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Abstract: To address ecological threats such as land degradation in the karst regions, several ecological
restoration projects have been implemented for improved vegetation coverage. Forests are the most
important types of vegetation. However, the evaluation of forest restoration is often uncertain,
primarily owing to the complexity of the underlying factors and lack of information related to
changes in forest coverage in the future. To address this issue, a systematic case study based on the
Guizhou Province, China, was carried out. First, three archetypes of driving factors were recognized
through the self-organizing maps (SOM) algorithm: the high-strength ecological archetype, marginal
archetype, and high-strength archetype dominated by human influence. Then, the probability of
forest restoration in the context of ecological restoration was predicted using Bayesian belief networks
in an effort to decrease the uncertainty of evaluation. Results show that the overall probability of
forest restoration in the study area ranged from 22.27 to 99.29%, which is quite high. The findings
from regions with different landforms suggest that the forest restoration probabilities of karst regions
in the grid and the regional scales were lower than in non-karst regions. However, this difference
was insignificant mainly because the ecological restoration in the karst regions accelerated local
forest restoration and decreased the ecological impact. The proposed method of driving-factor
clustering based on restoration as well as the method of predicting restoration probability have a
certain reference value for forest management and the layout of ecological restoration projects in the
mid-latitude ecotone.

Keywords: ecological restoration projects; self-organizing maps; archetypes; Bayesian belief
networks; karst

1. Introduction

Recent change in global climate and increased human activity have led to dynamic
changes in global vegetation coverage. Forests account for about 31% of the planet’s
land area and play an extremely important role in ecosystem and maintaining regional
ecological safety [1]. Nevertheless, forest coverage in many places worldwide is declining
in response to increased human interference, which has led to various long-term negative
ecological consequences, such as soil erosion, desertification, and species extinction [2,3].
To ameliorate the environmental conditions of forests, several countries have implemented
various ecological restoration projects, particularly afforestation programs. Accordingly,
studies on forest coverage changes have garnered significant research attention [4–6].
However, the prediction of forest restoration requires insight into the spatial patterns and
driving factors of forest systems to formulate reasonable restoration measures.
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The global karst area comprises approximately 2,200,000 km2, accounting for nearly
15% of all land area [7]. The karst ecosystem in China is one of the largest exposed
carbonate rock areas in the world, with an area larger than 540,000 km2 and a living
population of 220 million [8]. Recently, issues such as the increased vulnerability of local
ecosystems, special hydrogeological structures, and stony desertification have attracted
significant research attention [9]. To improve the ecological conditions in karst regions, the
Government of China (GOC) has implemented a series of ecological measures, including
afforestation and stony desertification. Nevertheless, forest restoration is a long-term
project as the succession of species and changes in the local geographical environment
affect the restoration of the forest ecosystem. At present, the implementation time of
ecological engineering is relatively short, and most regions are in the initial stages of
vegetation restoration. Variations in forest coverage are highly uncertain. Further, the
effects of stony desertification in karst regions present obvious spatial differences owing to
the complexity of the geological background and uncertainty during ecological restoration.
Given the lack of relevant knowledge and unknown afforestation area, the variation can
only be surmised as a probability event. Further, previous studies are limited in terms of
modeling and data availability, and depict only quantitative changes and trends in forest
coverage [10]. For example, Ma et al. (2021) [11] ignored the uncertainty associated with
changing vegetation, but only established a non-linear model of the relationship between
normalized difference vegetation index (NDVI) and multiple factors based on the beetle
antenna search (BAS) algorithm to predict the value of interannual variation in the NDVI.
Further, previous studies mainly describe variations in forest coverage based on short-term
field investigations and multi-temporal satellite imagery; however, they ignore the driving
forces of forest coverage changes as well as their interactive effect [12,13]. Therefore, it
is necessary to comprehensively evaluate changes in forest coverage changes and their
driving factors, along with the internal interactions of driving factors during the prediction
of forest changes.

Although the driving factors contributing to changes in forest coverage are generally
investigated, it is important to focus on their interaction to comprehensively understand
their relationship with changing forest coverage. Self-organizing mapping (SOM) is an
effective clustering tool and is widely used to identify the impact of driving factor interac-
tions on explained variables [14,15]. These maps can be applied at different spatial scales
for trans-regional comparability [16]. Thus far, SOM has been extensively used to study
climatic changes, national ecosystem services, water-resource control, and land resource
management [15,17–19]. In this study, the SOM method was used to interpret the complex
relationships among driving factors underlying changes in forest coverage, as well as to
implement spatial clustering and regional recognition.

In addition, a comprehensive effect assessment is needed not only to reveal the un-
certainty of forest restoration, but also to identify the distribution of forest restoration
at different levels based on the causality between the trends of forest coverage changes
and driving factors. Recently, Bayesian belief networks (BBN) have been widely used to
measure the risk and benefits to resolve uncertainty based on probability theory [20]. For
example, Li et al. (2019) [21] applied the BBN model to analyze the risk of forest land-
scape degradation to resolve the uncertainty of risk assessment due to natural and human
disturbances. Further, the method not only utilizes various data sources such as expert
knowledge, observation, and empirical data to determine the causality effectively [20],
but also interprets the benefits of probability based on quantitative inference patterns [22].
Here, the probability of benefit is expressed as a measure of the confidence level; that is,
the reliability of the results [23]. Notably, the estimation of forest restoration is an iterative
process. When the observational data are updated or substituted, BBNs can still be used to
re-estimate the probability of forest restoration and provide stakeholders with a reference
standard to facilitate scientific decision-making [24]. Therefore, theoretically, BBNs can also
be used as an effective tool to recognize and predict forest changes.
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Guizhou, a province of southwest China, is a typical karst region, where karst land-
forms constitute 70% of the gross area. Guizhou is not only the province with the largest
proportion of karst regions in China, but is also one of the key regions undergoing eco-
logical restoration. Therefore, a case study based on the Guizhou Province was carried
out to (1) analyze the dynamic trend in forest coverage from 2005 to 2018 mainly using
NDVI; (2) describe socio-environmental clusters using SOM based on the selected driving
response factor in changing forest coverage; (3) predict the probability of forest restoration
at the grid-scale using BBN. This study was conducted to explore the relationships between
changes in forest coverage and social and environmental gradients, interpreting the evolu-
tionary process of the regional ecological environment. Finally, it provides decision-makers
with a valuable reference standard based on comprehensive research conclusions.

2. Materials and Methods
2.1. Study Area

The Guizhou Province is located between 24◦37′–29◦13′ N and 103◦36′–109◦35′ E,
covering an area of 176,200 km2 (Figure 1). The province has a high average altitude
in the west and a low average altitude in the east, with an average elevation of about
1100 m. It experiences a subtropical monsoon climate, which is erratic due to the influence
of mountains. The annual duration of sunshine is 1300 h. The frost-free season lasts for
about 270 days. The climate, soil, and terrain conditions contribute to diverse vegetation.
Mid-subtropical evergreen broad-leaf forests occur predominantly in central and northern
regions of the province, while south-subtropical evergreen broad-leaf forests are dominant
in the southern regions.
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Karst landforms—dominated by limestone, dolomite, and other carbonates—account
for more than 70% of the total area in the province [25]. In past decades, degradation of
vegetation and ecosystems occurred worldwide, including stony desertification. Since
2000, the GOC has invested 13 billion yuan to control stony desertification and vegetation
degradation, minimizing the influence of human activities on the ecosystem via ecological
migration and other measures. However, ecological restoration is marked by spatial
differences owing to the complexity of the local geological conditions and uncertainties.
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2.2. Data Sources

NDVI can be used to effectively evaluate and monitor changes in green vegetation [26].
Therefore, NDVI data can be used to monitor large-scale changes in forest land cover over a
long period of time. In this study, the Terra Moderate Resolution Imaging Spectroradiome-
ter (MODIS) Vegetation Indices (MOD13Q1) NDVI data and land use and land cover (LULC)
data were used to ascertain the trends in forest variation from 2005 to 2018. MOD13Q1
NDVI was provided by the United States Geological Survey (https://www.usgs.gov/,
accessed on 6 January 2022), with a spatial resolution of 250 m. In order to improve the
image quality, we preprocessed the data via radiometric calibration, atmospheric correction,
image mosaic and clipping, cloud removal, shadow processing and spectral normalization.
LULC data in 2005 and 2018, with a spatial resolution of 1 km, were published online by
the Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn/, accessed on 6 January 2022).

In addition, six datasets were selected to obtain the driving factors. The Shuttle Radar
Topography Mission (SRTM) digital elevation data at 90 m (SRTM 90 m) were acquired from
the Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn/, accessed on 6 January 2022). Meteorological data from 2005 to 2018
collected by the meteorological stations, including temperature, precipitation, and potential
evapotranspiration, were downloaded from China’s meteorological-data-sharing service
system (http://data.cma.cn/, accessed on 6 January 2022). The spatial grids of temperature,
precipitation, and potential evapotranspiration with 1 km resolution were interpolated
using the meteorological interpolation software Anusplin. Soil data, including soil texture
and soil depth with a spatial resolution of 1 km, were obtained from the 1:1,000,000 soil
database of the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/, accessed
on 6 January 2022). Nighttime light data with a spatial resolution of 500 m were obtained
from the Harvard Dataverse (https://doi.org/10.7910/DVN/YGIVCD, accessed on 6
January 2022). Geographic information data were derived from the National Geomatics
Center of China (https://www.openstreetmap.org/, accessed on 6 January 2022), including
administrative boundaries, settlements, and traffic network. The distances of sample
locations from roads and settlements were obtained using the near tool in ArcGIS10.6. The
afforestation area data was determined with the help of the local governmental departments.
The afforestation area of each grid was obtained via geostatistical analysis. In this study, all
the selected driving factors were resampled into a raster with 1 × 1 km pixel size to ensure
the same spatial resolution and grid number.

2.3. Methods
2.3.1. SOM Model

Based on a survey of local data and previous studies [10], 18 driving factors were
selected (see Table 1). The mean value of NDVI (NDVIm) was regarded as one of the
factors since NDVIm had the highest correlation coefficient with the slope value of NDVI
(NDVIs), as shown in Figure 2. To estimate the archetypes of socio-environmental drivers,
we used the SOM algorithm to analyze the selected factors (Table 1). First, all impact factors
were standardized using the z-score to reconstruct a consistent scale to determine the
distance between the value of each driving factor and the average value, which indicates
the importance of variables in each cluster [15]. A z-score = 0 suggests a mean/low
influence of the factor has a mean/low influence; a z-score > 0 indicates a positive impact,
while a z-score < 0 suggests a negative impact. Further, the greater the absolute value
of the z-score, the stronger the importance in the cluster. The variable values in each
cluster can be represented graphically to display the characteristics of the factors in each
cluster. In the second step, we completed the parameterization of SOM by defining a priori
number of clusters in a two-dimensional plane. This step is crucial as defining too many
clusters may lead to the separation of relatively homogeneous clusters, while defining
too few clusters may lead to inhomogeneity with high variability of input data [15]. To
define an appropriate number of clusters, we analyzed the number of hexagonal plane

https://www.usgs.gov/
http://www.resdc.cn/
http://www.resdc.cn/
http://data.cma.cn/
http://data.tpdc.ac.cn/
https://doi.org/10.7910/DVN/YGIVCD
https://www.openstreetmap.org/
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prototypes in different combinations (e.g., 5 × 5 vs. 10 × 10) based on the Davies–Bouldin
(DB) index and the mean distance of samples in each cluster [27]. In this study, we selected
a 5 × 5 hexagonal plane for the drivers associated with forest coverage change, as the DB
index (6.52) and the mean distance (7.02) to the cluster centroids was more satisfactory at
this point. The SOM method was used to generate a monolayer map of the clusters of forest
coverage change drivers. Finally, an actual monolayer map of the clusters was generated
iteratively. The SOM method involves creation of patterns from factors based on similarities
and differences [19]. The optimal clustering mode was obtained and codebook vectors were
used to detect the relative importance of each factor under each archetype. This method
facilitated the identification of the impact of spatial allocation of driving factors on forest
coverage change.

Table 1. Potential factors associated with grassland degradation.

Factors Description

Natural Elevation Elevation (m)
Slope Slope (◦)
Clay Proportion of soil clay (%)
Sand Proportion of soil sand (%)
Silt Proportion of soil silt (%)
Soil depth Soil depth (%)
Tm Mean value of annual temperature (2005–2018) (◦C)
Ts Slope of annual temperature change (2005–2018)
ETm Mean value of annual potential evaporation (2005–2018) (mm)
ETs Slope of annual potential evaporation change (2005–2018)
Pm Mean value of annual precipitation (2005–2018) (mm)
Ps Slope of annual precipitation change (2005–2018)
NDVIm Mean value of annual normalized difference vegetation index (2005–2018)

Social and economic

Afforestation Mean value of the area of afforestation (2005–2018) (m2)
NTLm Mean value of nighttime light (2005–2018)
NTLs Slope of nighttime light change (2005–2018)
DS Distance between each grid and its nearest settlement (m)
DR Distance between each grid and its nearest road (m)
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2.3.2. Model Design and Parametrization

BBN is a multivariate statistical model consisting of nodes of random variables (i.e.,
nodes) and the causal relationship (i.e., arrows) [28]. Each node is discretized into lim-
ited states, and the cause–effect relationship can be constructed based on related studies,
empirical observations, or expert knowledge. The most significant advantage of the BBN
model is that it can transfer the uncertainty of a parent node to a child node via conditional
probability distribution (Equation (1)) [29]. To construct a well-designed BBN model, we
used the Genie and MATLAB programs to analyze and adjust the model as detailed below.

P(B | A) =
P(A | B)× P(B)

P(A)
(1)

Equation (1) expresses the conditional probability (posterior probability) of the event
B based on evidence A, the conditional probability of A given B P(A|B), and the prior or
marginal probability of A P(A).

As the first step, correlations were calculated to identify the relationship between
factors and forest restoration limiting the analysis, as shown in Figure 2. The trend of forest
change was characterized by the slope of NDVI (NDVIs), and NDVIs > 0 was regarded as
forest restoration. The red pixels represent a positive effect and the blue pixels represent a
negative effect between two factors; the flatter the ellipse, the stronger the correlation [20].
The results imply that the selected drivers are directly or indirectly related to change in
forest coverage partially.

The parameterization of the BBN model requires discretized variables. However, the
selected variables are all continuous. Therefore, we need to select an appropriate method to
discretize these variables. The frequency ratio (FR) can be used to rank the driving factors
based on the susceptibility of each attribute interval of the factor to the event (Equation (2)).
Then, the intervals with similar frequency ratios can be merged to realize the scientific
division of indicator factor status, which provides a more reliable prior probability for
the nodes in the BBN model [20]. Therefore, the 18 potential factors were divided into
four levels using FR models (Table 2), and a sample file with a training set (n = 75,762; 80%)
and a testing set (n = 18,940; 20%) was generated. Based on the training set, the conditional
probability distribution of each variable was obtained via the parameterization.

FR =
a/b(%)

c/d(%)
(2)

where a represents the number of forest restorations associated with each driving factor, b
is the total number of forest restorations, c is the number of pixels in a given driving factor,
and d is the total pixel number in the study area.

Table 2. Discretization of the BBN model nodes.

Variable
Classes

Lowest Low Medium Highest
NDVIm <0.5 0.5–0.6 0.6–0.7 ≥0.7

Tm 16~18 <12 12–14 14–16 and ≥18
Ts −0.06–0.04 0.04–0 and 0.04–0.06 −0.08–−0.06 and 0–0.04 and

≥0.06 <−0.08
Pm 1000–1100 1100–1200 1200–1300 ≥1300 and <1000
Ps 18–21 <15 and 21–24 15–18 and 24–27 ≥27

NTLm 5–25 ≥25 0–5 0
NTLs ≥0.4 0.2–0.4 <0 and 0–0.2 0
ETm ≥1000 950–1000 900–950 <900
ETs 1–2 and ≥4 2–4 0 0–1

Elevation <600 600–1400 1400–2200 ≥2200
Slope <5 ≥30 5–10 10–30

soil depth <50 70–80 and 90–100 50–70 and 80–90 ≥100
Sand 55–60 <35 and ≥60 35–40 and 45–55 40–45
Silt <20 35–40 20–35 ≥40
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Table 2. Cont.

Variable
Classes

Lowest Low Medium Highest

Clay 30–35 10–15 and ≥40 and 25–30 15–25 and 35–40 <10
DS <3000 3000–6000 6000–9000 ≥9000
DR <500 500–1500 1500–3000 and ≥4000 3000–4000

Afforestation <1000 1000–2000 2000–3000 and 4000–5000
and 7000–8000

3000–4000 and
5000–70,000 and ≥8000

2.3.3. Model Validation and Implementation

To evaluate model performance, the confusion matrix and receiver operating char-
acteristic (ROC) curve were calculated based on the testing set. The confusion matrix
determines the overall accuracy of the prediction by comparing the true value with the
predicted value [30]. The ROC curve provides a threshold-independent assessment that is
used to appraise the judgment by calculating the area under the curve (AUC). The ROC
curve is demarcated based on the value of the AUC, e.g., a value between 0.9 and 1.0 for
the AUC indicates excellent model performance, and 0.8–0.9, 0.7–0.8, 0.6–0.7 and 0.5–0.6
indicate good, fair, poor, and fail, respectively [31].

To determine the key factors predicting forestland restoration, a sensitivity analysis
was conducted. The control variable is relatively important to the target node. In this
study, the variance of belief (VB) and mutual information (MI) were used to determinate
the significance of each variable [32]. The VB and MI are calculated as follows:

VB = V(S)−V(S | I) = ΣSP(S)× (S− E(S))2 − ΣSP(S | I)× (S− E(S | I))2 (3)

MI = H(S)− H(S | I) = ΣsΣiP(s, i) log2

(
P(s, i)

P(s)× P(i)

)
(4)

where S is the target node, I is other node, and s and i represent the states of S and I,
respectively. The larger the value of VB and MI, the stronger the influence of other nodes
on the target node.

Based on the sensitivity analysis, variables with higher sensitivities (VB > 0.1%) were
selected as the key variables [20]. Furthermore, the selected key variables, as evidence
variables, were incorporated into the model to evaluate the restoration probability of forest
areas under uncertain conditions. In addition, to determine the effect of geomorphological
features on the probability of forest restoration, the probability of forest restoration in karst
and non-karst regions at the grid and regional scales was analyzed.

3. Results
3.1. Analysis of Forest Areas

Between 2005 and 2018, the annual NDVI of forest grids in the study area exhibited a
growth trend (Figure 3), indicating statistically significant improvement in forest coverage.
Quantitatively, the improved forest area was 90,130 km2, including 71.36% significant im-
provement and 23.82% insignificant improvement. The combined stable and degraded area
was only 4572 km2. As shown in Figure 3, regions with stable and degraded forests were rel-
atively concentrated in the middle region of the Guizhou Province. Further, the proportion
of forest restoration in non-karst regions (96.40%) differed slightly from that of karst regions
(94.28%), while ecological vulnerability varied significantly between the two regions. This
result could be attributed to ecological restoration, including control of stony desertification
in karst regions.
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3.2. Characteristics of Socio-Environmental Archetypes

To further explore the spatial distribution of driving factors and the effects of their
interactions on forest coverage, and to obtain a priori knowledge for constructing the BBN
model to predict the forest restoration, the SOM method was used for spatial clustering
and regional recognition of monitoring data, as shown in Figure 3. As shown in Figure 4a,
18 driving factors associated with forest variation reached the point of convergence after
about 320 iterative analyses. As shown in Figure 4b, the proximity between the clusters
indicates similarities and differences among the clustering units. Blue denotes a small
distance and red indicates a large distance. A smaller distance between nodes in the cluster
indicates higher similarity, while a larger distance indicates greater differences. As shown
in Figure 4b, all clusters were divided into five types, according to differences between
nodes in the cluster. A single red cluster shows large differences between the cluster
nodes, whereas 16 blue clusters show similar characteristics. The average distance between
observed samples in the cluster and the center of the cluster is depicted in Figure 4c. Blue
denotes a small mean distance, while red denotes a large mean distance. The smaller
distance represents an ideal clustering effect. As shown in Figure 4c, 23 blue clusters exhibit
small distances and the other two clusters (red and baby blue) show large distances.

The results of clustering involving the driving factors of forest variations reveal
three socio-environmental archetypes (Figure 4d). The spatial distributions and charac-
teristics of these three archetypes are shown in Figures 4e and 5. Archetype 1 is mainly
controlled by the afforestation area (64.23%) and represents a high-strength and dominant
ecological archetype, covering a total area of 92,182 km2. It mainly occurs in regions with
large afforestation areas. Improved, stable, and degraded areas constitute 95.4, 0.9, and
3.5% of the total area, respectively (Figure 5a). Archetype 2 is mainly influenced by high
NTLs/NTLm and low NDVIm (81.82%), and the area only covers 338 km2. Specifically,
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improved, stable, and degraded archetypes account for 17.1, 1.7, and 81.2% of the total
area, respectively. It is a high-strength and predominantly human archetype and mainly
occurs in regions with strong human interference and activity (Figure 5b), such as those
involving urban construction and dense population. Archetype 3 only accounts for 2.3%
of the study area, with afforestation areas and NTLs/NTLm accounting for 55.55% of the
dominant area (Figure 5c). In this region, few disturbances related to human activities
occur, and the ecological quality is relatively poor. It is a typical marginal archetype. The
potential for afforestation in this area is limited and low-intensity human activities facilitate
forest restoration, with 93.9, 0.8, and 5.2% of the total area showing improved, stable, and
degraded conditions, respectively.
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3.3. Parameter Learning and Model Validation

The BBN model shown in Figure 6a was constructed using the results obtained from
the correlations and the SOM algorithm. The driving factors were discretized based on
the FR model (Table 2); 80% of the samples were then randomly selected to parametrize
nodes in the BBN conceptual model (see the result in Figure 6b). The remaining 20% of the
driving factors in the test set were fed into the network. The accuracy of the BBN model
for forest restoration evaluation was evaluated using the confusion matrix and ROC curve.
The overall accuracy of the model was 95.95% and the AUC value was 70.16% (p < 0.05)
(Figure 7) establishing that the BBN mode has a reasonable structure and exhibits adequate
recognition of forest changes. Therefore, it can be used to predict forest variation states in
the future.
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3.4. Prediction of Forest-Restoration Probability

The parameter sensitivity underlying changes in forest coverage in the BBN model
was analyzed. The results are shown in Figure 8. The higher the VB or MI, the higher the
sensitivity of the node variables to forest changes. Key variables that greatly influence forest
changes were recognized according to the MI and VI parameters (VB > 0.1%) including
NDVIm, Ts, Silt, Clay, Tm, and afforestation, which were chosen as key variables to
predict the forest restoration probability of grid units. The results demonstrate that the
forest restoration probability of the study area ranged from 22.27 to 99.29%. Based on the
classification of the forest restoration probability into lowest (p < 50%), low (50% < p < 90%),
medium (90% < p < 95%), and high (p > 95%), the spatial distribution of the forest-restoration
probability in Guizhou Province was evaluated (Figure 9). According to the predicted
results, the probability of forest restoration in the study area was generally medium to
high; it was generally higher and the local ecological environment was greatly improved.
Given the spatial distribution, the regions at the lowest level were mainly located in the
Honghuagang distract and Longli county, dominated by karst topography.
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To further elucidate the effects of geological landforms in karst regions on local forest
restoration, a statistical analysis of the forest restoration probabilities in karst and non-karst
regions was carried out at the grid and regional scale. Based on the landform characteristics
of the study area, the grid unit of 10 km was finally used. The proportion and probability of
forest restoration (expressed as mean values) of karst landforms in each grid were counted
(Figure 10A). The proportion of karst area on a grid scale ranged from 0 to 100%. Grids
were divided into the lowest, low, medium, high, and the highest categories, according to
the proportion of the karst area. The probability of forest restoration in the grids ranged
between 93.75 and 99.23%. Specifically, the means of the forest restoration probability
corresponding to the lowest, low, medium, high, and the highest categories were 6.30, 96.20,
95.66, 95.46, and 95.05%, respectively. Therefore, the probability of forest restoration is neg-
atively correlated with the proportion of karst areas in the grids. The proportions of areas
with different levels of restoration probability in karst and non-karst regions are shown
in Figure 10B. The mean forest restoration probabilities in the karst and non-karst regions
were 95.44 and 96.03%, respectively. Further, a high restoration probability (p > 95%) was
dominant and associated with only small differences. However, the forest restoration with
low probability (p < 95%) in karst areas was significantly higher than in the non-karst areas,
while the area of forest restoration with high probability (p > 95%) in non-karst areas was
significantly lower than in karst areas. Forest restoration probability is a measure of the
positive impact on the confidence level. In essence, the probability reflects uncertainty [20];
therefore, the results must be understood based on probability theory rather than as the
simple area proportion.
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4. Discussion
4.1. Driving Forces Based on Socio-Environmental Archetypes

Consistent with the conclusions underlying changes in vegetation in the karst regions
of Southwest China [12,33,34], this study determined that the overall forest coverage in
the study area improved steadily. Specifically, the proportion of improved forest status in
non-karst regions (96.40%) was slightly larger than in karst areas (94.28%), which does not
suggest an obvious difference. Owing to the unique hydrogeological structures of the karst
regions in Guizhou Province, the vegetation is relatively vulnerable and sensitive to land
degradation, including stony desertification. Therefore, theoretically, forest restoration in
karst regions is significantly more difficult than in non-karst regions [35]. However, this
study revealed small differences in the effects of forest restoration, indicating that ecological
engineering is one of the significant factors underlying land degradation.

Based on the spatial distribution and the interactions between factors underlying
changes in forest coverage, the driving factors were clustered using the SOM algorithm.
This algorithm can recognize the spatial combination of different factors and corresponding
changes in forest coverage, which are significant for stakeholders implementing ecological
restoration and protection measures. SOM is an effective tool for archetype clustering;
however, it is rarely used in studies involving forest coverage. Combining dimensionality
reduction and clustering analysis, the different regions can be analyzed intuitively and
in depth, along with the archetypes, which are analyzed comprehensively based on the
interaction between driving factors [36]. In this study, three archetypes were recognized.
Specifically, the proportions of improved areas in archetypes 1 and 3 were higher than 93%,
which further demonstrated the positive impact of afforestation-related activities such as
ecological engineering on vegetation restoration [37]. Further, archetypes 2 and 3 were
dominated by human activities. A few studies reported that areas with significant declines
in forest land cover are usually located near roads or residential areas, suggesting that
frequent human activities lead to degradation of forest coverage [12,38]. The proportion
of degraded states in archetype 2 was relatively high (81.2%), which mainly involved
regions with a high intensity of human production and activity, reinforcing the conclusions
above. Spatial recognition and the division of archetypes facilitate our understanding of
forest restoration, which, combined with the restoration effects, recognize spatial laws and
promote the optimization of ecological engineering layouts.
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4.2. Assessing the Potential Forest Restoration Probability

In this study, a BBN conceptual model of forest restoration was designed by combining
expert experience, factor correlation analysis, and existing research results [39,40]. The
model was then applied for the quantitative assessment of forest restoration probabilities in
the background of ecological restoration. Based on conditional probabilities, the uncertainty
of assessment results caused by the lack of relevant knowledge or information (evaluation
data) can be eased [41]. Therefore, this model is very valuable. Further, it can be used to
re-evaluate forest restoration probabilities using updated or replaced data [42], to enable
formulation of reasonable and effective management measures by the stakeholder. As a
result, the BBN model exhibits relatively strong reliability and practicability.

Understanding the influences of landforms (karst and non-karst) on forest restoration
at different research scales can provide decision-makers with a reference base to develop
and implement ecological restoration measures. The forest restoration probability on the
grid scale generally decreases with increased proportion of karst area in the grid; however,
the differences in forest restoration probability corresponding to the proportion of karst
areas in different states are small, probably due to the close relationship with the input of
ecological engineering [9]. Since 2000, the GOC has invested more than 130 billion yuan
into ecological environmental governance in karst regions [8]. The forest coverage in the
karst regions has changed from negative to net growth [43]. This artificial improvement
has increased the rate of vegetation restoration in the grids dominated by karst areas,
and the forest restoration probability showed no significant differences compared with
grids dominated by non-karst areas. At the regional scale, both non-karst and karst
regions showed a high level of forest restoration probability (p > 95%). The average forest
restoration probability of non-karst regions (96.03%) was slightly higher than in karst
regions (95.44%). Theoretically, the average vegetation coverage and succession rates of
karst regions were lower than those of non-karst regions, and the forest restoration in
karst regions was relatively more difficult [40]. Therefore, this study demonstrated that
ecological engineering plays an important role in determining the forest restoration rate.

4.3. Implications and Future Directions

The fundamental goal of ecological restoration is to protect or increase vegetation
coverage [44]. However, vegetation restoration is influenced by other biological and
physical factors, in addition to socio-economic factors. Different conditions, including
climatic changes, soil features, and human activities, restrict the spatial configuration
of the water–soil resources and geochemical cycling of nutrients, influencing vegetation
growth [45].

In this study, the dominant effect of human activities and landform features on forest
restoration was determined via forest restoration evaluation and archetype analysis. The
effects of human activities on forest restoration can be considered from two aspects. First,
it is difficult to implement forest restoration in regions of high-intensity human activity
due to utilization of forest resources for living and production [46]. However, ecological
engineering related to ecological protection and vegetation restoration accelerates forest
restoration [47]. For example, Tong et al. [13] found that ecological restoration had a
positive impact on vegetation restoration in the Guizhou Province, Yunnan Province, and
Guangxi Province by eliminating the role of meteorological factors in vegetation changes.
Therefore, future ecological restoration efforts should consider forest restoration in regions
with significant human activities based on the principle of “ecology-economy”. It is also
suggested that economic interventions during afforestation should be based not only on
economic benefits for the public, but on local environmental conditions. Other plant areas
such as pastures can be considered for regions inappropriate for afforestation. The effect of
landform types on forest restoration is mainly reflected in the forest restoration probability
and differences between karst and non-karst regions. This is mainly because it is more
difficult to restore vegetation in vulnerable environments, which are characterized by poor
soil formation and high permeability of carbonates [9]. In the future, additional capital
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investment is required for ecological restoration in karst regions. Further, appropriate
governance is needed according to the degree of land degradation.

As an ecological transition zone, the mid-latitude ecotone (MLE) experienced land
degradation, deforestation and a serious loss of forest ecosystem due to environmental
changes and social pressure. In this study, the results of forest restoration in typical
ecologically fragile areas served as an important reference base for the restoration of forest
ecosystem in MLE. Specifically, relevant measures to enhance the positive effects of human
activities on forest land restoration and reduce its negative effects decreased the interference
of human activities in forest restoration. However, the increased capital investment in
ecological restoration and implementation enhances the ecological outcomes.

The study has some limitations. Although this study has analyzed the forest restoration
in karst areas, additional research is needed to quantitatively identify the relationship
between changes in vegetation and the underlying factors in combination with the local
geographical environment and explore the mechanisms of local ecological restoration. In
addition, BBN can be used to address the uncertainty associated with structural parameters
and data input during forest restoration [48]. Nevertheless, the reasonability of the model
structure is very important to enhance the accuracy of prediction. Therefore, further a
priori knowledge is required to optimize the model structure. For example, further findings
regarding vegetation restoration could be used to systematically formulate additional laws.

5. Conclusions

This study analyzes forest restoration in the Guizhou province from the perspective of
ecological restoration, as well as its relationship with environmental and socio-economic
factors, by combining the SOM algorithm and the BBN model. First, the dynamic variation
in the forest coverage trend is analyzed based on NDVI data. Results show that following
ecological restoration, forest coverage in the study region generally improved significantly
from 2005 to 2018. The improved area accounted for 90,130 km2, while stable and degraded
areas extended to 4572 km2. Second, three socio-environmental archetypes are recognized
by the SOM algorithm. The improved areas in the high-strength eco-dominant archetype
and the high-strength predominantly human archetype constituted 95.4 and 93.9%, respec-
tively. However, only 17.1% of the improved area represented the marginal archetype.
Based on prior knowledge of forest restoration and driving factors, a BBN model predicting
forest restoration probability was constructed to comprehensively evaluate the changes
in forest and driving factors, as well as the internal interactions. The overall accuracy of
the BBN model was 95.95% and the AUC value was 70.16%. Overall, the model showed
robust performance and provided reasonable predictions for the forest restoration probabil-
ity, which ranged from 22.27 to 99.29% in this study. The prediction of forest restoration
probability in karst and non-karst regions at different scales was analyzed. In the grid scale,
the forest restoration probability was negatively correlated with the proportion of karst
area in the grid. At the regional scale, minor differences in the average forest restoration
probabilities were detected between karst and non-karst regions, at 95.44 and 96.03%, re-
spectively. It is believed that the low forest restoration probability of karst regions is caused
by the vulnerable environment, owing to low soil-forming rates and the high permeability
of carbonates. Nevertheless, the implementation of ecological restoration accelerates forest
restoration in karst regions within the study period. No apparent differences in forest
restoration probabilities were observed between karst and non-karst regions, suggesting
the need for implementation of ecological restoration projects and formulation of flexible
and relevant ecological protection policies, according to the locally predicted probability of
forest restoration.
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