strict requirements
for the spatial resolution. DEM with a low spatial resolution does not lead to results with
low accuracy.

5.2. Influence Factors Analysis on the Agro-Hydrological Assimilation Model for Winter-Wheat
Waterlogging Monitoring
5.2.1. The Model Uncertainty Analysis

The calibration period for the agro-hydrological assimilation model was from 25 August
to 31 December 2020, and the validation period was from 1 January to 31 June 2021. In
Figure 6, during the validation period, the simulation accuracy from January 1 to March 31
was better than that from 1 April to 31 June 2021. From Figure 11, the average daily rainfall
of the validation period from 1 January to 31 March 2021 did not exceed 0.02 m, and this
rainfall intensity was similar to the rainfall data of the calibration period. However, the
rainfall increased significantly from 1 April to 31 June 2021, and the average daily rainfall
on 14 May and 14 June exceeded 0.045 m. This rainfall intensity was different from that in
the calibration period, which led to lower simulation accuracy from 1 April to 31 June than
that from 1 January to 31 March 2021, and indicates that excessive rainfall may reduce the
simulation accuracy.

Figure 11. Daily rainfall during the calibration and verification period.

The terrain in Lixin County, with a gentle slope, leads to difficult water drainage by
gravity. The lime-concretion black soil is also not conducive to the infiltration of water.
Under these two natural conditions, when a large rainfall event occurs, the soil moisture
content is relatively high and this will last for a long time, which may lead to waterlogging
disasters in some areas. In recent years, many artificial drainage facilities have been built in
Lixin County, which effectively drain water when a surge in rainfall occurs. However, it
is difficult to consider all artificial measures when running the agro-hydrological model.
Therefore, as shown in Figure 6, the measured soil moisture content is far less than the
simulated soil moisture content after heavy rain. Schulz et al. also found that the decrease
of soil moisture content using artificial drainage is faster than that under natural drainage
conditions [47]. Eekhout et al. [48] indicate that the uncertainty of the DHSVM model
increases with extreme precipitation and runoff. These research efforts stress the importance
of considering artificial drainage factors when running agro-hydrographic models such as
the DHSVM in order to reduce the model uncertainty.
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5.2.2. Influence Analysis of Assimilating Remote Sensing Inversion Data

As shown in Figure 3, when RS inversion maps are not assimilated into the DHSVM,
the trend of the simulated values is the same as with the measured values, but there is a
gap between the simulated and measured values at the SSMMI A location. The initial value
for the DHSVM model without assimilation at this location was not coincident with the
actual measured value. Yu tries to make the simulated values of soil moisture content more
consistent with the measured values based on local DEM and meteorological data [49].
However, irrigation, drainage, and other artificial measures are not included in the model
simulation process. The large number of farms and artificial ditches in the study area led to
a deviation between the simulation results and the actual soil moisture content. Moreover,
the errors accumulated continuously in the model simulation process. Therefore, it is
necessary to assimilate remote sensing inversion data reflecting the real-time surface values
into the agro-hydrological model.

As shown in Figure 4a, when a RS inversion map was assimilated as the initial value
for the model, the simulated value was accurate at the beginning of the model operation.
However, after the model was running for a while, with the accumulation of errors, the
model simulation accuracy decreased. This phenomenon indicates that one RS inversion
map used for the agro-hydrological assimilation model is not sufficient. Therefore, it is
necessary to assimilate sufficient RS inversion maps to reduce the model uncertainty.

5.3. Analysis of Waterlogging Damage Results in Lixin County

Lixin County was evaluated as a high waterlogging damaged-ratio area from 2001
to 2010 according to the Huaihe Basin’s research report [4]. Meanwhile, in the report, the
vulnerability risk of carriers in Lixin County was also evaluated as a high level, due to
the wide cultivated land area and the high planting proportion of dry crops. The local
agricultural output value accounted for a large proportion of the Lixin economy and
was very vulnerable to waterlogging disasters according to the Huaihe Basin’s research
report. However, according to the waterlogging monitoring results from 2020 to 2021 in our
research, most of the areas with waterlogging damage had a very low damage ratio. Results
from the small number of medium damaged-ratio areas were mixed, and do not show
obvious regional distribution differences. It can also be seen from the grade distribution
maps of waterlogging damage (Figure 9) that the waterlogging damage in Lixin County
was mild during the period of abundant rainfall. By comparing the previous Huaihe Basin
research with the present Lixin study, it was found that the local drainage conditions have
improved and the local waterlogging damage has been effectively controlled. There are
almost no high waterlogging damaged-ratio areas, and no severe waterlogging damage
areas. According to our field investigation in June 2021, there was no serious waterlogging
in Lixin County in 2021, which is consistent with the simulation results. Moreover, the
drainage project construction has been completed, and the above average waterlogging
caused by rainstorms has been reduced according to the farmland drainage standard.

6. Conclusions

Waterlogging monitoring needs to consider the continuity of features present in
farmland soil affected by waterlogging disasters. We developed an agro-hydrological
assimilation model to estimate continuous and accurate soil moisture data for winter-
wheat waterlogging monitoring. We conducted parameter optimization on the DHSVM,
including sensitivity analysis by the EFAST method, parameter calibration using the PSO
algorithm, and optimal spatiotemporal resolution selection. We estimated the daily surface
soil moisture data from 25 August 2020 to 1 July 2021 by assimilating RS inversion data into
the DHSVM, then we identified the winter-wheat waterlogging disasters in Lixin County
based on the simulated time-continuous soil moisture data.

From the model accuracy verification, the agro-hydrological assimilation model has
good adaptability in Lixin County and simulates the change process of soil moisture content
at a spatial and temporal resolution of 90 m+3 h. During the calibration period, the NSE
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coefficients of the assimilation model at SSMMI A and B locations were 0.79 and 0.712,
respectively. During the verification period, the RMSEs of SSMMI A and B locations were
0.02077 and 0.02383, which were 9.96% and 12.02% of the measured values respectively.
From the waterlogging monitoring results, the local waterlogging damage ratio decreased
from a high level to a very low damage ratio in Lixin County after ten years, and there
was almost no large-scale severe waterlogging during the period of abundant rainfall,
indicating that the local waterlogging control technology is beneficial.

Although the assimilation model for waterlogging monitoring in the study has been
effectively applied in Lixin County, we should consider artificial irrigation–drainage more
comprehensively when running the agro-hydrological assimilation model. In the future,
the simulation accuracy of the assimilation model needs to be improved. Moreover, the
waterlogging monitoring model in the study should be applied to other regions.
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