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Abstract: The precision fertilization system is the basis for upgrading conventional intensive agricul-
tural production, while achieving both high and quality yields and minimizing the negative impacts
on the environment. This research aims to present the application of both conventional and modern
prediction methods in precision fertilization by integrating agronomic components with the spatial
component of interpolation and machine learning. While conventional methods were a cornerstone
of soil prediction in the past decades, new challenges to process larger and more complex data have
reduced their viability in the present. Their disadvantages of lower prediction accuracy, lack of
robustness regarding the properties of input soil sample values and requirements for extensive cost-
and time-expensive soil sampling were addressed. Specific conventional (ordinary kriging, inverse
distance weighted) and modern machine learning methods (random forest, support vector machine,
artificial neural networks, decision trees) were evaluated according to their popularity in relevant
studies indexed in the Web of Science Core Collection over the past decade. As a shift towards
increased prediction accuracy and computational efficiency, an overview of state-of-the-art remote
sensing methods for improving precise fertilization was completed, with the accent on open-data
and global satellite missions. State-of-the-art remote sensing techniques allowed hybrid interpolation
to predict the sampled data supported by remote sensing data such as high-resolution multispectral,
thermal and radar satellite or unmanned aerial vehicle (UAV)-based imagery in the analyzed studies.
The representative overview of conventional and modern approaches to precision fertilization was
performed based on 121 samples with phosphorous pentoxide (P2O5) and potassium oxide (K2O)
in a common agricultural parcel in Croatia. It visually and quantitatively confirmed the superior
prediction accuracy and retained local heterogeneity of the modern approach. The research concludes
that remote sensing data and methods have a significant role in improving fertilization in precision
agriculture today and will be increasingly important in the future.

Keywords: remote sensing; machine learning; digital soil mapping; geostatistics; deterministic
methods; prescription maps; sustainable agriculture; multispectral images; digital elevation models

1. Introduction

The increasing need for food production due to population growth is the cause of
the continuous intensification of agricultural production, which leads to higher yields of
agricultural crops on existing agricultural land [1]. Modern intensive agriculture makes
fertilization one of the primary ways to achieve this goal; however, the short-term objec-
tives of agricultural land management could seriously affect the long-term sustainability
of food production [2]. Several authors have pointed out that farmers should not only
consider fertilization with the aim of increasing their economic profits, but also in relation
to maintaining the long-term biochemical soil composition and its effects on the ecosys-
tem [3,4]. Poor management and understanding of fertilization itself have a significant
negative impact on the environment, atmosphere, and natural resources, in addition to
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poor economic impacts on agricultural production [5]. The application of fertilizers in
precision agriculture is an investment to increase the production potential of each plant
within the agricultural parcel. This fact does not justify using a larger amount of fertilizer
to achieve high yields, instead of achieving stable crop yields in an economical and efficient
manner [6].

Fertilization in precision agriculture mainly ensures long-term optimal distribution
of nutrients according to crop needs [7]. With technology development, conventional
fertilization based on the average values of fertilizer applications within the agricultural
land as a homogeneous unit is becoming obsolete. Instead, precision agriculture considers
the agricultural parcel as a heterogeneous system, which is often very variable in its
local spatial units [8]. Such an approach aims to balance the nutrients in the soil on
the entire agricultural plot, so that all its parts enable optimal crop development [4].
Fertilization of agricultural crops is regularly performed in several iterations, following
the current crop growth stage and the implementation of agrotechnical operations [9].
Basic fertilization involves the application of mineral and organic fertilizers before sowing,
providing a sufficient amount of available nutrients in the soil to develop the plant root
system. Supplementary fertilization allows for correcting the previously applied rates in
basic fertilization, depending on the crop growth stage.

Spatial continuous data are crucial for making reliable prescription maps in precision
fertilization. This property primarily refers to basic fertilization, where site-specific pre-
scription zones form the basis of practical application based on discrete soil sampling [10].
Supplementary fertilization relies more heavily on indirect nutrient assessment in crops
based on remote sensing, with soil sampling being used as a secondary spatial data source.
Most of the collected data based on soil sampling are in a point vector format. To determine
the continuous areas, it is necessary to estimate the values in non-sampled areas using
spatial prediction methods [11]. A conventional postulate is that interpolation is one of
the key components of data processing and analysis in the geographic information system
(GIS) environment and is the subject of the study of statistics and geostatistics [12]. Interpo-
lation is known as the process of deterministic or geostatistical prediction of the values of
non-sampled areas, based on georeferenced soil samples to calculate a continuous surface.
Papadopoulus et al. [13] stated that the key component in site-specific crop cultivation is
geoinformation technologies, while agricultural land management depends on ecological
and natural resources that have a spatial component. Geoinformation technologies are
becoming a key factor in precision fertilization, as a basis for integrating discrete spatial
data of soil sampling and their spatial prediction [4]. In addition to the direct application
of spatial interpolation methods in precision fertilization, there is a successful long-term
application in related soil-related activities.

Remote sensing data and methods were successfully implemented in various ap-
plications within precision agriculture [14–17]. Many authors have also used open and
commercial satellite data for real-time monitoring of agricultural crops [16,18,19]. Earth
observation satellites (e.g., PlanetScope) enable the daily monitoring of agricultural crops’
condition in large areas without going out into the field [20,21] and many authors give
huge importance to developing fully automatic remote sensing methods that lead to com-
plete automation of the satellite image-processing process [22,23]. In this way, end-users
without advanced remote sensing knowledge can obtain a final product such as a weed
map or soil moisture map automatically, almost in real-time. Remote sensing techniques
based on machine learning algorithms can be used to predict and assess the physical and
chemical parameters of the soil, which is extremely important for the fertilization process
in precision agriculture [23–25], but although remote sensing data and methods are widely
used in agriculture today, it is necessary to emphasize and exactly specify the importance
of remote sensing applicability in the fertilization process. Since inadequate fertilization
recommendations are directly affected by the inadequate choice of a spatial prediction
method and input data [26], in the past few years, there has been a notable shift from the
conventional interpolation methods to the modern approach based on machine learning
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(Figure 1). The number of scientific articles indexed in the Web of Science Core Collection
(WoSCC) with the topic of “soil” combined with “fertilization” or “nutrient” and a particu-
lar prediction method rapidly increased during this period, and the remote sensing data
have been as important as ever in soil prediction and precision fertilization studies. Their
long-known importance as an abundant spatial data source has been further amplified by
the application of machine learning methods to predict soil parameters, being one of the
primary sources for covariates in these studies.
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Figure 1. The importance of remote sensing and the most frequently used spatial interpolation
methods in precision fertilization according to the number of scientific papers indexed in the Web of
Science Core Collection database.

The main aim of this study was to investigate the ability of a modern machine learning
approach supported by remote sensing for soil prediction in precision fertilization. Their
relative prediction accuracy compared to conventional interpolation methods were inves-
tigated, as well as the conditions under which the cost-benefit and time-efficiency of soil
sampling and the creation of a prescription map for fertilization are most affected. In accor-
dance with the growing need and application of spatial prediction methods in precision
fertilization, the specific objectives of this paper were to analyze, (1) the components of the
integration of spatial prediction methods in the process of determining prescription rates
in precision fertilization; and (2) the influence of modern remote sensing data and methods
and their advantages according to the conventional approach in precision fertilization.
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2. Integration of Geoinformation Technologies with Agronomic Principles of
Precision Fertilization

Fertilization in precision agriculture is an inherently multidisciplinary approach, in-
tegrating the agronomic component of soil sampling and laboratory analysis with the
spatial component of predicting soil parameters in a GIS environment (Figure 2). As the
first step, soil sampling is intended to collect representative samples that will be used by
chemical laboratory analysis to determine the state of soil nutrients. These generally consist
of microelements and macroelements and other soil properties, such as soil pH, organic
matter, and humus content. In addition to laboratory analysis, it is necessary to perform
georeferencing of soil samples using global navigation satellite system (GNSS) positioning
for further processing and interpretation of data for each sample [27]. De Zorzi et al. [28]
stated that the spatial distribution of soil sampling depends on the area and geometrical
properties of the agricultural parcel. The goal of the soil sampling is to collect the smallest
possible number of representative samples that will not impair the accuracy of the spatial
interpolation [29]. For this purpose, it is common to conduct preliminary zoning of agricul-
tural plots before sampling, primarily by scanning the electrical conductivity of the soil.
When sampling, it is important to choose the soil sampling depth, which depends on the
type of crop and its root system, generally at two sampling depths, 0–30 cm and 30–60 cm.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 23 
 

 

methods and their advantages according to the conventional approach in precision ferti-

lization. 

2. Integration of Geoinformation Technologies with Agronomic Principles of Preci-

sion Fertilization 

Fertilization in precision agriculture is an inherently multidisciplinary approach, in-

tegrating the agronomic component of soil sampling and laboratory analysis with the spa-

tial component of predicting soil parameters in a GIS environment (Figure 2). As the first 

step, soil sampling is intended to collect representative samples that will be used by chem-

ical laboratory analysis to determine the state of soil nutrients. These generally consist of 

microelements and macroelements and other soil properties, such as soil pH, organic mat-

ter, and humus content. In addition to laboratory analysis, it is necessary to perform 

georeferencing of soil samples using global navigation satellite system (GNSS) position-

ing for further processing and interpretation of data for each sample [27]. De Zorzi et al. 

[28] stated that the spatial distribution of soil sampling depends on the area and geomet-

rical properties of the agricultural parcel. The goal of the soil sampling is to collect the 

smallest possible number of representative samples that will not impair the accuracy of 

the spatial interpolation [29]. For this purpose, it is common to conduct preliminary zon-

ing of agricultural plots before sampling, primarily by scanning the electrical conductivity 

of the soil. When sampling, it is important to choose the soil sampling depth, which de-

pends on the type of crop and its root system, generally at two sampling depths, 0–30 cm 

and 30–60 cm.  

 

Figure 2. The integration of agronomic and spatial components in the three main steps of fertiliza-

tion in precision agriculture. 
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in precision agriculture.

By applying soil prediction methods, data from soil chemical analysis, GNSS ob-
servations and other relevant data are combined into one modular unit, representing a
spatial distribution of the present state of available soil nutrients [30]. Such an approach
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enables observing local variability and creating prescription maps. For the prediction of
soil properties at unknown locations, two main approaches are used: a conventional (based
on geostatistical and deterministic interpolation methods) and a modern approach (based
on machine learning) (Figure 3). After calculating the present state of a certain soil nutrient,
areas of similar values are classified into several zones, with the aim of effective fertilizer
application using agricultural machinery which supports precision fertilization [10]. Based
on the current zones of nutrient status in the soil, the application zones for fertilization is
calculated by subtracting the existing values from those prescribed by the agricultural ex-
pert [4]. Prescription maps are used to manage agricultural machinery as the final product
of the whole process of computer processing. By exporting zoned prescription maps to the
vector data format, the required amount of fertilizer for individual zones is defined. Among
the included procedures, the selection of prediction methods and their parameters is a
process in which the user has the highest subjective impact and dominantly determines the
accuracy and reliability of the final prescription map [24]. Therefore, the two approaches
to the prediction of soil properties in precision fertilization are analyzed in-depth in the
following sections.
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3. Conventional Approach to Fertilization in Precision Agriculture

Spatial interpolation to create a prescription map in precision fertilization is conven-
tionally performed in 2D and based on prediction according to the values of neighboring
samples and relative distance to them [31]. Due to a large number of methods, it is common
to divide the spatial interpolation methods into two basic categories, namely, geostatistical
and deterministic methods. In addition to interpolation, extrapolation is also used for
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irregular shapes of agricultural parcels to predict variables in locations outside the range of
values covered by soil sampling. All methods of spatial interpolation can be represented
by the weighted average of the sampled data according to Tobler’s first law of geography,
according to which everything is related to everything else, but points that are closer to
each other are strongly related [32]. In general, spatial interpolation methods share the
same general Equation (1):

Z(x 0) =∑n
i=1 λi Zxi , (1)

where Z(x 0) represents the predicted value at the location, x0, n represents a total number
of soil samples, Zxi is the sampled value at the location i, while λi is its respective weight.
To select the most frequently used interpolation methods, the analysis using the annual
number of published scientific studies was performed among the large number of available
methods. According to the number of scientific papers indexed in the Web of Science
Core Collection database between 2010 and 2020, the application of spatial interpolation
methods, including conventional ones, is constantly growing (Figure 4). By searching for
papers containing the topic keywords of “fertilization” and “agronomy” or “agriculture”
in combination with the name of the spatial interpolation method, kriging, followed by
the inverse distance weighted (IDW) and spline, deterministic methods were the most
frequently used. Most of the analyzed methods implemented two or more spatial interpo-
lation methods, which resulted in the higher sum of individual components than the total
number of scientific papers.
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The recent studies which utilized conventional interpolation methods for soil predic-
tion in fertilization, sorted by the area of sampling sites, are presented in Table 1. The
interpolation accuracy was generally lower in study areas at the micro-level, which are
highly common cases for precision fertilization [33,34]. Conventional interpolation meth-
ods were particularly unable to accurately predict and detect in-field variabilities in cases
of lower spatial autocorrelation, which are a foundation of variable rate technology in
precision agriculture [7]. According to Hengl [35], the higher spatial resolution neces-
sary for small and moderately large agricultural parcels requires denser soil sampling in
a conventional approach. This is a costly, labor- and time-expensive procedure, which
disregards one of the purposes of precision agriculture. Furthermore, Radočaj et al. [29]
proved that soil sampling density was a primary indicator of soil prediction accuracy using
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conventional interpolation methods. Mirás-Avalos et al. [33] observed a proportionally
lower prediction accuracy of kriging with a larger distance from the nearest soil sample,
resulting in unrealistic smoothing due to extrapolation, which is exaggerated for agricul-
tural parcels with non-regular shapes. Reduced accuracy of conventional interpolation
methods with a larger heterogeneity in soil types [33] and ineffective stratification [36]
are the additional components which indicate a necessity for improving soil prediction
performed by conventional interpolation methods [37].

Table 1. Studies which utilized a conventional interpolation method for soil prediction in fertilization.

Selected Soil
Properties

Number of
Samples

(Study Area)
Country Conventional

Methods
R2 Accuracy

Range
Reference

potassium 4266
(2,190,000 km2) China kriging with

external drift 0.247–0.290 [38]

clay, silt, sand 1842
(34,151 km2) France CK, RK 0.460–0.780 (RK)

0.440–0.710 (CK) [39]

SOC, pH, EC, bulk density 1044
(15,948 km2) India OK, IDW, EBK 0.928–0.941 (OK)

0.712–0.773 (IDW) [40]

total nitrogen,
phosphorous

259
(975 km2) China OK, RK 0.570–0.700 (RK)

0.510–0.680 (OK) [41]

phosphorous,
potassium

16,000
(245 km2) Italy OK 0.300–0.320 [42]

SOC 242
(141 km2) China OK, RK 0.166–0.263 (RK)

0.004–0.142 (OK) [36]

pH, phosphorous, SOM 1004
(80.8 km2) Croatia IDW, OK, CK,

spline
0.533–0.689 (OK)

0.504–0.672 (IDW) [43]

phosphorous,
potassium

160
(8.2 km2) Croatia OK, IDW 0.759–0.794 (IDW)

0.713–0.743 (OK) [29]

total nitrogen 912
(1.9 km2) China GWR 0.670–0.925 [44]

phosphorous,
potassium

296
(1.2 km2) Croatia OK, IDW 0.631–0.733 (OK)

0.400–0.693 (IDW) [4]

pH, CEC, clay, EC,
phosphorous,

potassium

149
(0.2 km2) Spain OK 0.089–0.596 [33]

pH, EC, SOM, phosphorous,
potassium

66
(0.003 km2) Egypt IK, PK 0.706 (PK)

0.533 (IK) [34]

SOC: soil organic carbon, EC: soil electroconductivity, SOM: soil organic matter, CEC: cation exchange capacity,
OK: ordinary kriging, CK: co-kriging, RK: regression kriging, EBK: empirical Bayesian kriging, IK: indicator
kriging, PK: probability kriging, GWR: geographically weighted regression, IDW: inverse distance weighted.

The importance of selecting the optimal interpolation method and its parameters for
fertilization in precision agriculture is manifested by avoiding poor agricultural practices
and reducing the consumption of mineral and/or organic fertilizers. This directly impacts
the financial savings in production and increases profits by achieving stable yields according
to the local needs of crops. For these reasons, many previous studies have noted the
importance of optimization of complete process prescription map creation in precision
fertilization, which requires a multidisciplinary approach to obtain the desired result [45,46].
The selection of an optimal spatial interpolation method, and consequentially the prediction
accuracy of soil parameters, depends on the properties of the input data set [47]. Therefore,
there is no universally optimal spatial interpolation method, and multiple alternatives
should be evaluated for each soil sample set [48].
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The assessment of the accuracy of spatial interpolation methods is a necessary step
for determining the optimal interpolation methods and parameters for the creation of a
prescription map in precision fertilization [49]. Some of the most commonly used methods
of the accuracy assessment of spatial interpolation results are the cross-validation and the
split-sample methods. The cross-validation method is the most commonly used method of
assessing the accuracy of interpolation methods and uses all sampled points to develop
and compare models [50]. This method is also a suitable choice with a limited number of
input values of soil samples, which is a very common case in agricultural land management
conditions with smaller and fragmented agricultural parcels. The leave-one-out technique is
the most common form of cross-evaluation, excluding each individual soil sample from the
prediction and iteratively repeating the procedure for the number of input soil samples [51].
The reliability of this procedure particularly occurs for the high number of heterogenous
soil sampling values. The split-sample method evaluates the prediction accuracy and
robustness of the interpolation methods by splitting the input data into two parts based on
a predefined ratio, forming training and test data [29]. The iteration of the procedure and
repetitive accuracy assessment ensures the evaluation of consistency and robustness of the
selected interpolation method.

Among the variety of statistical indicators of the interpolation accuracy, the coefficient
of determination (R2) and the root-mean-square error (RMSE) are two of the most commonly
used values [37], also enabling complementary accuracy assessment [52]. For the purpose
of the accuracy assessment of predicted soil properties used in fertilization in precision
agriculture, these are calculated according to Equations (2) and (3) [47]:

R2 = 1 − ∑n
1 (yi − ŷi)

2

∑n
1 (yi − yi)

2 (2)

RMSE =

√
∑n

1 (yi − ŷi)
2

n
(3)

in which yi are the input sample values,
^
yi are the interpolated values,

¯
yi is the average

sample value, while n is the number of input samples. Besides their extensive application
in conventional interpolation methods, these parameters are highly popular in evaluating
the performance of the modern machine learning methods in soil mapping as well [53].

3.1. Geostatistical Spatial Interpolation Methods

The main feature of geostatistical methods is using variograms as a technique for
quantifying and modelling continuous soil sampling values [54]. Unlike the classical
deterministic approach, geostatistics considers the spatial dependence of variables, also
known as spatial autocorrelation. Geostatistical interpolation methods assume that, by
knowing the soil parameters at the sampled locations, it is possible to establish the relation-
ship between these values and the distance from the unknown locations [55]. Although
geostatistical methods in previous research have generally enabled a higher interpolation
accuracy than deterministic methods, they require normal distribution and stationarity of
soil sampling data [56]. In the absence of normal distribution of input data, the application
of logarithmic transformation is recommended, which allows the implementation of kriging
for such data sets [57]. While geostatistics is a straightforward concept, it includes several
variations of kriging, which encompass the trends in soil sample data. Besides the spatial
autocorrelation, particular multivariate kriging methods utilize independent predictors,
unlike univariate methods. According to the number of scientific papers indexed in the
Web of Science Core Collection database between 2010 and 2020, the most commonly used
kriging methods are ordinary, regression, indicator, simple and universal kriging (Figure 5).
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The variogram is used to quantify the spatial autocorrelation between sampling
locations, by determining the relationship of sampled values according to their mutual
distance [55]. The distance between the sampling locations is represented by h, and the
value of the variogram concerning the h is known as a variance. If the values in a certain
h deviate significantly from each other, meaning that their relationship has low spatial
autocorrelation, then the variance is large. The semivariance (γ) of Z between the two
sampling locations xi and x0 is a fundamental concept in geostatistics, defined by the
expression [55] (4):

γ(xi, x0) = γ(h) = var〚Z(xi)− Z(x0)〛 (4)

To achieve an optimal interpolation result, it is necessary to fit a certain mathematical
model to the variogram, represented by the highest possible coefficient of determination
between the model and the variogram [58]. Each mathematical model is uniquely deter-
mined by nugget, sill, and range parameters. While nugget and sill indicate the shape
of the selected mathematical model and its positioning relative to the y-axis, the range
defines the maximum distance to neighboring soil samples until the presence of spatial
autocorrelation is assumed. All soil samples located at the larger distances are considered
spatially independent and do not affect predicted soil property values. Some of the most
commonly used mathematical models are the linear, exponential, spherical, and Gaussian
models [59].

3.2. Deterministic Spatial Interpolation Methods

IDW estimates the soil property values at unknown locations based on a weighted
linear combination of the inverse distance function results per individual sampled locations.
The deterministic function of IDW assumes that samples closer to the unknown location
are proportionally more impactful, so the weight is represented by the expression [60] (5):

λi =
1 / hp

i

∑n
i=1 1 / hp

i
, (5)

where p represents power. The weight decreases as the distance and power parameter
increase. The samples in the close neighborhood of the unknown location have a higher
weight and thus a greater impact on the estimated value, resulting in local spatial inter-
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polation. The power parameter and the neighborhood size are chosen arbitrarily, and the
most common choice is the power parameter of 2 [61]. The higher p values decrease local
heterogeneity and result in smoother areas, often resulting in lower interpolation accuracy
when p is above 3.

The spline method belongs to the deterministic interpolation methods defined by
polynomial curves [62]. Polynomials are used to describe parts of a line or surface, based
on a small number of points, which results in the smooth surface by their mutual join.
When choosing the p, the curve takes a linear, square or cubic shape, depending on whether
the value of p is 1, 2 or 3, respectively. The third-degree cubic curves are most commonly
used [63]. The linear spline interpolation method is often used to fill data gaps in tables and
is much simpler than the cubic method. Additionally, if there are two spatial dimensions, it
is considered a bi-linear method, and in the case of the third dimension, three-linear. Spline
results in higher interpolation accuracy on surfaces with a less pronounced local variability,
so they are not suitable for use in highly heterogenous or extreme cases, especially for
smaller areas [64].

4. Modern Approach to Fertilization in Precision Agriculture

Over the past decade, the development of new technologies and sensors and sensor
minimization has led to the development and improvement of the soil mapping and
fertilization process in precision agriculture. Both soil prediction methods based on machine
learning and remote sensing data are increasingly utilized in such studies, as presented in
Table 2.

Table 2. An overview of prediction methods and remote sensing data utilized in recent studies based
on digital soil mapping.

Soil Properties Prediction Methods
Multispectral/
Hyperspectral

Images

DEM/
Radar

Images
Reference

SOC, pH, sand, silt, clay, bulk
density, CEC, coarse fragments

regression kriging, multiple
linear regression,

multinomial logistic
regression

MODIS SRTM [65]

SOC, pH, sand, silt, clay, bulk
density, CEC, coarse fragments

random forest, gradient
boosting, neural networks MODIS SRTM [66]

clay, silt, gravel, pH, SOM,
bulk density, effective CEC

random forest, boosted
regression trees Landsat 7, SPOT5 custom DEM [67]

SOC, pH, clay, CEC multiple linear regression,
regression kriging / custom DEM [68]

nitrogen, phosphorous, boron random forest, cubist model Landsat 8 custom DEM [69]

SOM, pH, SOC, total nitrogen,
phosphorous, potassium

random forest, artificial
neural network, co-kriging GF-2 SRTM [30]

SOC, sand, CCE random forest, cubist model Landsat 8 Alos AW3D [70]

SOC
random forest, artificial

neural networks, multiple
linear regression

Landsat 8 ASTER [71]

SOC, sand, silt, clay, pH,
calcium, potassium, nitrogen,

phosphorous, etc.

two-scale ensemble machine
learning

Sentinel-2, Landsat 8,
MODIS, PROBA-V,

SM2RAIN
Sentinel-1, AW3D [72]

SOC, total nitrogen, pH, sand,
silt, clay, bulk density, CEC,

coarse fragments

recursive feature elimination,
quantile random forest Landsat 8, MODIS EarthEnv-DEM90 [73]
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Table 2. Cont.

Soil Properties Prediction Methods
Multispectral/
Hyperspectral

Images

DEM/
Radar

Images
Reference

SOC, bulk density
partial least square

regression, extreme learning
machine

Sentinel-2, Landsat 8,
Headwall-Hyperspec / [74]

SOM random forest Sentinel-2 custom DEM [75]

SOC: soil organic carbon, SOM: soil organic matter, CEC: cation exchange capacity, CCE: calcium carbonate
equivalent, SRTM: Shuttle Radar Topography Mission.

4.1. Remote Sensing Data

Novel multispectral and hyperspectral cameras on various platforms, from satellites to
drones, enable high spatial and spectral remote sensing data that can be used in continuous
agricultural field monitoring. Furthermore, with the development of Synthetic Aperture
Radar (SAR; e.g., Sentinel-1) and optical satellite missions (e.g., Sentinel-2, PlanetScope),
the Earth’s surface can be observed in high spatial resolution almost on a daily basis [76].
Satellite missions, but also new platforms such as unmanned aerial vehicles (UAVs) have
led to the development and improvement of the quality of digital terrain models (DTM)
and other important data in precision agriculture, e.g., the canopy height model (CHM).
The development of remote sensing technologies and data lead to an increased application
in precision agriculture. In the past few years, an increasing number of scientific articles
in the field of remote sensing data in precision fertilization have been noted (Figure 6). A
significant increase in the use of multispectral, hyperspectral and radar data is present,
while the data on digital terrain models in precision fertilization are not growing at such
a rate. Although the numbers of research with satellite data are significantly higher than
the data obtained by UAV, a rapid growth in UAV application in the last five years has
occurred. As in previous research [77], the prevalence of multispectral images is still higher
than for radar. With the development of radar imaging technologies [78–81], mainly in
soil moisture assessment, a significant increase in the number of studies in this area in the
coming years is expected.
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The above-mentioned remote sensing technology and sensors enable fast and accurate
acquisition of the earth surface data. This data can describe the earth’s surface with 3D (e.g.,
digital elevation models, digital surface model) or in the 2D data type (e.g., spectral bands,
composites) acquired by sensors located on various platforms, e.g., satellite, airplane, or
UAV. The acquired data can be used to produce various crucial remote sensing data such
as [82]:

(1) various indices for an improved description of the earth’s surface (e.g., water, vegeta-
tion, soil) based on multispectral images or

(2) various derivatives of the digital elevation models such as slope, curvature, or flow
accumulation analysis.

Radar images must be emphasized while they find their application in detecting the
amount of moisture in the soil [78,81], which is extremely important in precision agriculture.
For example, the most used remote sensing data in precision fertilization for the exact
location is shown in Figure 7.
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4.2. Modern Remote Sensing Methods for Optimal Fertilization in Precision Agriculture

In the recent research [8,14,24,83–85], remote sensing methods for assessing precision
agriculture and fertilization are divided into two different approaches:

(1) Multivariate regressions based on various remote sensing data and
(2) Machine and deep learning methods for predictions.

For many years, authors have used multivariate regressions to model the variables in
precision agriculture [83,86]. With the development of remote sensing data, authors have
introduced new measurements collected using remote sensing data [83] into the process of
multivariate regressions. These data have greatly improved the process of estimating the
required variables to create better and more productive crops [87]. Multivariate regressions
based on various remote sensing data have greatly improved the estimates of soil parame-
ters for precision fertilization in regards to the conventional spatial interpolation methods.

In the last decade, hardware and computer development have enabled and popu-
larized the application of and development of advanced methods for processing large
amounts of spatial data, such as machine learning and deep learning methods [88–91].
Nowadays, these methods are also often used in remote sensing to quickly and accurately
classify large amounts of satellite images to obtain land use and land cover (LULC) maps
of the earth’s surface [92,93]. The great importance of the machine and deep learning
method lies in the rapid processing of various spatial and attribute data to improve the
estimation and prediction of the variable, e.g., estimation of the fertilizer in crops from
available satellite images [14,94,95]. Trends of the application of remote sensing methods in
precision fertilization based on the research papers in the last decade are shown in Figure 8.
Application of the random forest and support vector machine algorithm have shown an
increasing trend during the previous five years, while the artificial neural network and
decision tree methods applications have stagnated in precision fertilization.
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Despite the existing conventional modern remote sensing methods, developing novel
hybrid approaches would significantly improve the fertilization process in precision agri-
culture. Novel hybrid approaches would enable better spatial resolution and more accurate
crop and soil conditions assessment, thus improving the fertilization process. The pre-
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liminary proposal of a novel hybrid approach is based on remote sensing data such as
for vegetation, water and soil spectral indices, a digital elevation model and other remote
sensing data (e.g., spectral bands) supported by raster data obtained by conventional spatial
interpolation methods. Machine learning methods could quickly and accurately model all
the mentioned data based on which of the above can be realized into a real and accurate
prediction of the state of crops and soil.

5. A Representative Overview of Modern and Conventional Approaches for
Fertilization in Precision Agriculture

To provide a more insightful overview of the efficiency of conventional and mod-
ern approaches to precision fertilization beyond the scientific review, a case study for a
common agricultural parcel in Croatia was performed. Phosphorous pentoxide (P2O5)
and potassium oxide (K2O) were used for the prediction, representing two of the most
important soil properties in agricultural fertilization [96]. A total of 121 samples were used
in the agricultural parcel of 4.1 km2, representing a micro-location such as in [29,44]. The
descriptive statistics of the input soil sample set is presented in Table 3. All predicted
results were calculated in a spatial resolution of 30 m, according to the specifications of
Hengl [35]. Soil prediction accuracy was assessed using R2 and RMSE, as the most com-
monly applied interpolation metrics in similar previous studies. The cross-validation using
the leave-one-out technique was used for the accuracy assessment.

Table 3. The descriptive statistics of the representative soil sample set used for the comparison of
conventional and modern approaches to precision fertilization.

Soil
Property

Average
(mg 100 g–1)

Value Range
(mg 100 g–1) CV SK KT

Shapiro–Wilk Test
Moran’s IW p

phosphorous
pentoxide (P2O5) 23.2 8.9–41.0 0.364 0.587 –

0.592 0.941 0.0005 0.209

potassium oxide
(K2O) 26.1 17.2–50.5 0.253 1.517 3.092 0.877 < 0.0001 0.124

CV: coefficient of variation, SK: skewness, KT: kurtosis.

OK, as the most commonly applied geostatistical interpolation method, along with
IDW, its deterministic counterpart, were used for the representation of the conventional
prediction methods in fertilization. As the range of the OK interpolation is conditioned by
spatial autocorrelation of the input values, some of the most commonly used mathematical
models in previous studies were evaluated, as the primary parameter of the OK interpola-
tion. Analogously, the most common power parameters of the IDW were evaluated. Due to
the lack of data normality, a logarithmic transformation was performed in the preprocessing
to OK interpolation.

Comparative displays of interpolation results produced by conventional interpo-
lation methods for P2O5 and K2O on the representative soil sample set are shown in
Figures 9 and 10. The interpolation results for both soil properties indicated a strong de-
pendence of the prediction accuracy on the input parameters, indicating the importance of
evaluating multiple methods, as well as their parameters, as noted in [47]. The R2 of the
OK ranged from 0.331 to 0.414 for the P2O5 and from 0.082 to 0.120 for the K2O, indicating
a proportionally lower accuracy for the input values with lower spatial autocorrelation,
which is one of the main constraints of its prediction accuracy [97]. Due to its deterministic
nature, IDW was resistant to this property, with its interpolation accuracy ranging from
0.233 to 0.405 for the P2O5 and from 0.234 to 0.374 for the K2O. It generally produced
a lower accuracy but with a more balanced approach regarding sensitivity to the input
values, as noted in [29]. Besides varying the interpolation accuracy, the resulting value
ranges and CV values were severely affected by the selection of the interpolation method
and its parameters.
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A total of twelve relevant covariates for the P2O5 and K2O prediction used as the
basis of the modern prediction approach are presented in Table 4. These were defined with
accordance to the specifications of soil mapping by Hengl and MacMillan [98] and which
were used in similar soil prediction studies recently [66,73,82]. Six covariates were derived
from a digital elevation model and six from Landsat 8 images, fully based on freely and
widely available data. These covariates for the area covering the representative soil sample
set are visually represented in Figure 7. Four of the most commonly applied machine
learning methods in previous studies indexed in the WoSCC were used: random forest
(RF), support vector machine (SVM), artificial neural networks (ANN) and decision tree
(DT). These methods gained popularity in the modern approach to fertilization recently,
allowing the integration of big data, that is highly accurate and with a computationally
efficient prediction [53].

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 9. Comparative presentation of interpolation results using common parameters of OK and 

IDW for P2O5. 
Figure 9. Comparative presentation of interpolation results using common parameters of OK and
IDW for P2O5.

A comparative display of the modern soil prediction approach for fertilization in
precision agriculture, along with the most accurate results of the conventional approach
are displayed in Figure 11. Besides an improved prediction accuracy and resistance to
the particular properties of input sample values, the modern approach included more soil
heterogeneity in the result with higher CV values. Previous studies have also noted a
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superior prediction accuracy of the modern approach compared to conventional methods,
especially in the cases of lower spatial autocorrelation indicated by high nugget values [38].
Besides the spectral indices and topographic indicators, which are applicable at both minor-
and major-scales [82], climate data and auxiliary soil information are commonly included in
the modern approach [73]. These values are generally more suitable for the macro-location
studies due to their local homogeneity, as well as the lack of available spatial data at the
higher spatial resolution to match those of satellite images and DEMs [2]. Despite the
same spatial resolution of the P2O5 and K2O rasters produced by the conventional and
modern approaches, modern machine learning methods have resulted in much less smooth
areas, retaining specific local information about field conditions, which are a backbone for
precision agriculture [7]. Chen et al. [37] noted the improved spatial resolution as one of
the key advantages of the modern approach over the conventional interpolation methods,
alongside improved prediction accuracy and time- and cost-efficiency.
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Table 4. Covariates used for the modern prediction using the representative soil sample set for
precision fertilization.

Data Source Environmental Segment Covariate Reference

digital elevation model
(EU-DEM v1.1)

morphometry

slope

[99]
aspect

total curvature
convergence index

hydrology
flow accumulation [100]

topographic wetness index [101]

multispectral satellite images
(Landsat 8, sensed on 15th

September 2021)

vegetation

normalized difference vegetation
index (NDVI) [102]

enhanced vegetation index (EVI) [103]
normalized green-red vegetation

index (NGRDI) [104]

soil

normalized difference soil index
(NDSI) [105]

brightness index (BI) [106]

moisture normalized difference moisture
index (NDMI) [107]
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6. Conclusions

Fertilization is the foundation of agricultural production, which must be performed
efficiently and in accordance with local crop needs to ensure sustainability and prevent
soil degradation. Digitization of the entire procedure, from the collection of field data to
the computer processing and production of a fertilization prescription map, is the basis
of fertilization in precision agriculture. Management information systems are becoming
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critical in precision fertilization, and for such reasons, their importance inevitably becomes
a priority. Technological progress leads to the development of more sophisticated and
more accessible software packages that particularly segment the processing and appli-
cation of spatial data. Modern fertilization relies on the use of agricultural information
technology at an increasing level, which is a rapid development in agricultural practice,
which now requires the constant learning and training of users and investment in new
technological systems. Interpolation methods used for the purpose of precision fertiliza-
tion play a very important role in the decision-making process and use of sampled data.
Each of the methods described in this paper includes a certain level of uncertainty, but
knowledge of their capabilities and utility enables the user to select an optimal method
and its parameters to ensure maximum prediction accuracy. The further implementation of
spatial interpolation methods in agricultural practice is expected to accelerate the transition
from conventional intensive agriculture to precision agriculture, enabling stable yields and
sustainable agricultural production in the future.

Modern remote sensing data improve the fertilization process in precision agriculture,
as an abundant and freely accessible global data source. Radar and optical satellite imagery
has allowed significant advances in cropland monitoring (e.g., soil moisture, phosphorous
pentoxide) on a daily basis, while on the other side, UAVs equipped with novel hyperspec-
tral and multispectral cameras enable the monitoring of crops at a centimeter-level. New
radar imagery and satellite or UAV-based thermal imagery enables the development of
novel algorithms and methods for obtaining crop and soil status. The novel, hybrid meth-
ods for modelling crop and soil quality improve the standard conventional and modern
machine learning approaches. They also enable the computationally efficient and accurate
integration of remote sensing data and achievements in precision agriculture and would
also significantly improve the fertilization process. Novel hybrid approaches would enable
a better spatial resolution and more accurate crop and soil conditions assessment. The
application of earth observation satellites (e.g., PlanetScope) enables daily soil and crop
status monitoring without going out into the field and novel, robust and automatic remote
sensing methods will lead to the complete automation of the satellite image-processing
process. This will enable end-users, without any remote sensing knowledge, to obtain a
final product such as a weed map or soil moisture map automatically, almost in real-time.

Accordingly, it can be concluded that remote sensing data and methods now have
a crucial role in the fertilization process in precision agriculture, and their importance is
expected to increase in the future.

Author Contributions: Conceptualization, D.R. and M.G.; methodology, D.R. and M.G.; software,
D.R.; validation, D.R., M.J. and M.G.; formal analysis, D.R., M.J. and M.G.; investigation, D.R. and
M.G.; resources, D.R. and M.J.; data curation, D.R.; writing—original draft preparation, D.R. and
M.G.; writing—review and editing, D.R., M.J. and M.G.; visualization, D.R.; supervision, M.J. and
M.G.; project administration, M.J. and M.G.; funding acquisition, M.G., D.R. and M.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Faculty of Agrobiotechnical Sciences Osijek
as a part of the scientific project: ‘AgroGIT—technical and technological crop production systems,
GIS and environment protection’. This work was supported by the University of Zagreb as a part of
the scientific project: ‘Advanced photogrammetry and remote sensing methods for environmental
change monitoring’ (Grant No. RS4ENVIRO).

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 778 19 of 22

References
1. Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent Patterns of Crop Yield Growth and Stagnation. Nat.

Commun. 2012, 3, 1293. [CrossRef] [PubMed]
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32. Šiljeg, A.; Lozić, S.; Šiljeg, S. The Accuracy of Deterministic Models of Interpolation in the Process of Generating a Digital Terrain
Model—The Example of the Vrana Lake Nature Park. Teh. Vjesn.-Tech. Gaz. 2015, 22, 853–863. [CrossRef]

33. Mirás-Avalos, J.M.; Fandiño, M.; Rey, B.J.; Dafonte, J.; Cancela, J.J. Zoning of a Newly-Planted Vineyard: Spatial Variability of
Physico-Chemical Soil Properties. Soil Syst. 2020, 4, 62. [CrossRef]

34. Shaddad, S.M.; Buttafuoco, G.; Castrignanò, A. Assessment and Mapping of Soil Salinization Risk in an Egyptian Field Using a
Probabilistic Approach. Agronomy 2020, 10, 85. [CrossRef]

35. Hengl, T. Finding the Right Pixel Size. Comput. Geosci. 2006, 32, 1283–1298. [CrossRef]
36. Liu, Y.; Chen, Y.; Wu, Z.; Wang, B.; Wang, S. Geographical Detector-Based Stratified Regression Kriging Strategy for Mapping Soil

Organic Carbon with High Spatial Heterogeneity. Catena 2021, 196, 104953. [CrossRef]
37. Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.;

Hannam, J.; et al. Digital Mapping of GlobalSoilMap Soil Properties at a Broad Scale: A Review. Geoderma 2022, 409, 115567.
[CrossRef]

38. Song, X.-D.; Liu, F.; Wu, H.-Y.; Cao, Q.; Zhong, C.; Yang, J.-L.; Li, D.-C.; Zhao, Y.-G.; Zhang, G.-L. Effects of Long-Term K
Fertilization on Soil Available Potassium in East China. Catena 2020, 188, 104412. [CrossRef]

39. Román Dobarco, M.; Orton, T.G.; Arrouays, D.; Lemercier, B.; Paroissien, J.-B.; Walter, C.; Saby, N.P.A. Prediction of Soil Texture
Using Descriptive Statistics and Area-to-Point Kriging in Region Centre (France). Geoderma Reg. 2016, 7, 279–292. [CrossRef]

40. Dad, J.M.; Shafiq, M.U. Spatial Distribution of Soil Organic Carbon in Apple Orchard Soils of Kashmir Himalaya, India. Carbon
Manag. 2021, 12, 485–498. [CrossRef]

41. Zhang, J.; Wang, Y.; Qu, M.; Chen, J.; Yang, L.; Huang, B.; Zhao, Y. Source Apportionment of Soil Nitrogen and Phosphorus Based
on Robust Residual Kriging and Auxiliary Soil-Type Map in Jintan County, China. Ecol. Indic. 2020, 119, 106820. [CrossRef]

42. Della Chiesa, S.; Genova, G.; la Cecilia, D.; Niedrist, G. Phytoavailable Phosphorus (P2O5) and Potassium (K2O) in Topsoil for
Apple Orchards and Vineyards, South Tyrol, Italy. J. Maps 2019, 15, 555–562. [CrossRef]

43. Bogunovic, I.; Kisic, I.; Mesic, M.; Percin, A.; Zgorelec, Z.; Bilandžija, D.; Jonjic, A.; Pereira, P. Reducing Sampling Intensity in
Order to Investigate Spatial Variability of Soil PH, Organic Matter and Available Phosphorus Using Co-Kriging Techniques. A
Case Study of Acid Soils in Eastern Croatia. Arch. Agron. Soil Sci. 2017, 63, 1852–1863. [CrossRef]

44. Wang, Y.; Xiao, Z.; Aurangzeib, M.; Zhang, X.; Zhang, S. Effects of Freeze-Thaw Cycles on the Spatial Distribution of Soil
Total Nitrogen Using a Geographically Weighted Regression Kriging Method. Sci. Total Environ. 2021, 763, 142993. [CrossRef]
[PubMed]

45. Sidorova, V.A.; Zhukovskii, E.E.; Lekomtsev, P.V.; Yakushev, V.V. Geostatistical Analysis of the Soil and Crop Parameters in a
Field Experiment on Precision Agriculture. Eurasian Soil Sci. 2012, 45, 783–792. [CrossRef]

46. Nourzadeh, M.; Mahdian, M.H.; Malakouti, M.J.; Khavazi, K. Investigation and Prediction Spatial Variability in Chemical
Properties of Agricultural Soil Using Geostatistics. Arch. Agron. Soil Sci. 2012, 58, 461–475. [CrossRef]
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