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Abstract: Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National
Institute of Spatial Research (INPE) has a program named Queimadas, which estimated from January
2020 to October 2020, a burned area in Pantanal of approximately 40,606 km2. This program also
provides daily data of active fire (fires spots) from a methodology that uses MODIS (Aqua and Terra)
sensor data as reference satellites, which presents limitations mainly when dealing with small active
fires. Remote sensing researches on active fire dynamics have contributed to wildfire comprehension,
despite generally applying low spatial resolution data. Convolutional Neural Networks (CNN)
associated with high- and medium-resolution remote sensing data may provide a complementary
strategy to small active fire detection. We propose an approach based on object detection methods
to map active fire in the Pantanal. In this approach, a post-processing strategy is adopted based
on Non-Max Suppression (NMS) to reduce the number of highly overlapped detections. Extensive
experiments were conducted, generating 150 models, as five-folds were considered. We generate a
public dataset with 775-RGB image patches from the Wide Field Imager (WFI) sensor onboard the
China Brazil Earth Resources Satellite (CBERS) 4A. The patches resulted from 49 images acquired from
May to August 2020 and present a spatial and temporal resolutions of 55 m and five days, respectively.
The proposed approach uses a point (active fire) to generate squared bounding boxes. Our findings
indicate that accurate results were achieved, even considering recent images from 2021, showing
the generalization capability of our models to complement other researches and wildfire databases
such as the current program Queimadas in detecting active fire in this complex environment. The
approach may be extended and evaluated in other environmental conditions worldwide where active
fire detection is still a required information in fire fighting and rescue initiatives.

Keywords: remote sensing; wildfire; object detection; convolutional neural network

1. Introduction

Brazilian Pantanal comprises 80% of the world’s largest freshwater wetland, being the
other 20% in Bolivia (near 19%) and Paraguay (near 1%), and all together are called South
American Pantanal. It is known as an important biodiversity refuge [1], and it is charac-
terized by seasonal floods and droughts. According to [2], based on evapotranspiration
and energy fluxes research, Pantanal forests are consistent sources of water vapor to the
atmosphere even in drought events. The Brazilian constitution lists Pantanal as a national
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heritage [3], and was recognized as a world heritage site by UNESCO in 2000. Brazilian
Pantanal faces some environmental problems, with forest fires being a major threat to its
ecosystem balance [4]. The fauna and flora are well adapted to its water levels fluctuations,
being historically impacted by inter-annual extreme floods and droughts, combined with
large fire events [5].

The land structure analysis of Brazilian Pantanal indicates that environmental protec-
tion on private properties is strictly related to biome protection since 97% of the Brazilian
Pantanal are private areas [6]. In addition, in the context of Pantanal, Alho and Sabino [4]
list deforestation and wildfire as environmental threats, which can cause changes in water
flows and biodiversity. They cite forest fire as a major threat since ranchers use fire in
the dry season to remove the vegetation not used by cattle farming. Even small fires can
become uncontrolled ones in Pantanal due to the open areas, low slopes, and dry vegetation
in some periods of the year.

The Brazilian National Institute of Spatial Research (INPE) has a program named
Queimadas (Burned, in English) for monitoring burned areas and active fire. The program
database (BD Queimadas) estimated that from January until October 2020, an area of
approximately 40,606 km2 was burned in Brazilian Pantanal [7]. Brazilian Pantanal fire
events in 2020, enhanced by climate change which caused drought, have reached the
highest active fire numbers in the last decade, as shown in Figure 1a. Figure 1b shows
approximately the active fire dispersion by month, with the driest months being the ones
with more fire detected [7]. Wildfires and human-induced fires represent important impacts
to the Pantanal biome affecting fauna and flora with different intensities and on different
time scales [5].

Figure 1. (a) BD Queimadas data of active fire in Pantanal in the last decade and (b) the Queimadas
database active fire from January to December 2020, and (c) CBERS 04A, Queimadas active fire (red
dots), and manual annotation (yellow dots).
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The Queimadas program provides data of active fire (fires spots) from a methodology
that uses imges acquired from the MODerate Imaging Spectroradiometer (MODIS) onboard
both AQUA and TERRA platforms as reference datasets. AVHRR/3 (NOAA-18 and 19),
METOP-B and C, VIIRS (NPP-Suomi and NOAA-20), as well as imagery from geostationary
satellites such as GOES-16 and MSG-3 are used as complementary to infer, based on mid-
thermal—4 µm, the location and number of wildfire focus. The daily data has been
generated since 1987 (based on other sensors), and is used as the national reference to
policies and environmental surveillance. The fire detection limits are related to the sensors
applied, so it has 30 × 1 m fire front as a detection threshold for MODIS, despite the 1-km
spatial resolution, and doubles the geostationary satellites’ size. In general, MODIS data
accuracy is around 400 m, with a standard deviation of 3 km [7].

On the other hand, the China-Brazil Earth Resources Satellite (CBERS) 04A is a satellite
released in 2019. CBERS is a binational space program in 1988, initially comprised of the
development and built of two remote sense satellites, CBERS-1 and CBERS-2. In 2002,
an agreement was accomplished to proceed with the CBERS Program to build two other
satellites CBERS-3 and CBERS-4. The CBERS 04A project was conceived from the availabil-
ity of various equipment manufactured for CBERS-3 and -4 satellites. CBERS 04A released
loaded with the following instruments: A Wide Scan Multispectral and Panchromatic
Camera (WPM); Multispectral Camera (MUX); and Wide Field Imaging Camera (WFI).
WFI sensor has a five-day scan time-lapse, contributing to active fire monitoring with a
higher spatial resolution (55 m) than the Queimadas database. Furthermore, all CBERS 04A
sensors data are openly available.

Despite the importance of the Queimadas database as the main source of fire data
for many users and institutions, the practical applicability for active fire mapping is still
limited, mainly when dealing with small fires, with smaller dimensions than the MODIS
spatial resolution of one square kilometer. Due to the higher spatial resolution, some active
fires could be seen at CBERS 04A WFI data, which were not provided by the Queimadas
database (red dots), as shown in Figure 1c possibly leading to a sub-estimation of fire
occurrence as concluded by Xu et al. [8]. Nevertheless, the higher spatial resolution of the
CBERS 04A combined with the large area of Brazillian Pantanal makes the task complex
and labor-intensive. To that end, computer vision techniques emerge as an alternative to
process remote sensing data mainly using Convolutional Neural Networks (CNN).

Computer vision techniques based on CNN have been developed using various
benchmark databases such as ImageNet [9], PASCAL VOC [10], and MS COCO [11]. These
benchmark databases provide standard datasets, annotation, and evaluation procedures
for visual recognition applications, such as object detection. Recently available dataset
benchmarks, such as Patternet [12] and DIOR [13], were specifically designed for CNN
and remote sensing data research development. CNN-based methods were developed
and applied to identify objects in remotely sensed data like roads, airplanes, rooftops,
rivers, etc.

Regarding our application, Jain et al. (2020) [14] presented a review of Machine Learn-
ing (ML) applications in wildfire science and management since 1990, widely clustering
six main problems, among them fire detection. The fire detection researches with Deep
Learning (DL) includes terrestrial, Unmanned Aerial Vehicle (UAV), also known as a Re-
motely Piloted Aircraft System (RPAS), and remote sensing-based models at an orbital level.
Several model applications were terrestrial-based images, so the authors highlighted the
potential of wildfire science with UAV and orbital sensed data, where ML is underutilized
or even not applied yet. Another review [15] was developed on optical remote sensing
technologies used in early fire warning systems considering the sensors and methods
(traditional ML or DL). The authors show only a few DL-based researches with satellite
data and concluded that there is future research potential not only with satellite data but
also with UAV data [15].

Neural network-based methods were investigated to identify smoke and fire from a
surveillance camera, synthetic, or benchmark imagery datasets [16–19]. Chen et al. [20] and
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Jiao et al. [21] combined UAV imagery and Artificial Neural Networks (ANN) for wildfire
detection. Interestingly, Lee et al. [22] developed a system for wildfire detection based on
aerial photographs. The authors evaluated five CNNs for detection using UAV imagery,
reaching high accuracy levels. Complementary, [23] proposed a CNN approach to detect
wildfire in terrestrial camera images, but they considered that combining them with images
from satellite sensors could be an optimal strategy.

Regarding CNN and remote sensing data, [24] proposed a CNN-based framework to
classify satellite imagery from NASA WorldView, MODIS, and Google, in two classes (fire
and non-fire) and achieved an F1-Score weighted average of around 98%. In addition, [25]
released a benchmark, USTC_SmokeRS, based purely on MODIS data (1, 4, and 3 spec-
tral bands) encompassing 6225 images from six classes (cloud, dust, haze, land, seaside,
and smoke) covering various world areas. Moreover, they proposed a CNN model named
SmokeNet to perform image classification on USTC_SmokeRS to detect smoke. Their
results of SmokeNet on smoke detection on image classification showed an accuracy of
92.75% and a Kappa coefficient of 0.9130. In the context of Brazil, also including Pantanal,
an alarm system was developed via a DL-based method for the segmentation of burned
areas using VIIRS 750 m bands [26]. Compared to the Queimadas program, a significant
improvement occurred for burned area mapping.

As shown, however, there is still a lack in the literature regarding the investigation
of object detection CNN-based methods in orbital imagery to identify and map smoke
plume (active fire). Likewise, CBERS-4A WFI data may provide a broad vision, enabling
the imaging of large areas such as the Brazilian Pantanal in few orbit passage scans. A good
forecasting system enables several advantages for fire fighting initiatives, rescue and
complementary resources.

Computer vision is a growing research topic and specifically, the usage of object
detection methods is increasing in orbital remote sensing [13]. Novel methods such as the
novel Side-Aware Boundary Localization (SABL) [27], Adaptive Training Sample Selection
(ATSS) [28], VarifocalNet [29], and Probabilistic Anchor Assignment (PAA) [30] have not
been investigated in orbital remote sensing data applications.

In this paper, we propose an approach based on novel object detection methods, such
as ATSS, VFNET, SABL, PAA, and consolidated RetinaNet and Faster R-CNN to map
active fire in the Brazilian Pantanal area using CBERS 04A WFI images. In this approach,
only one point is annotated, facilitating the labeling task, which is time-consuming and
allows to reduce the influence of the bounding boxes annotation since the smoke plumes
have different sizes. We aim to provide a complementary strategy to other researches
and wildfire databases such as the Queimadas database in fire identification for policy,
environmental surveillance, and forensics investigation since the Pantanal area in Brazil is
almost entirely private. Besides, data set will be publicly available for further comparisons
and usage.

2. Materials and Methods
2.1. Study Area and Imagery

The entire Brazilian Pantanal was considered the study area. It represents about 38%
of the upper Paraguay basin, with an area of around 138,000 km2 [31]. According to the
Köppen–Geiger classification, Pantanal climate is Aw [32], with annual rainfall around
1010 mm. The boundaries of Pantanal used to delineate the study area (Figure 2) are
available on the Brazilian Institute of Geography and Statistics (IBGE) [33].

The CBERS 04A WFI sensor, used in this work, has the following characteristics: Spec-
tral bands (B13: 0.45–0.52 µm; B14: 0.52–0.59 µm ; B15: 0.63–0.69 µm; and B16: 0.77–0.89 µm);
684-km imaged strip width; and 55 m of spatial resolution [34]. WFI data (B13, B14, B15,
and B16 bands) were downloaded from the INPE’s catalog (http://www2.dgi.inpe.br/
catalogo/explore, accessed on 13 September 2019). In the experiments, we considered only
the bands B13, B14, and B15, as the active fires can be identified in RGB imagery. The ob-
tained images presented two correction levels [34]: L2—radiometric and geometric system

http://www2.dgi.inpe.br/catalogo/explore
http://www2.dgi.inpe.br/catalogo/explore
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correction and L4—orthorectified. The time-lapse adopted was from May to August 2020.
Table 1 shows the image date, path, row, and correction level. We considered a bounding
box encompassing the Brazilian Pantanal to clip the CBERS 04A data. The experiments
used 49 large images with various dimensions due to the sensor stripping and the bounding
box clipping of the Pantanal limits. A total of 775 smoke plumes were identified as ground
truth. Further details on the experimental setup are presented in Section 2.3.

2.2. Active Fire Detection Approach

The dataset was labeled manually with one point at the base of each smoke plume
(near the smoke cone apex), where the active fire spreads the smoke (see Figure 3). Smoke
plumes and active fire were considered as synonyms since this approach also follows
previous works where smoke plumes were used for the accuracy assessment of active fire
detection [35–37]. Furthermore, the smoke of active fire has a cone as a pattern, therefore
even in the few different patterns of smoke dispersion, we annotated the terrestrial smoke
source to train the networks to identify those distinct patterns. The point labels for the
smoke plume consist of their coordinates due to georeferenced databases with network
assets. A bounding box to each ground truth label point was created since most object
detection methods need a rectangle instead of a point. To avoid subjective smoke plume
identification, which may vary from the amount of smoke launched to the atmosphere, as
wind spread plume can reach from hundreds to thousands of meters, we vary the bounding
box size values (hb and wb) values from 10 to 50 pixels. Comparatively, these values were
based on visual analyses using different box size values.

Figure 2. Study area location: (left) South America and Brazil; (right upper) Brazil; and (right lower)
study area (Brazilian Pantanal).
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Table 1. CBERS 4A Imagery date, path, row, and correction level.

Date Path Row Level Date Path Row Level

4 May 2020 214 140 L4 21 July 2020 217 132 L4
5 May 2020 220 132 L2 21 July 2020 217 140 L4
5 May 2020 220 140 L2 22 July 2020 223 132 L4
10 May 2020 219 140 L4 26 July 2020 216 132 L4
15 May 2020 218 140 L4 26 July 2020 216 140 L4
20 May 2020 217 132 L4 27 July 2020 222 132 L4
20 May 2020 217 140 L4 27 July 2020 222 140 L4
31 May 2020 221 140 L4 31 July 2020 215 132 L4
10 June 2020 219 132 L4 1 August 2020 221 132 L4
10 June 2020 219 140 L4 1 August 2020 221 140 L4
15 June 2020 218 132 L4 5 August 2020 214 140 L4
15 June 2020 218 140 L4 6 August 2020 220 132 L4
20 June 2020 217 132 L4 6 August 2020 220 140 L4
20 June 2020 217 140 L4 10 August 2020 213 132 L4
25 June 2020 216 132 L4 10 August 2020 213 140 L4
30 June 2020 215 132 L4 11 August 2020 219 132 L4
30 June 2020 215 140 L4 11 August 2020 219 140 L2
1 July 2020 221 132 L4 15 August 2020 212 132 L4
1 July 2020 221 140 L4 16 August 2020 218 132 L4
5 July 2020 214 140 L4 26 August 2020 216 132 L4
6 July 2020 220 132 L4 26 August 2020 216 140 L4
11 July 2020 219 132 L4 27 August 2020 222 132 L4
15 July 2020 212 140 L4 31 August 2020 215 132 L4
16 July 2020 218 132 L4 31 August 2020 215 140 L4
16 July 2020 218 140 L4

Figure 3. (a) Points and boxes; (b) points; and (c) boxes legend.

2.3. Object Detection Methods

The proposed approach compared Faster R-CNN [38], RetinaNet [39], ATSS [28],
VFNet [29], SABL [27], and PAA [30]. Those selected methods constituite the state of the art
in object detection in recent years. Besides, they encompass several types of object detection
methods, such as anchor-based, anchor-free, single-stage, and double-stage. Next we will
briefly describe each framework’s characteristics.

Faster R-CNN [38] is a two-stage CNN composed of a backbone and the Region
Proposes Network (RPN) that shares convolutional features with the detection network
and works as an attention mechanism module that generates candidate bounding boxes
(anchor boxes). In the RPN, the anchor boxes with multiple aspect ratios and scales are
generated and the detection network evaluates each anchor with the annotated bounding
boxes. The detection network is based on the Fast R-CNN, which receives the anchors and
feature map as input and returns the class and location of the bounding boxes. An anchor
is considered a positive detection (or positive sample) if the Intersection over Union (IoU)
is greater than a threshold value, typically 0.5. In summary, the IoU calculates the overlap
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degree between the anchor box and annotated bounding box. In this work, we build the
Feature Pyramid Networks (FPN) [40]on top of the ResNet50 network as the backbone.

RetinaNet [39] is a single-stage object detection method with two main blocks: The
FPN and Focal Loss. The FPN [40] is a state-of-art CNN that employs a pyramidal feature
hierarchy to obtain multi-scale features. The Focal Loss addresses the class imbalance
between positive (candidate boxes whose IoU is greater than a threshold) and negative
(candidates whose IoU is less than a threshold) samples caused by the overload of negative
bounding boxes since the ground-truth samples are the positive ones. In this work, we
build the FPN [40] on top of the ResNet50 network.

Zhang et al. [28] proposes the Adaptive Training Sample Selection (ATSS), which
selects a small set (top K) of positive and negative samples according to statistical character-
istics. Based on the ground truth’s center proximity, the k anchors are selected as positive
candidates according to the IoU value. We considered ATSS with ResNet50 and FPN [40]
as a backbone, and k = 9 anchor boxes are first selected as positive candidates.

Inspired by Lin et al. [39], Zhang et al. [29] proposed the VarifocalNet (VFNet) that com-
bines the Fully Convolutional One-stage object detection (FCOS) [41] +ATSS, a star-shaped
bounding box representation, and a new loss function named Varifocal loss. The Varifocal
loss reduces the contribution of negative samples with a dynamically adjustable scaling
factor and asymmetrically increases the contribution of positive samples (whose IoU value
is higher). The star-shaped bounding box feature representation uses nine fixed sam-
pling points to represent a bounding box as described in the deformable convolution [42].
Star-shape can capture bounding box geometry and nearby information, thus allowing to
refine initially generated coarse bounding boxes without losing efficiency. In this work,
we build the FPN [40] on top of the ResNet50 network with the same parameters of the
ATSS algorithm.

Also based on the ATSS, Kim et al. [30] proposes PAA with a new anchor assign-
ment strategy, extending some ideas such as selecting positive samples based on the
detection-specific likelihood [43], the statistics of anchor IoUs [28], or the cleanness score
of anchors [44,45]. The anchor assignment may consider a flexible number of positive (or
negative) not only based on IoU, but also how probable the assignment can argue by the
model, in other words, how meaningful the algorithm finds the anchor about the target
object (which may not be the highest IoU) to assign it as a positive sample. Thus, the model
defines a score that indicates both classification and localization qualities. The scores are
used to find the probabilistic distribution of positive and negative samples, then based on
positive ones, the anchor assignment turns to a maximum likelihood estimation problem,
where the parameters are the anchor scores. In this work, we build the FPN on top of the
ResNet50 network and use the PAA with the ATSS architecture.

SABL [27] proposes an original to bounding box precise location that is empirically
based on handmade annotation, where it is much easier to align each side of the object
boundary than moving the whole box while refining the size. The approach has a two-stage
detector. The first stage aggregates RoI (Region of Interest) features to produce side-aware
features. The second stage comprises a two-step bucketing scheme. The first step coarsely
estimates each boundary into buckets and then regresses to precise localization. The second
step, from the second stage, averages the confidence of estimated buckets, which could also
help to adjust the classification scores and further improve the performance. The SABL is
applied to single- or two-stage frameworks. In this work, we build the FPN on top of the
ResNet50 network with Cascade-RCNN (a two-stage network).

2.4. Experimental Setup

Patches with 256 × 256 pixels (14,000.80 × 14,000.80 m) were generated using the 49
CBERS 04A WFI images (Table 1). A total of 775 patches was used for training, validation,
and testing. The five folds proportions to the cross-validation process were also applied,
and more details are presented in Table 2. The Figure 4 presents a synthesized workflow of
the proposed method.
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Table 2. Description of the training, validation, and test sets of the active fire dataset.

Fold Test Train Validation

Patches Images Patches Images Patches Images

F1 79 (10%) 10 497 (64%) 28 199 (26%) 10
F2 82 (11%) 10 493 (64%) 28 200 (26%) 10
F3 187 (24%) 10 437 (56%) 28 151 (19%) 10
F4 182 (23%) 9 360 (46%) 29 233 (30%) 10
F5 245 (32%) 9 371 (48%) 29 159 (21%) 10

Figure 4. Workflow of the proposed method.

For the training process, we initialized the backbone of all object detection methods
with pre-trained weights from ImageNet (http://www.image-net.org/, accessed on 12
December 2021). The backbone used in all models was the ResNet-50. We applied a
Stochastic Gradient Descent optimizer with a momentum equal to 0.9 and batch size set
into 2. For this, we used the validation set to adjust the learning rate and number of epochs
to reduce the risk of overfitting. We empirically assessed learning rates (0.0001, 0.001,
and 0.01) and found that the convergence of the loss function is better for 0.001 and the
number of epochs equal to 6. During the test, we select the most confident predictions by
setting a threshold score to 0.5 and also apply the Non Max Suppression (NMS) method
(to reduce the number of highly overlapped detections) with an IoU threshold in 0.6.
In summary, considering the five folds for training, five bounding boxes sizes and six
methods, a total of 150 models were induced. The main results are presented in Section 3.

The proposed application was developed using the MMDetection framework [46] on
the Google Colaboratory platform (available online: https://colab.research.google.com/,
accessed on 12 December 2021). The training and testing procedures were conducted with
an Intel®a GPU NVIDIA Tesla P100 PCIe containing 80 CUDA (Compute United Device
Architecture) cores and 16 GB of graphics memory.

2.5. Method Assessment

Object detection methods are generally assessed based on the IoU between the bound-
ing boxes (predicted versus estimated). However, here, we assessed the results based on
the distance between the annotated points and the estimated points (center of the esti-
mated bounding boxes), as our focus is on the position of the active fire. We adopted a
threshold distance to estimate the True Positive (TP), False Positive (FP), and False Neg-
ative (FN) to estimate the Precision (Equation (1)), Recall (Equation (2)), and F1-Score
(Equation (3)) values. The center of predicted bounding boxes inside the coverage radius
from the ground-truth center (whose distance is lower than the threshold value) is con-
sidered TP, otherwise considered FP. It is worth noting that a predicted bounding box
can belong to many ground-truth boxes (TP) since its center is within a radius from the
ground-truth center. An FN is observed when the ground-truth bounding box does not
cover any predicted bounding boxes:

P = TP/(TP + FP) (1)

R = TP/(TP + FN) (2)

F1 = (2 × P × R)/(P + R). (3)

http://www.image-net.org/
https://colab.research.google.com/
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Figure 5 illustrates an example of considering a distance threshold equal to 20 pixels.
In this example, each ground truth annotation (represented as a red circle) whose center
distance to any predicted fire region (represented as a yellow circle) is below 20 is considered
as TP. Only three predicted fire regions that meet this criterion were found (one is located
at the top of the figure and two at the bottom). The distances of these three predicted fire
regions are illustrated as green lines (since each one is very close to the ground truth, they
are illustrated as green points). However, one predicted object is not close to any ground
truth (the lower yellow circle), which is considered FP. According to these TP, FP, and FN
values, we obtain a F1 score of 0.85. However, if we consider the traditional Hungarian
1-to-1 matching method [47] to find an exact matching between predictions and ground
truths, we can obtain the same number of TP and FP. However, a FN is obtained since
there are three ground truths located at the bottom of Figure 5 to be associated with only
two of the closest predictions. In this case, the Hungarian reduces the F1-Score to 0.75.
Considering our application, we can observe that the method identified all critical regions
in this image with smoke plumes. Even if the method found only two predictions (one
on top, the other on the bottom), the results are relevant for the application since these
predictions are close enough to each annotation. It is more interesting to have a more
flexible metric that gives good predictions close enough (according to a threshold distance)
to representative smoke active fires than a more elaborate method that can find an exact
match to each annotation.

Figure 5. Example of Precision and Recall estimation to a distance threshold equal to 20. There are
four predicted fire regions (represented as yellow circles) and four annotated fire regions (represented
as red circles).

3. Results and Discussion

Section 3.1 shows a quantitative analysis of the result, while Section 3.2 discusses the
qualitative ones. Finally, Section 3.3 reports the computational costs of the assessed methods.

3.1. Quantitative Analysis

Figure 6 presents the F1-Score (average) considering all folds (F1-F5) and bounding
boxes sizes (10 × 10 to 50 × 50 pixels) for three distance threshold values of 10 (550 m),
15 (825 m), and 20 pixels (1100 m). As expected, the F1 decreased considering 10 and
15 pixels compared to 20 pixels. In practical terms, this distance is acceptable because
it is possible to easily see the location of the fire in Pantanal due to its flat terrain that
can make it easier for firefighters to see the focus. Hence, the 20 pixels threshold was
adopted for analyses. VFNET presents the highest average F1-Score based on this global
result, achieving 0.81 when considering the threshold distance equal to 20 pixels (1100 m).
The ATSS has the lowest F1-Score values due to the lowest recall values (few TP bounding
boxes and many FN bounding boxes), while the remaining algorithms provided competitive
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results. According to these results, the increase of the distance threshold allows accepting
more distant predictions from ground-truth, which increases the number of true positives.
However, the average distance between the predicted and ground-truth bounding boxes
also increases. In this sense, Table 3 shows the distance of the predictions (those whose
score values are above 0.5) to the closest ground-truth bounding boxes (considering the
TP and FP predictions). This average result shows that the highest average distance,
around 14.5 pixels (797.5 m), achieved by the PAA method is inside the maximum allowed
distance (threshold equal to 20 pixels). The ATSS achieves the lowest distances (4.4 pixels).
The remaining methods show competitive results with distance values around 7.4 and
9.8 pixels. In summary, the VFNET achieves a good balance between precision and recall
and the closest distances near the mean distance values (8.87 pixels) among the methods.

Figure 6. The average F1-Score values for all algorithms for each distance threshold.

Table 3. Average distances (and its standard deviation —SD) values between the center of predicted
bounding boxes and its closest ground-truth bounding box center.

Methods Average Minimum Distances (±SD)

VFNET 8.39 (±17.76)
SABL Cascade RCNN 9.58 (±18.41)

PAA 15.02 (±22.97)
ATSS 5.04 (±14.02)

RetinaNet 7.82 (±16.28)
Faster RCNN 9.80 (±19.41)

Figure 7 shows the average F1-Score variation over each bounding box size evaluated,
and the colored circles represent a calculated value to each method to build the box plot.
It is possible to notice that the objects with squared bounding boxes with 10 × 10 pixels
produce the worst F1 values, which occurs due to the insufficient information about the
smoke plume inside these tiny squared bounding boxes to train the detection methods.
The best results are achieved with squared boxes of sizes 30 and 40 pixels with an average
F1-Score value around 0.80. The colored dots in each box plot represent the F1-Score values
of each algorithm. In this sense, the dots near the minimum value of each box represent
the ATSS, which achieve the lowest F1-Score values in all bounding boxes sizes. However,
even considering the results for the ATSS algorithm, it is possible to observe the increase of
the F1-Score from 10 to 30 pixels and that these values stabilize between 30 and 50 pixels.
According to these results, the best sizes of the squared bounding box are 30 and 40, which
achieved an F1-Score equal to 0.83 with the VFNET algorithm, considering the threshold
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distance equal to 20 pixels (Figure 8). When squared boxes are increased beyond 50 pixels,
the overlap between bounding boxes increases, and more irrelevant information around the
smoke plumes are considered in the training process, which may confuse the algorithms to
learn the objects of interest.
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Figure 7. Average F1-Score considering all distance thresholds (10, 15, and 20 pixels).
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Figure 8. Average F1-Score considering the distance threshold equal to 20 pixels.

3.2. Qualitative Analysis and Discussion

Another perspective is to evaluate results qualitatively. Therefore, we visually an-
alyzed the methods assertiveness for smoke plumes detection over different conditions,
as shown in Figure 9, such as small smoke plumes (small areas), round plumes not af-
fected by wind spreads (almost orthogonal dispersion), smoke plumes above thin clouds
coverage (may cause pixel response confusion), clouds with plume format, fine smoke
plumes, small dense clouds, and overlapped or mixed plumes from another smoke plume.
The visual perception among positive, false-positive, and non-identification results are
shown in this section and refers to 40 squared bounding boxes in fold 1, as provided the
most accurate result.

The positive results of all methods vary from easy detections, with clear smoke
boundaries and good background contrast (Figure 10), to difficult identifications with
mixed smoke and cloud coverage (Figure 11). Moreover, some methods performed very
complex detections as moderate cloud coverage, multiple plumes, or even some that may
cause doubt for human operators.
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Figure 9. Ground-truth examples of (a) small smoke plumes, (b) smoke almost perpendicular
dispersion, (c) smoke plumes above thin clouds, (d) cloud plume format (yellow rounds), (e) small
dense clouds (yellow rounds), and (f) overlapped or mixed plumes.

Figure 10. Easy detection with good background contrast and smoke boundaries (Ground-truth—red
rounds and prediction—green rounds).

In general, we observed that a FP higher frequency occurs from image cloud coverage
caused by format and density that may confuse the detection. It is possible to observe
(Figure 11) the predicted bounding circles (in red) and the annotated bounding circles (in
green) for each evaluated algorithm on fold 1. In this scenario, the presence of clouds, which
are visually similar to the smoke plume, confuses the algorithms SABL, Faster RCNN,
and PAA. The Retinanet, ATSS, and VFNET algorithms accurately detect the smoke plumes.
In the same way, cone-shaped or concentrated rounds clouds lead to object identification
errors. The lower false positive frequency was related to tiled clouds from patches and
terrestrial features with high albedo. The image tiles may cause cloud cut, creating cone-
shaped clouds, since one side of the cloud appears linear in the patch. The terrestrial
features had combined thin linear or smoke-shaped and high albedo, the similar spectral
response and shape of some smoke plumes (Figure 10b,f).

The higher number of non-identified smoke plumes were multiple small plumes
(Figure 12), being some of them cloud covered. In addition, a few non-identified smoke
plumes are related to bands misalignment, which leads to non-identification since the
image is not RBG entirely composed (Figure 13).
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Figure 11. Difficult detection with clouds coverage mixed with smoke (ground truth—red rounds
and prediction—green rounds).

Figure 12. Ground-truth (red rounds) and prediction (green rounds) of terrestrial features with high
albedo detected by PAA and SABL. Multiple plumes are also presented.

Figure 13. Band stripping misalignment. Ground truth (red rounds) and prediction (green rounds) of
false positive detection due to cloud format and density.

Visually, among the methods, VFNET presented fewer FP (Figure 14) that justify its
best quantitative results obtained. The PAA showed a high sensitive detection (Figure 14)
since the boxes selection was probabilistic based, which may raise the FP identification,
despite its good performance.
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Figure 14. Ground-truth (red rounds) and prediction (green rounds). Few false-positive detection of
VFNET and highly sensitive for PAA.

To interpret what the algorithms are learning, we apply the gradient-weighted class
activation mapping plus plus (Grad-CAM++) [48] to visualize important regions in the
last layer of the Resnet-50 of each algorithm. In Figure 15, the original image and the
class activation map (heatmap) for the SABL, Faster-RCNN, and PAA, respectively, are
presented. It is possible to note that the smoke plume has a high confidence score to be
an object of interest, highlighted in red. However, some clouds also have a significant
confidence score to be an object of interest. Considering the ATSS algorithm, the smoke
plumes also have a high confidence score compared with the remaining areas where the
clouds exist, but less intense than other algorithms (not so red). The RetinaNet and VFNET
reduce the importance of regions with clouds and highlight the smoke plumes with the
highest confidence score.

Figure 15. Original image and the Grad-CAM++ activation map (heatmap) for each method.

Despite those FP detections, it is relevant to emphasize that even human operators can
be confused in these identification samples. We noticed that the CNNs evaluated identified
some smoke plumes not annotated or not assuredly identified and not annotated.

The FP or non-identified smoke plumes probably are mainly caused by atmospheric
and weather effects since the imagery dataset has a wide range of cloud cover rates. It is
also important to mention that although such cloud covered optical images are usually
not of sufficient quality for traditional land use and land cover mapping initiatives, such
images are still important for early warning systems of fire events, such as presented herein.

In order to verify the generalization capability of the model, trained on images from
2020, we applied inference on images from 2021. Figure 16 shows the prediction results
from the best model configuration discussed in previous sections. We verified that the
model provided the detection of most active fires, showing good performance even with
images acquired in different years. It is important to highlight also the variability of the
proposed dataset that significantly contributed to this achievement.
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Figure 16. Predicted regions with active fire on six patches from images acquired in 2021.

To summarize, our results indicate that VFNET provided the highest F1-Score, fol-
lowed by RetinaNet, SABL, Faster R-CNN, and ATSS. Previous studies in remote sens-
ing [49,50] showed that ATSS provided more accurate results for pole and apple detection;
however, for active fire detection, ATSS provided less accurate results due to a small rate of
True Positives, indicating the inability of the trained model (considering the same number
of training epochs of the remaining algorithms) to identify active fire regions.

3.3. Comparison with BD Queimadas Database

In this section, we evaluate the effectiveness of the VFNET model (trained with images
from fold 1 with bounding box of size 40) on CBERS 4A WFI (31 August 2020) and compare
with BD Queimadas data (heat points from 31 August 2020). Figure 17 depicts CBERS 4A,
the predicted VFNet fire (yellow), and the BD Queimadas data (red).

Figure 17. CBERS 4A image subset (31 August 2020), the predicted VFNet fire, and the BD
Queimadas data.

Table 4 presents the results in terms of Precision, Recall, F1-Score, and average dis-
tances between the center of predicted bounding boxes and its closest ground-truth bound-
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ing box center. We can observe that the VFNET obtains a F1-Score value of 0.84, showing a
good trade-off between Precision and Recall. In addition, the centers of predicted bounding
boxes are very close to the ground truths, highlighting the potential of the VFNET method
to identify smoke plume fire activities.

Table 4. Average results considering 37 image patches of size 256 × 256 from CBERS 4A.

Metric µ (±SD)

Precision 0.83 (±0.29)
Recall 0.91 (±0.23)

F1-Score 0.84 (±0.25)
Average Minimum Distances 11.12 (±16.25)

Qualitatively, it is possible to notice that BD Queimadas data (Figure 17) detected a
higher number of smoke plumes than VFNet. However, the detection shows clustered
points and misses some fire detections. VFNet data predicted a minor number of plumes
but with a higher number of active fire assertiveness. So these results show that the
proposed approach can be useful as a complementary method to the thermal-based active
fire detection methods.

4. Conclusions

We proposed a deep learning-based approach based on points to detect active fires
on satellite images for the Brazilian Pantanal. Six methods were evaluated, including the
commonly used Faster R-CNN and RetinaNet, on the CBERS 4A WFI imagery. Since the
smoke plumes were hand-annotated with points, we evaluated the impact of the bounding
box size on the detection. Extensive experiments were conducted, generating a total of
150 models. We provided quantitative analysis and qualitative analysis for these models.

Our results indicate that the bounding box sizes of 30 or 40 pixels presented the
best performance. Finally, our findings show that VFNET provided the highest F1-
Score, followed by RetinaNet, SABL, and Faster R-CNN. The ATSS showed the worst
average performance.

The proposed deep learning-based method to detect smoke plumes (active fire) in
remote sense data presents promising results and could be a useful complementary ap-
proach to identifying smoke plumes to other research and wildfire databases such as BD
Queimadas (INPE) with higher spatial resolution, despite the five-day scan time-lapse. Fur-
thermore, developing new techniques and solutions, aggregated with the well-established
references, as BD Queimadas, can be important to improve the response in wildfire firefight-
ing, environmental protection, and forensics investigation. Further studies are expected
to employ this proposed method in other challenging ecosystems where the detection of
smoke plumes is still a required information in fire fighting and rescue initiatives.
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