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Abstract: Sea surface wind (SSW) is a crucial parameter for meteorological and oceanographic
research, and accurate observation of SSW is valuable for a wide range of applications. However,
most existing SSW data products are at a coarse spatial resolution, which is insufficient, especially
for regional or local studies. Therefore, in this paper, to derive finer-resolution estimates of SSW,
we present a novel statistical downscaling approach for satellite SSW based on generative adversarial
networks and dual learning scheme, taking WindSat as a typical example. The dual learning scheme
performs a primal task to reconstruct high resolution SSW, and a dual task to estimate the degradation
kernels, which form a closed loop and are simultaneously learned, thus introducing an additional
constraint to reduce the solution space. The integration of a dual learning scheme as the generator
into the generative adversarial network structure further yield better downscaling performance by
fine-tuning the generated SSW closer to high-resolution SSW. Besides, a model adaptation strategy
was exploited to enhance the capacity for downscaling from low-resolution SSW without high-
resolution ground truth. Comprehensive experiments were conducted on both the synthetic paired
and unpaired SSW data. In the study areas of the East Coast of North America and the North Indian
Ocean, in this work, the downscaling results to 0.25◦ (high resolution on the synthetic dataset),
0.03125◦ (8× downscaling), and 0.015625◦ (16× downscaling) of the proposed approach achieve the
highest accuracy in terms of root mean square error and R-Square. The downscaling resolution can
be enhanced by increasing the basic blocks in the generator. The highest downscaling reconstruction
quality in terms of peak signal-to-noise ratio and structural similarity index was also achieved on
the synthetic dataset with high-resolution ground truth. The experimental results demonstrate the
effectiveness of the proposed downscaling network and the superior performance compared with
the other typical advanced downscaling methods, including bicubic interpolation, DeepSD, dual
regression networks, and adversarial DeepSD.

Keywords: sea surface wind; satellite remote sensing; statistical downscaling; deep learning; super-
resolution; generative adversarial network; dual learning

1. Introduction

As one of the major sources of momentum for the Ocean, sea surface wind (SSW),
also called ocean surface wind, is a key parameter for a variety of studies such as ocean
waves, ocean circulation, and air–sea interaction [1]. Accurate and timely observation of
SSW is valuable for a wide range of applications such as numerical weather prediction
(NWP), marine environmental monitoring and transportation, search and rescue missions
for natural and manmade maritime hazards, and wind energy assessment [2,3].

Traditionally, SSW can be obtained in situ from ships, buoys, and monitoring stations.
These measurements are considered accurate, however, with limited spatial coverage,
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sparse spatial sampling, uneven distribution, and can be easily affected by severe weather
conditions such as typhoons. Due to the advantages of large scale, high frequency, dy-
namic, remote sensing (RS) observations for SSW from scatterometer, radiometer, altimeter,
and synthetic aperture radar (SAR) onboard satellites, serve in many meteorology and
oceanographic applications [4]. In addition, there are also studies that turned to reanalysis
data that are generated globally by numerical models as an alternative [3,5]. Nevertheless,
most existing SSW data products from either RS or numerical models involve a coarse
spatial resolution, which is insufficient for regional or local studies. For example, the main
scatterometers such as Quick Scatterometer (QuikSCAT), Oceansat-2 Scatterometer (OS-
CAT), and Advanced Scatterometer (ASCAT) typically obtain SSW fields with a spatial
resolution of 12.5 to 50 km [2]. ASCAT offers the possibility to obtain a 6.25 km wind, which,
needs to be generated individually by users [6]. The European Centre for Medium-Range
Weather Forecasts (ECMWF) produces global reanalysis data with a spatial resolution
of 0.125◦ × 0.125◦ daily at intervals of 6 h since 1979 [7]. The National Aeronautics and
Space Administration (NASA) produces a consistent 20 year 25-km-resolution SSW using
a variational analysis method to combine multiple extensively cross-calibrated multiple
satellite datasets with in situ data and ECMWF analyses [8]. SAR systems deliver a fine
spatial resolution at the subkilometer scale but with a large revisit time and high cost. There-
fore, downscaling, which is the process of deriving regional climate information based
on large-scale climate conditions, provides a practical solution to derive a finer-resolution
estimate of regional SSW fields.

The most widely used SSW downscaling methods can be mainly divided into dynami-
cal and statistical methods. Dynamical downscaling uses NWP or global climate models
(GCMs) predictions as boundary conditions to drive higher-resolution simulations using
regional climate models (RCMs) or mesoscale models [9]. For example, Flaounas et al.
used the RegCM4 regional model to perform a dynamical downscaling of Coupled Model
Intercomparison Project Phase 5 (CMIP5) simulations conducted with the CNRM-CM5
global climate model, thus investigating the impact of climate change on SSW speed and
examining changes daily and in extreme event scales [10]. Xu used the weather research
and forecasting (WRF) model to downscale the Norwegian Earth System Model (NorESM)
data from 2.5◦ × 1.8◦ to 1 km × 1 km horizontal grids to estimate changes in SSW and
temperature extremes [11]. Dynamical downscaling can resolve dynamics from coarse to
fine scales explicitly; however, it is computationally expensive running models at a higher
resolution [12]. On the other hand, an alternative is the statistical downscaling of SSW. He
et al. investigated a statistical downscaling scheme using support vector regression (SVR)
to reconstruct high-resolution SSW from low-resolution operational model forecasts [13].
Goubanova et al. built a statistical downscaling model using multiple linear regressions for
the daily mean meridional and zonal wind at 10 m for the period 2000–2008 [14]. These
statistical downscaling methods define statistical relationships between small-scale vari-
ables and large-scale features, which can be found in coarse models, using observational
records, but generally assuming that the defined relationships are invariant as the climate
changes [9]. In addition, there are hybrid methods, i.e., statistical-dynamical downscaling
(SSD), combining the strengths of the above methods, which allows the use of a physically-
based model while keeping reasonably low computational cost [15,16].

In the field of computer vision, there is a task similar to statistical downscaling, i.e.,
single-image super-resolution (SISR). SISR is used to recover the high-resolution (HR)
image from a low-resolution (LR) image [17]. Simple methods include bilinear or bicubic
interpolation of LR images, which easily smooth out images. Classic methods reconstruct
features, e.g., textures and edges, by means such as learning priors and modeling dis-
tributions for large gradients [18]. In recent years, deep learning (DL) techniques have
gained great attention due to their ability to learn complex nonlinear feature representations
and were applied to a variety of applications successfully [19]. DL provides an effective
tool to learn the complex mappings between LR and HR image pairs, thus enhancing the
resolution of LR images. For instance, for the wind field statistical downscaling, Vandal



Remote Sens. 2022, 14, 769 3 of 25

et al. presented DeepSD, a generalized stacked super-resolution convolutional neural
network (SRCNN) framework for statistical downscaling of climate variables [20], which is
an early work on downscaling climate data using SISR. Zhang et al. downscaled the CMIP6
future projected simulation results and generated a new dataset of offshore wind speeds in
China with a resolution of 0.25◦ using a new downscaling method based on a bidirectional
gated recurrent unit (BiGRU) [21]. Höhlein analyzed the applicability of four convolutional
neural network (CNN) architectures for downscaling near-surface winds on extended
spatial domains from 31 km to 9 km horizontal resolution [22]. Stengel et al. introduced
an adversarial DL approach to resolve wind speed and demonstrated it up to a resolution
enhancement of 50× [18]. Kurinchi-Vendhan et al. provided a thorough and extensible
benchmark of leading DL-based SR techniques, including the enhanced super-resolution
generative adversarial network (ESRGAN) and an enhanced deep super-resolution (EDSR)
network, on wind and solar data [23].

In this paper, we present a novel statistical downscaling approach based on state-of-
the-art deep learning techniques to generate higher spatial resolution SSW from satellite
observations for regional or local studies. The main contributions are as follows:

• We present a spatial downscaling approach for satellite SSW based on generative
adversarial networks and dual learning schemes, taking WindSat as a typical example.
Comprehensive experiments conducted demonstrate the effectiveness of the proposed
downscaling network.

• In the dual learning scheme, a primal task to reconstruct HR images and a dual task to
estimate the degradation kernels are simultaneously learned by minimizing the loss
in a closed loop, thus yielding better performance. By integrating the dual learning
scheme into the GAN structure as the generator, the downscaling performance is
further improved by introducing an additional constraint to reduce the solution space.
The model adaptation strategy of the proposed approach can improve the downscaling
performance on the unpaired LR SSW.

The remainder of this paper is structured as follows. Section 2 presents the study
area and sea surface data used. Section 3 gives the proposed downscaling approach,
including the overview, data preprocessing module, the generator architecture based on
dual learning scheme, the discriminator architecture, the loss function, and model training
strategy. Section 4 gives the experimental configuration and results. Section 5 discusses
the results from the aspects of the downscaling network, the capacity to unpaired SSW LR
data, downscaling spatial resolution enhancement etc. Conclusions are drawn in Section 6.

2. Study Areas and Data
2.1. Study Areas

The offshore areas are closely related to human activities, and accurate mapping and
understanding of SSW information are of great significance to social and economic activities.
Therefore, the study areas in this paper include the East Coast of North America (ranging
from 85◦W to 45◦W, 10◦N to 50◦N, hereinafter referred to as Region 1), and the North
Indian Ocean (ranging from 55◦E to 95◦E, 15◦S to 20◦N, Region 2) as shown in Figure 1,
where sufficient buoy observations are publicly available.

2.2. Sea Surface Wind Data

In this study, two categories of SSW data are used: (1) in situ buoy measurements
from the National Data Buoy Center (NDBC) and the Research Moored Array for African-
Asian-Australian Monsoon Analysis and Prediction (RAMA), and (2) SSW derived from
the radiometer WindSat satellite observations as a case study. The proposed downscaling
method is applied to the satellite observations, while the buoy measurements are used as
ground truth for validation of SSW. The spatial coverage is depicted in Figure 1, and the
time ranges from 2017 to 2019.



Remote Sens. 2022, 14, 769 4 of 25

Figure 1. The study areas in this paper with the location of buoys marked in a red triangle: (a) Region 1,
East Coast of North America; (b) Region 2, North Indian Ocean.

2.2.1. Buoy Measurements

In the regions of the East Coast of North America (Region 1), the buoy SSW mea-
surements were collected from the NDBC (https://www.ndbc.noaa.gov/ (accessed on
3 February 2022)) of the National Oceanic and Atmospheric Administration (NOAA) in the
form of standard meteorological data reported hourly. NDBC designs, develops, operates,
and maintains a network of data collecting buoys and coastal stations. The standard meteo-
rological data of NDBC buoy stations provide wind direction and wind speeds averaged
over an eight-minute period for buoys at each hour [2]. In this study, 33 NDBC stations are
used for Region 1, and the heights of wind measurements vary.

In the region of the North Indian Ocean (Region 2), the RAMA buoy data of 23 stations
were obtained from Pacific Marine Environmental Laboratory’s global tropical moored
buoy array (https://www.pmel.noaa.gov/tao/drupal/disdel/ (accessed on 3 February
2022)) [24]. RAMA is the tropical buoys array over the Indian Ocean deployed to mea-
sure various atmospheric and oceanic parameters and provide the surface winds at 4 m
height [25].

In this study, we use the bulk algorithm COARE 4.0 algorithm (packages: https://
cerform.readthedocs.io/en/latest/api/cerform.flux.html#module-cerform.flux.coare4 (ac-
cessed on 3 February 2022)) to calibrate the NDBC, and RAMA winds to neutral-equivalent
winds at a standard 10 m reference height, which are comparable with the satellite obser-
vations wind products [26,27]. The COARE bulk algorithm iteratively solves equations
involving the air–sea exchanges of momentum, heat, and water vapor to arrive at the wind
speed profile in the lower atmospheric boundary layer [28].

2.2.2. Satellite Observations

In this paper, we use the satellite SSW observations from WindSat as a typical case
study for our downscaling. Compared with the traditional microwave radiometer, which
can only obtain wind speed, WindSat is the first space-borne microwave full polarimetric
radiometer launched in 2003 aboard the Coriolis satellite [29]. It was developed by the
naval research laboratory (NRL) remote sensing division and the naval center for space
technology for the U.S. Navy, and the national polar-orbiting operational environmental
satellite system (NPOESS) integrated program office (IPO). WindSat further extracts the
polarization information of the target and offers the capabilities to measure SSW vector [30].
Compared with scatterometer, the widely used active wind measurement instrument
for SSW observation, the fully polarized microwave radiometer can obtain sea surface

https://www.ndbc.noaa.gov/
https://www.pmel.noaa.gov/tao/drupal/disdel/
https://cerform.readthedocs.io/en/latest/api/cerform.flux.html#module-cerform.flux.coare4
https://cerform.readthedocs.io/en/latest/api/cerform.flux.html#module-cerform.flux.coare4
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temperature (SST), cloud water, rain rate etc., simultaneously. Extensive validation of
the wind vector from WindSat was conducted with buoy measurements, other satellite
observations as well as numerical winds [31], and the WindSat SSW was widely used for
decades [29,32,33]. In this study, we use the v7.0.1 daily WindSat SSW measurements under
all weather conditions with a spatial resolution of 0.25◦ × 0.25◦ in the form of ascending and
descending swaths, which are available from remote sensing systems (RSS) [34]. Figure 2
show a global 10 m SSW map from WindSat, taking 31 December 2019, as an example with
both the ascending passes and the descending passes.

Figure 2. Global 10 m sea surface wind data of WindSat from RSS system, taking the 31 December
2019, as an example: (a) The ascending passes; (b) The descending passes.

3. Methodology
3.1. Overview

The flowchart of the method presented in this paper is shown in Figure 3. The methodol-
ogy involves three stages as follows, and more information is outlined in Sections 3.2 and 3.3.
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Figure 3. The method flowchart of sea surface wind downscaling in this paper.

(a) Data preprocessing. The original SSW and the LR data generated by downsampling
constitute a synthetic LR-HR paired dataset. The u and v wind components are extracted
from the WindSat satellite SSW fields and normalized, which are taken as input channels
of the downscaling network together with the corresponding mask channel.

(b) Downscaling model training and inferencing. In this paper, we put forward a novel
spatial downscaling approach for satellite SSW from WindSat based on the generative
adversarial network (GAN) and dual learning. A dual learning network to reconstruct the
HR SSW is adopted as the generator, which performs downscaling, i.e., the super-resolution
process, by mapping input coarse data to the associated finer data. The discriminator
classifies the image patches as real (from the HR of the training set) or fake (from the
generator). The network architecture of the discriminator is given in Section 3.3.3 in detail.
In this work, we first trained a downscaling model with the synthetic LR-HR paired SSW
and further performed the model adaptation by sampling both unpaired SSW (i.e., the 0.25◦

SSW as LR data) and synthetic paired SSW based on the dual learning scheme. The latter
trained model is used to generate higher resolution results from the 0.25◦ SSW as LR input.

(c) Performance comparison and analysis. Typical reference methods include the cubic
convolution interpolation, DeepSD, DRN, and adversarial DeepSD, as well as downscaling
inference directly from the model trained with the synthetic paired SSW. The accuracy of
downscaling results against buoy measurements adjusted to the height of 10m is validated
and analyzed.
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3.2. Data Preprocessing

The original WindSat satellite sea surface wind data from RSS are at the spatial
resolution of 0.25◦ and contain wind speed w and wind direction θ (degrees oceanographic).
For the proposed downscaling method in this paper, the ultimate goal of which is to obtain
SSW with higher resolution than 0.25◦, hence in the downscaling with unpaired SSW,
in view of the downsampling kernel from the realistic HR SSW to the LR data is unknown,
we selected and performed a downsampling method from the sets of the commonly used
nearest, bilinear, and bicubic interpolation randomly to an input HR image to obtain the
synthetic LR data (for instance, 2◦), to better represent the unknown degradation. In this
work, we adopted the SSW data in the form of u and v components and the mask as
the input channels for the downscaling network. The u (zonal) and v (meridional) wind
components can be transformed from the w and θ, as shown in Equations (1) and (2).
The value in the mask is either 0 or 1, indicating whether the wind field at a pixel is null
or not. Since the ranges of wind speed and wind direction are 0–50 m/s and 0–360◦,
respectively, the normalization operation was applied, as shown in Equations (3) and (4)
before feeding into the network.

u = w sin θ (1)

v = w cos θ (2)

channel_1 = (u + 50)/100 (3)

channel_2 = (v + 50)/100 (4)

3.3. Downscaling Network Architecture
3.3.1. Generative Adversarial Network Structure

Generative Adversarial Network (GAN) [35] was originally inspired by the two-player
zero-sum game, which is composed of two sub-networks, a generator that tries to generate
data samples as real as possible, and a discriminator that tries to discriminate the fake
samples and real ones. Its goal is to generate samples from the same distribution of
existing data. GAN has attracted great attention and was intensively investigated in recent
years due to its promising performance in generative tasks such as text/image-to-image
translation and realistic image synthesis.

In our task of downscaling, the generator maps the LR images to super-resolved
images, and the discriminator attempts to distinguish HR images from the super-resolved
images. The overall framework, as illustrated in Figure 4, also consists of a generator net-
work G and a discriminator network D, which will be described in Sections 3.3.2 and 3.3.3.
The generator network is designed with a state-of-the-art dual learning network, which
is fed with LR SSW and outputs corresponding super-resolution SSW. The reconstructed
super-resolution SSW and real high-resolution SSW are input into the discriminator net-
work, which is a typical classification network. If the discriminator network recognizes the
reconstructed one, it means the quality of the reconstructed SSW is unsatisfactory, and the
loss will be fed to the generator network. During the adversarial training, the generator
network can generate more realistic details of the wind field, and the discriminator net-
work can grow the capability of finding the super-resolution images. This process will be
repeated until the losses of both the generator and the discriminator reach a minimum.

3.3.2. Generator Based on Dual Learning

Although many deep neural networks are proposed for image super-resolution, most
methods suffer from the following limitations: (a) Since an LR image may be down-sampled
from infinite HR images, learning the mapping function from LR to HR images is an ill-
posed issue, which makes it hard to learn a good solution in a large possible function
space; (b) In real world applications, e.g., SSW downscaling in this study, the HR data
is hard to collect and the paired LR-HR data may be unavailable. Most DL-based SR
methods, which rely on the paired training data, often incur the adaptation issue and yield
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poor performance. In this context, dual learning provides a solution for super-resolution
performance improvement.

Figure 4. The sea surface wind downscaling network based on generative adversarial network
structure and dual learning.

The dual learning scheme involves two types of tasks, i.e., a primal task f: x→ y and a
dual task g: y→ x. The original signals are mapped forward by ŷ = f(x) and backward by
x̂ = g(y). Figure 5 show an illustration of this process, in which x ε X are LR images and
y ε Y are HR images, and LP and LD are the primal regression loss and the dual regression
loss, respectively. The primal mapping P to reconstruct HR images ŷ and the dual mapping
D to estimate the down-sampling kernel and reconstruct LR images x̂ are simultaneously
learned by minimizing the loss in a closed loop. The dual mapping learns the degradation
kernel, and if the generated super-resolution SSW is closer to HR SSW, the reconstructed
LR SSW is closer to the input LR SSW; thus the primal and dual models are improved
together to achieve better performance [36].

In this paper, we construct the generator for SSW downscaling based on a state-of-the-
art dual learning method for single image super-resolution, i.e., dual regression networks
(DRN) proposed by Guo et al. in [37]. In DRN, they introduced a constraint on LR images
to reduce the possible solution space, performed experiments of image super-resolution
with 8×, and achieved superior performance.

The network architecture of generator to downscale SSW in this work is shown in the
upper part of Figure 4. The network is built based on U-Net and contains a primal network
and a dual network. The primal network is composed of n down blocks and n up blocks,
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where n refers to the log2(s), in which s denotes the scale factor. In this work, according to
the downscaling resolution requirements, we set s as 16, which results in higher resolution
gridded SSW (for instance, 0.015625◦ for 16×). This implies that n is 4. A basic block
is composed of a residual channel attention block (RCAB) [38] to improve the capacity.
Besides, a simple dual network with two convolution layers and a LeakyReLU activation
layer is designed to down-sample LR images. The detailed structures and parameters of
down, up, and dual blocks are listed in Table 1.

Figure 5. The illustration of dual learning scheme for SSW downscaling, which contains a primal
task for super-resolution and a dual task for downsampling, thus forming a closed-loop.

The detailed configuration for the generator network, taking the downscaling 16×
as an example, is provided in Table 1. The convolutional layer is represented as Conv
(kernel_size, stride, padding), and h and w are the height and width of the input LR images.
Let B be the number of RCABs and F be the number of base feature channels. For a 16×
downscaling generator network, we set B = 36 and F = 10. The reduction ratio is set as
r = 16 in all RCABs, and the negative slope is 0.2 for all LeakyReLU.

Table 1. The network architecture configuration of generator based on dual learning scheme. The con-
volutional layer is represented as Conv (kernel_size, stride, padding), and h and w are the height and
width of the input LR images. B is the number of RCABs, and F is the number of base feature channels.

Model Model Details Input Shape Output Shape

Upsample Upsample(16) (3, h, w) (3, 16h, 16w)

Head Conv(3, 1, 1) (3, 16h, 16w) (1F, 16h, 16w)

Down 1 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (1F, 16h, 16w) (2F, 8h, 8w)

Down 2 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (2F, 8h, 8w) (4F, 4h, 4w)

Down 3 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (4F, 4h, 4w) (8F, 2h, 2w)

Down 4 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (8F, 2h, 2w) (16F, 1h, 1w)

Up 1
B RCAs (16F, 1h, 1w) (16F, 1h, 1w)

Conv(3,1,1)-PixelShuffle(2) (16F, 1h, 1w) (16F, 2h, 2w)
Conv(1, 1, 0) (16F, 2h, 2w) (8F, 2h, 2w)

Concatenation 1 Concatenate the output of Down 3 and Up 1 (8F, 2h, 2w) ⊕ (8F, 2h, 2w) (16F, 2h, 2w)

Up 2
B RCAs (16F, 2h, 2w) (16F, 2h, 2w)

Conv(3,1,1)-PixelShuffle(2) (16F, 2h, 2w) (16F, 4h, 4w)
Conv(1, 1, 0) (16F, 4h, 4w) (4F, 4h, 4w)

Concatenation 2 Concatenate the output of Down 2 and Up 2 (4F, 4h, 4w) ⊕ (4F, 4h, 4w) (8F, 4h, 4w)

Up 3
B RCAs (8F, 4h, 4w) (8F, 4h, 4w)

Conv(3,1,1)-PixelShuffle(2) (8F, 4h, 4w) (8F, 8h, 8w)
Conv(1, 1, 0) (8F, 8h, 8w) (2F, 8h, 8w)

Concatenation 3 Concatenate the output of Down 1 and Up 3 (2F, 8h, 8w) ⊕ (2F, 8h, 8w) (4F, 8h, 8w)
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Table 1. Cont.

Model Model Details Input Shape Output Shape

Up 4
B RCAs (4F, 8h, 8w) (4F, 8h, 8w)

Conv(3,1,1)-PixelShuffle(2) (4F, 8h, 8w) (4F, 16h, 16w)
Conv(1, 1, 0) (4F, 16h, 16w) (1F, 16h, 16w)

Concatenation 4 Concatenate the output of Head and Up 4 (1F,16h, 16w) ⊕ (1F, 16h, 16w) (2F, 16h, 16w)

Tail 0 Conv(3, 1, 1) (16F, 1h, 1w) (3, 1h, 1w)

Tail 1 Conv(3, 1, 1) (16F, 2h, 2w) (3, 2h, 2w)

Tail 2 Conv(3, 1, 1) (8F, 4h, 4w) (3, 4h, 4w)

Tail 3 Conv(3, 1, 1) (4F, 8h, 8w) (3, 8h, 8w)

Tail 4 Conv(3, 1, 1) (2F, 16h, 16w) (3, 16h, 16w)

Dual 1 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (3, 16h, 16w) (3, 8h, 8w)

Dual 2 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (3, 8h, 8w) (3, 4h, 4w)

Dual 3 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (3, 4h, 4w) (3, 2h, 2w)

Dual 4 Conv(3, 2, 1)-LeakyRelu-Conv(3, 1, 1) (3, 2h, 2w) (3, 1h, 1w)

3.3.3. Discriminator Architecture

Our discriminator is a typical classification network, which consists of four con-
volutional blocks and a tail layer, following the idea of a representative GAN-based
super-resolution network, e.g., SRGAN [39], SRFeat [40], and DSCSRGAN [41]. Each
convolutional block is a cascaded sequence of convolutional layer activation operations.
The parameters of convolutional layers in each block were adjusted based on experiments.
The size of kernel, stride, and padding of convolutional layers of each block is 3, 1, 1 for the
first one, and 4, 2, 1 for the second. Moreover, we append another convolutional layer to
narrow down the dimensions of the features. The tail layer is composed of adaptive average
pooling and Sigmoid operation, which can ensure that the output of the discriminator
with various dimensions of input is a probability value. The size of the input image is
3 × 16H × 16W, where H and W are the height and width factors. Detailed information on
the network architecture is given in Table 2.

Table 2. The network architecture configuration of the discriminator.

Model Model Details Input Shape Output Shape

Block 1

Conv(3, 1, 1) (3, 16H, 16W) (64, 16H, 16W)
LeakyReLU (64, 16H, 16W) (64, 16H, 16W)
Conv(4, 2, 1) (64, 8H, 8W) (64, 8H, 8W)

BatchNorm-LeakyReLU (64, 8H, 8W) (64, 8H, 8W)

Block 2

Conv(3, 1, 1) (64, 8H, W) (128, 8H, 8W)
BatchNorm-LeakyReLU (128, 8H, 8W) (128, 8H, 8W)

Conv(4, 2, 1) (128, 8H, 8W) (128, 4H, 4W)
BatchNorm-LeakyReLU (128, 4H, 78) (128, 4H, 4W)

Block 3

Conv(3, 1, 1) (128, 4H, 4W) (256, 4H, 4W)
BatchNorm-LeakyReLU (256, 4H, 4W) (256, 4H, 4W)

Conv(4, 2, 1) (256, 4H, 4W) (256, 2H, 2W)
BatchNorm-LeakyReLU (256, 2H, 2W) (256, 2H, 2W)

Block 4

Conv(3, 1, 1) (256, 2H, 2W) (512, 2H, 2W)
BatchNorm-LeakyReLU (512, 2H, 2W) (512, 2H, 2W)

Conv(4, 2,1) (512, 2H, 2W) (512, H, W)
BatchNorm-LeakyReLU (512, H, W) (512, H, W)

Conv(4, 1, 1) (512, H, W) (1, H-1, W-1)

Tail AdaptiveAvgPool-Sigmoid (1, H-1, W-1) (1, 1)
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3.3.4. Loss Function and Model Training

In this section, we depict the loss functions of the generator network and the discrimi-
nator network, respectively. Given that y is the high-resolution image and x is the input
low-resolution image, we define the loss function of the generator network from three
aspects, as in Equations (5)–(8). The first one is the content loss Lcontent that is to estimate
the content difference between the super-resolution image and the real high-resolution
image, which is measured by their pixel-wise L1 distance. The second is the dual regression
loss Ldual we used for unpaired data in Section 3.3.2, which is also formulated by L1 dis-
tance. We also use the adversarial loss LAadversarial from the discriminator output in order
to measure the degree of super-resolution image quality that can fool the discriminator.
The coefficients λ1 and λ2 in Equation (5) are used to balance the magnitudes of its compo-
nents. In this paper, we set λ1 = 0.1 and λ2 = 0.01. In Equation (5), 1SP(x) is an indicator
function. It equals 1 when x belongs to the paired samples, and otherwise, the function
equals 0. The discriminator is expected to output 1 for the real high-resolution images
and 0 for the super-resolution images from the generator network. Therefore, a commonly
cross-entropy loss LD is used, as in Equation (9). The pseudo-code of the training process is
given in Algorithm 1, in which λU is the data ratio of unpaired data samples. The training
of paired data can also be given uniformly in Algorithm 1 when setting λU = 0.

LG(x, y) = 1Sp(x)(Lcontent(x, y) + λ2LAadversarial(x, y)) + λ1Ldual(G(x), y) (5)

Lcontent(x, y) = |y−G(x)| (6)

Ldual(G(x), y) = |x− Dual(G(x))| (7)

LAadversarial(x, y) = −logDis(G(x)) (8)

LDis(x, y) = −logDis(y)− log(1− Dis(G(x))) (9)

Algorithm 1: Algorithm for Higher Resolution with Unpaired Data.

1 Input 1: The wind field data (0.25◦) as LR: Unpaired data {yi};
2 Input 2: The synthetic data as LR (2◦) and HR (0.25◦): Paired data {xi, yi};
3 Load the pretrained models: generator (G), dual regression (Dual) and discriminator (Dis);
4 While not convergent do
5 UnpairedTraining = True if random(0, 1) < λU, vice versa;
6 if not UnpairedTraining then
7 //Update the Dis model
8 Update Dis by minimizing the objective: ∑ LDis(xi, yi);
9 //Update the G model
10 Update G by minimizing the objective: ∑ Lcontent(xi, yi) + λ1Ldual(G(xi), xi) + λ2Ladversarial(xi, yi);
11 //Update the Dual model
12 Update Dual by minimizing the objective: ∑ λ1Ldual(G(xi), xi);
13 else
14 //Update the Dual model
15 Update Dual by minimizing the objective: ∑ λ1Ldual(G(yi), yi);
16 end
17 end

4. Experiments and Results
4.1. Evaluation Metrics

To evaluate the proposed downscaling method, we adopt two sets of metrics in this
paper. The first set validates the downscaling SSW results with buoy measurements using
root mean square error (RMSE) and coefficient of determination, i.e., R-Square (R2). Their
definitions are formulated in Equations (10) and (11). Oi and Yi represent the observation
and the downscaling value of the i-th record, respectively. N is the number of matched
SSW records. O is the mean of the observed data. RMSE is the standard deviation of the
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residuals. The lower this metric is, the better the performance, and vice versa. R2 shows
the variance of the downscaling estimation from the measured data.

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi −Yi)
2 (10)

R2 = 1−
N

∑
i=1

(Oi −Yi)
2/

N

∑
i=1

(
Oi −O

)2 (11)

The second set of metrics measures the downscaling reconstruction quality, and
the peak signal-to-noise ratio (PSNR) and structural similarity(SSIM) are used. PSNR is
a commonly used reconstruction quality metric of lossy transformation such as image
compression and image inpainting. In the scenario of super-resolution, given the ground
truth image I with M pixels and the reconstructed image Î, PSNR is defined as Equation (12),
where MAXI is the maximum pixel value of the image, such as 255 for 8-bit images. SSIM
is a metric that measures the structural similarity of images from the aspects of luminance,
contrast, and structure. The formulation are given in Equations (13)–(16). The luminance µ
and contrast σ are estimated with the mean and standard deviation of the image intensity,
σI Î is the covariance of image I and Î. Constants c1, c2, and c3 are for stability. Control
parameters α, β, and γ are for adjusting the relative importance, here are set as 1 [42].

PSNR = 10 log10

(
MAXI

2

1
M ∑M

i=1
(

I(i)− Î(i)
)2

)
(12)

l
(

I, Î
)
=

2µIµ Î + c1

µ2
I + µ2

Î
+ c1

, c1 = (k1MAXI)
2 (13)

c
(

I, Î
)
=

2σIσÎ + c2

σ2
I + σ2

Î
+ c2

, c2 = (k2MAXI)
2 (14)

s
(

I, Î
)
=

σI Î + c3

σIσÎ + c3
, c3 = c2/2 (15)

SSIM
(

I, Î
)
=
[
l
(

I, Î
)]α[c(I, Î

)]β[s(I, Î
)]γ

=

(
2µIµ Î + c1

)(
2σI Î + c2

)(
µ2

I + µ2
Î
+ c1

)(
σ2

I + σ2
Î
+ c2

) (16)

4.2. Reference Methods

In this paper, we adopt the following typical methods for performance comparison:

• Cubic convolution interpolation [43] is a classical technique for resampling discrete
data, the accuracy of which is between that of linear interpolation and that of cubic
splines with the appropriate boundary conditions and constraints on the interpolation
kernel. We adopted the cubic convolution interpolation as one of the reference methods
since it is widely used to validate the performance of super-resolution.

• DeepSD [20] is an augmented stacked super-resolution convolutional neural network
framework for statistical downscaling of climate variables and earth system model
simulations proposed by Vandal et al. in 2017 and has achieved a downscaling factor
of 8x. It is the first research of climate downscaling by the deep learning-based
super-resolution technique to the best of our knowledge, and has provided NASA
Earth Exchange (NEX) an alternative to generate the downscaled products at high
resolutions, thus being selected as a method for comparison.

• Adversarial DeepSD is a reference method to evaluate the effectiveness of GAN, which
takes DeepSD as the generator and the same discriminator network as the proposed
method in this paper.
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• Dual regression networks [37] is a dual regression scheme proposed by Guo et al.
in 2020 by introducing an additional constraint on LR data to reduce the possible
function space. It not only learns the mapping from LR to HR images but also learns
the extra mapping that estimates the down-sampling kernel for reconstructing LR
images, thus forming a closed loop for better performance. DRN is the base network
for the presented SSW downscaling approach in this paper, which is also used for
performance comparison.

4.3. Experimental Setup

The experiments are performed on a server including two Intel Xeon E5-2680 v4
CPUs, each running at a base frequency of 2.40 GHz with 14 cores and 64 GB of random
access memory. The server is equipped with an NVIDIA RTX 3090 GPU, which combines
10,496 compute unified device architecture (CUDA) cores based on Ampere 8 nm architec-
ture and has 24 GB of GDDR6X memory that runs at 19.5 Gbps. The system runs Ubuntu
20.04.3 LTS with Python3.8 and PyTorch 1.9.1.

The presented method is applied to WindSat satellite SSW data. We collected 3 years
of WindSat daily SSW ranging from 2017 to 2019 from RSS. A daily SSW contains two
orbits of image data, and therefore we obtained 2172 global SSW image data in total. We
randomly assign 80% as training data (1738 images) and 20% as test data (434 images).
During the training, we randomly slice the global data into the n × n patch, where the n is
set according to the size of GPU memory. In our cases, n is set as 384. The models trained
with the training dataset are used to estimate downscaling results globally and validated
with buoy measurements for the study area Region 1 and Region 2, as shown in Figure 1.

In this paper, the following experiments have been conducted to validate and analyze
the performance of the presented SSW downscaling approach.

• Experiment 1: The synthetic experiments on the constructed paired LR and HR SSW.
Since it is common that the downscaling evaluation suffers from a lack of ground truth,
synthetic experiments are usually conducted by upscaling higher spatial resolution
products, which are then taken as input, and comparing the downscaled results with
original products [44]. In this paper, we first obtain the LR SSW from the original 0.25◦

SSW with the commonly used bicubic interpolation. Models, including DeepSD, DRN,
adversarial DeepSD, and the proposed network based on GAN and dual learning, are
trained, respectively, with the LR-HR training dataset, and the downscaling results
from the trained models are validated on the test dataset with the evaluation metrics
including RMSE and R2, as well as PSNR and SSIM.

• Experiment 2: Downscaling experiments to generate higher resolution SSW data
without HR ground truth. In real scenes, HR ground truths are usually unavailable.
Therefore, we adopted the 0.25◦ SSW as LR data to form an unpaired dataset and
applied the adaptation for our model based on GAN and dual learning, as shown
in Algorithm 1 in Section 3.3.4, together with the synthetic LR-HR dataset. In this
experiment, we generated SSW at 0.03125◦ (a downscaling factor of 8×) with the
default configuration of basic blocks. Due to the lack of the HR SSW images, we only
present the RMSE and R2 against buoy measurements for the downscaling accuracy
validation and comparison.

• Experiment 3: The downscaling capacity to generate higher resolution. Based on exper-
iment 2, we further increased the basic blocks in the generator of the network to achieve
a downscaling factor of 16× (0.015625◦ spatial resolution) with comparable accuracy.

4.4. Downscaling Results
4.4.1. Results on Synthetic LR-HR SSW

We report the accuracy validation results in terms of RMSE and R2 for the downscaling
SSW with buoy measurements in Table 3 and the reconstruction performance in terms of
PSNR and SSIM in Table 4 for the study areas as shown in Figure 1. The corresponding
validation scatter plots are given in Figure 6, where from left to right are for wind speed
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and wind direction in Region 1 and Region 2, and from top to bottom are for the LR SSW at
2◦, downscaling SSW based on bicubic interpolation, DeepSD, DRN, adversarial DeepSD,
the proposed method, and ground truth HR at 0.25◦. Figure 7 depict the visualization
images of SSW, taking 28 November 2019 and 3 December 2019 as examples, for Region 1
and Region 2, respectively. It can be noted from Table 3 and Figure 6 that our proposed
downscaling method based on GAN and dual learning results in the highest accuracy and
significantly outperforms the other downscaling methods with respect to the typically used
metrics RMSE and R2. It achieves the lowest RMSE of 24.90◦ and 1.76 m/s, 35.23◦ and
1.66 m/s, as well as the highest R2 of 0.90 and 0.59, 0.90 and 0.63 in Region 1 and Region 2
for wind direction and wind speed, respectively. Table 4 show that our proposed method
results in higher reconstruction quality with PSNR of 39.96 and SSIM 0.98. The higher these
two values, the less distortion in the images compared with ground truth. From Figure 7,
it can be seen that the bicubic interpolation, DeepSD, and adversarial DeepSD downscaling
results contain significant inconsistencies compared with the ground truth in the last row
(for instance, the upper right corner in the second column images, the middle left in the
fourth column images). The downscaling results are the most similar to the ground truth;
however, they are still relatively smooth and contain less texture detail.

Table 3. Accuracy validation of sea surface wind downscaling with buoy measurements in terms of
RMSE and R2 on the test dataset for the study areas in Figure 1.

Type Resolution Method Component Region 1 Region 2

RMSE R2 RMSE R2

Original HR 0.25◦ Original HR Direction 26.49 0.89 38.92 0.87
Speed 1.88 0.53 1.94 0.50

LR 2◦ Bicubic downsample 8× Direction 50.08 0.73 56.38 0.74
Speed 2.34 0.49 1.91 0.60

Downscaling HR 0.25◦

Bicubic interpolation Direction 34.53 0.81 44.14 0.83
Speed 1.90 0.52 1.85 0.55

DeepSD Direction 34.38 0.81 44.28 0.83
Speed 2.12 0.40 1.96 0.49

Adversarial DeepSD Direction 29.88 0.86 38.66 0.87
Speed 2.12 0.40 1.90 0.52

DRN
Direction 26.11 0.89 36.48 0.89

Speed 1.91 0.51 1.66 0.63

Proposed method Direction 24.90 0.90 35.23 0.90
Speed 1.76 0.59 1.66 0.63

Table 4. Downscaling reconstruction quality of sea surface wind in terms of PSNR and SSIM for the
study areas in Figure 1.

Method PSNR SSIM

Bicubic interpolation 38.3350 0.9726

DeepSD 36.7467 0.9508

Adversarial DeepSD 36.6965 0.9570

DRN 39.4307 0.9771

Proposed method 39.9648 0.9805
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Figure 6. The accuracy validation results of sea surface wind with in situ buoy measurements in
scatter plots with RMSE and R2 for both the LR input at 2◦ and the downscaling reconstructed
HR results at 0.25◦ on the test dataset. From left to right in each row, sub-images are for the wind
speed and the wind direction in Region 1 and Region 2, as shown in Figure 1, respectively. From
top to bottom, sub-images correspond to the validation results for the LR SSW at 2◦, the bicubic
interpolation downscaling, the DeepSD downscaling, the adversarial DeepSD downscaling, the DRN
downscaling, the proposed method in this paper, and the original wind vector at 0.25◦.
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Figure 7. The visualization of sea surface wind vector, taking 28 November 2019 and 3 December
2019, as examples. From left to right in each row, sub-images are for the two dates in Region 1
and Region 2, respectively. From top to bottom, sub-images correspond to the results for the LR
SSW at 2◦, the bicubic interpolation downscaling, the DeepSD downscaling, the adversarial DeepSD
downscaling, the DRN downscaling, the proposed method in this paper, and the original wind vector
at 0.25◦.
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4.4.2. Results on LR SSW

In Section 4.4.1, we present the downscaling results on the synthetic LR-HR data, i.e.,
the original SSW are used as HR ground truth to validate our proposed method, and the
spatial resolution of downscaling SSW corresponds to the original SSW of 0.25◦. In this
section, we take the 0.25◦ SSW as LR data and perform the model adaptation by sampling
both unpaired SSW and synthetic paired SSW according to Algorithm 1 in Section 3.3.4.

Table 5 compare the accuracy for SSW at different spatial resolutions. For the SSW
at 0.03125◦ (downscaling 8×), our proposed method by further applying model adapta-
tion outperforms the other downscaling methods (including the direct inference using
the proposed method however trained with synthetic LR-HR SSW in Section 4.4.1) with
the lowest RMSE of 25.19◦ and 1.78 m/s in Region 1, 37.63◦ and 1.75 m/s in Region 2.
The corresponding R2 is also the highest. Figure 8 give their specific validation scatter plots
with buoy measurements for each method. For the SSW at 0.015625◦ (downscaling 16×),
we only list the validation metrics for the bicubic interpolation and our proposed model
adaptation on the unpaired LR SSW, since DeepSD can only provide 8× downscaling
results and the 8x downscaling results have shown that the proposed model adaptation is
obviously superior to the baseline DRN and direct model inference. Our proposed method
also achieves the highest accuracy for the 16× SSW downscaling, and the specific scatter
plots are shown in Figure 9. due to the lack of higher-resolution SSW ground truth for 8×
and 16× downscaling, the PSNR and SSIM metrics are not provided. Besides, instead of
presenting the visualization images of SSW of each method, in Figure 10, we show SSW
at different spatial resolutions, i.e., 2◦, 0.25◦, 0.03125◦, and 0.015625◦ in Region 1, taking
28 November 2019, as an example, and in Region 2 taking 3 December 2019, as an example.
As can be seen in Figure 10, the higher resolution SSW displays more details.

Table 5. Accuracy comparison of sea surface wind downscaling to 8× at 0.03125◦, to 16× at 0.015625◦

with buoy measurements.

Type Resolution Method Component
Region 1 Region 2

RMSE R2 RMSE R2

LR Input 0.25◦ Original data Direction 26.49 0.89 38.92 0.87
Speed 1.88 0.53 1.94 0.50

Downscaling HR

0.25◦/8 = 0.03125◦

Bicubic interpolation Direction 26.07 0.90 38.71 0.88
Speed 1.82 0.57 1.96 0.49

DeepSD Direction 29.44 0.87 42.48 0.85
Speed 2.21 0.36 2.16 0.38

Adversarial DeepSD Direction 32.28 0.84 45.26 0.83
Speed 2.16 0.39 2.24 0.34

DRN
Direction 31.01 0.85 44.24 0.84

Speed 2.09 0.43 2.16 0.38

Proposed model inference Direction 33.24 0.83 45.58 0.83

Speed 2.08 0.43 2.15 0.39

Proposed model adaptation Direction 25.19 0.90 37.63 0.88
Speed 1.78 0.58 1.75 0.60

0.25◦/16 = 0.015625◦
Bicubic interpolation Direction 26.15 0.90 38.73 0.87

Speed 1.81 0.57 1.95 0.50

Proposed model adaptation Direction 25.22 0.90 37.98 0.88
Speed 1.62 0.65 1.77 0.58
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Figure 8. The validation results of sea surface wind with in situ buoy measurements for the 8×
downscaling reconstructed high-resolution results at 0.03125◦ on the test dataset. From left to
right in each row, sub-images are for the wind speed and the wind direction in Region 1 and
Region 2, respectively. From top to bottom, sub-images corresponds to the results for the bicubic
interpolation downscaling, the DeepSD downscaling, the adversarial DeepSD downscaling, the
DRN downscaling, the downscaling results directly by applying the proposed model trained with
synthetic data, the downscaling results using a model adaptation by sampling both unpaired SSW
and synthetic paired SSW.
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Figure 9. The validation results of sea surface wind with in situ buoy measurements in scatter plots
with RMSE and R2 for the 16× downscaling reconstructed high-resolution results at 0.015625◦ on the
test dataset, from left to right in each row are for the wind speed and the wind direction in Region
1 and Region 2 as shown in Figure 1, respectively: (a–d) The results for the bicubic interpolation
downscaling; (e–h) The validation for the downscaling using model adaptation by sampling both
unpaired SSW and synthetic paired SSW.

Figure 10. The visualization of sea surface wind vector: (a–d) The SSW at 2◦ (the bicubic down-
sampling 8×), 0.25◦ (the original data), 0.03125◦ (downscaling 8×), 0.015625◦ (downscaling 16×) in
Region 1, taking 28 November 2019, as an example; (e–h) The SSW at 2◦ (the bicubic downsampling
8×), 0.25◦ (the original data), 0.03125◦ (the downscaling 8×), 0.015625◦ (downscaling 16×) in Region
2, taking 3 December 2019, as an example.
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5. Discussion
5.1. Downscaling Performance

In recent years, DL-based single-image super-resolution techniques were exploited for
climate downscaling due to the similarity between single-image super-resolution tasks and
statistical downscaling tasks, as well as the superior ability of DL to learn complex nonlinear
feature representations. Therefore, in this paper, we present a spatial downscaling approach
for satellite SSW based on GANs and dual learning scheme, taking WindSat as an example
to generate higher spatial resolution SSW for regional or local studies. In Section 4.4, we
demonstrate the downscaling results and comparison with reference methods, including
both the traditional bicubic interpolation and the DL-based DeepSD, adversarial DeepSD,
and DRN.

The results in Table 3 show the effectiveness of our proposed method based on GAN
and dual learning with synthetic LR-HR SSW in terms of accuracy validation. Specifi-
cally, as the baseline generator, DRN achieved better downscaling accuracy performance
compared with DeepSD. For example, in Region 2, DRN obtains an RMSE decrease of
7.66◦ and 0.19 m/s (−0.14◦ and −0.11 m/s for DeepSD), and an R2 increase of 0.06 and
0.08 (0 and −0.06 for DeepSD) for wind direction and wind speed, respectively, taking the
bicubic interpolation as a starting point. This implies the effectiveness of dual learning by
introducing an additional constraint to reduce the solution space. The integration of GAN
yields better performance for DeepSD and DRN. However, the performance improvement
brought by GAN is smaller than that of DRN for the proposed method.

As revealed in Tables 3–5, the performance of DL-based methods, e.g., DeepSD, does
not always outperform traditional methods such as the bicubic interpolation. For instance,
DeepSD and Adversarial DeepSD show worse PSNR, as shown in Table 4. This could be
due to the fact that DeepSD applies the stacked SRCNN [45], a simple CNN, to learn the
mapping from LR to HR data. Its capability of feature extraction and nonlinear mapping is
limited, which also depends on the data. DeepSD was proposed to downscale precipitation
with the assistance of auxiliary elevation data [20]. However, in this work, we downscale
SSW that contain large areas missing value grids between orbits or on land. These two
tasks are similar but differences in the distribution of values and space exist. Therefore,
the straightforward application of existing DL-based methods such as DeepSD may lead to
performance degradation, and some adjustments such as network architecture are required
for performance improvement.

Besides, the comparison results in Table 5 imply that mapping learned from a paired
LR-HR SSW is not always suitable for the downscaling for higher resolutions. Our proposed
method adopts a model adaptation training strategy by making use of both paired LR-
HR SSW synthetic data and unpaired LR SSW data, which has been proved effective by
experiments in Section 4.4.2.

5.2. Computational Efficiency

In addition to the accuracy and reconstruction quality of downscaling, computational
efficiency is also a major concern in practical scenarios. In this paper, we adopted the
widely used metrics of floating-point operations (FLOPs), parameters, and execution
time to evaluate the efficiency performance [46–48]. We list the corresponding metrics
of parameters and FLOPs in Tables 6 and 7 and execution time in Table 8. It should be
noted that only the primal model in the generator is used during downscaling, i.e., model
inference after model training. Therefore, the measurements of the GAN-based methods,
i.e., Adversarial DeepSD and the proposed method with GAN and dual learning, are equal
to those of their generator (DeepSD and DRN), as shown in Tables 6 and 8. The model
parameters and FLOPs of the rest network, i.e., the dual model and discriminator that are
not used during the model inference stage for the dual learning or GAN-based methods,
are given in Table 7, where n refers to the logarithm to base 2 of the scale factor.
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Table 6. The parameters and FLOPs of the (primal) model during model inference.

Resolution Method Parameters FLOPs

2◦ → 0.25◦

0.25◦ → 0.03125◦

(8× downscaling)

Bicubic interpolation 0 102.4 K
DeepSD

207,825 16.4 GAdversarial DeepSD
DRN

10,000,772 63.57 GProposed method

0.25◦ → 0.015625◦

(16× downscaling)
Bicubic interpolation 0 409.6 K

Proposed model adaptation 41,071,601 367.02 G

Table 7. The parameters and FLOPs of the dual model and discriminator for dual learning/GAN-
based methods.

Model Parameters FLOPs

Dual model 540 × n 220 × n K

Discriminator 7,134,401 187.42 M

Table 8. The execution time of the (primal) model during model inference.

Resolution Method Time
(seconds/item)

2◦ → 0.25◦

8× downscaling
input size of 3 × 180 × 90

Bicubic interpolation 1.29
DeepSD

1.31Adversarial DeepSD
DRN

1.38Proposed method

0.25◦ → 0.03125◦

8x downscaling
input size of 3 × 160 × 300

Bicubic interpolation 1.03
DeepSD

1.00Adversarial DeepSD
DRN

1.19Proposed model inference
Proposed model adaptation

0.25◦ → 0.015625◦

16× downscaling
input size of 3 × 160 × 300

Bicubic interpolation 3.24

Proposed model adaptation 5.02

For the parameter size, DeepSD is a relatively simple network and has the capability
of 8x downscaling with parameters of 207,825. The primal model in the generator of
our network is a deeper network, and its parameter size is about 48.12× that of DeepSD
with the same downscaling scale. When raising the downscaling scale, e.g., to 16×, basic
blocks of the primal network are added, which leads to an increase in the parameter
size. Compared with the primal model, the dual model and discriminator contain fewer
parameters, as shown in Table 7.

The FLOPs were measured with an input with fixed dimensions at (3, 40, 40) for a
fair comparison. The proposed method has higher FLOPs compared with the reference
methods, and the FLOPs of the primal model account for a high proportion of the entire
model. The FLOPs increase with the downscaling scale increasing.

When measuring the practical execution time in Table 8, global SSW (input size of
3 × 180 × 90) for the 8× downscaling (2◦ → 0.25◦) and regional SSW (input size of 3 ×
160 × 160 for region 1, and 3 × 160 × 140 for region 2) for the 8× downscaling (0.25◦

→ 0.03125◦) and 16× downscaling (0.25◦ → 0.015625◦) are generated due to the memory
limitation. We measured the average downscaling, i.e., inference time over the test dataset,
and gave the execution time in seconds/item. There is little difference in the execution time
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of bicubic interpolation and DeepSD when performing 8× downscaling (the maximum
factor of DeepSD). The increase in the execution time of our proposed method is relatively
small and acceptable, especially when applying a small downscaling factor such as 8×.

5.3. Data Concern of Downscaling Network

In real scenarios, although sensors such as SAR are utilized to retrieve HR SSW,
the spatio-temporal matching LR-HR data are difficult to obtain. Most existing deep
learning-based downscaling methods make use of a large number of samples with labels.
Therefore, how to perform downscaling to generate HR SSW with scarce-paired samples or
even only LR SSW is also a major concern in this paper.

In this work, inspired by the baseline DRN network, we adopted a training strategy to
perform model adaptation in Algorithm 1 in Section 3.3.4, taking 8× downscaling as an
example, by making use of both the unpaired LR SSW (0.25◦ as LR) and the synthetic SSW
(2◦ as LR and 0.25◦ as HR) at a tuned sampling ratio of 40%. The experiments show that
our proposed downscaling approach can not only outperform the other typical advanced
methods on the synthetic paired SSW data in Section 4.4.1 but also achieve high accuracy
and reconstruction quality on the unpaired LR SSW based on the model adaption strategy
in Section 4.4.2.

Moreover, under the condition that the paired training data is scarce and can hardly
be used for tasks, there are ways to improve the quality of generated synthetic data.
For example, Salazar et al. [49] exploited the structural information of the original data
in the form of a vector Markov Random Field (MRF) over an undirected graph to be
incorporated into the synthetic data. Its class-independent generation method in GAN
could help to improve the quality of synthetic instances. In the future work, we are
going to explore generating SSW images with higher quality through introducing more
regularizations.

6. Conclusions

In this paper, a novel spatial downscaling approach for satellite SSW based on gen-
erative adversarial networks and dual learning scheme, taking WindSat as an example,
is presented. Considering that learning the mapping from LR to HR images is an ill-posed
issue, and in real scenarios, paired LR and HR data can hardly be available, the dual learn-
ing scheme is adopted to provide a solution for downscaling performance improvement.
Furthermore, we take advantage of GAN structure and employ dual learning as the gener-
ator, thus introducing an additional constraint to reduce the solution space. Experiments
towards the downscaling using synthetic LR-HR paired data, and the downscaling based
on model adaptation using unpaired LR data were conducted. The downscaling results
have achieved the highest accuracy in comparison to NDBC and RAMA buoy measure-
ments: (a) RMSE of 24.90◦ and 1.76 m/s (Region 1), 35.23◦ and 1.66 m/s (Region 2) on
the synthetic dataset downscaling to 0.25◦; (b) RMSE of 25.19◦ and 1.78 m/s (Region 1),
37.63◦ and 1.75 m/s (Region 2) for the 8× downscaling to 0.03125◦; (c) RMSE of 25.22◦ and
1.62 m/s (Region 1), 37.98◦ and 1.77 m/s (Region 2) for the 16× downscaling to 0.015625◦.
Meanwhile, the downscaling results contain more fine-grained visual details in terms of
reconstruction quality. On the synthetic dataset with HR ground truth, the highest PSNR of
39.96 and SSIM of 0.98 can be achieved.

Although the proposed spatial downscaling approach for SSW yields promising
performance and shows the potential and capability of state-of-the-art deep learning
techniques in the downscaling task, there are several issues that need to be addressed
in future work. These directions can include enhancing the downscaling resolutions,
promoting the downscaling accuracy by integrating prior knowledge from the aspect of
physical mechanism into the deep neural network, generating paired data of higher quality
by introducing more regularizations such as the graph structure of MRF, applying the
downscaling approach to other satellite SSW observations, and even other variables.
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