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Abstract: Total suspended matter concentration (CTSM) is an important parameter in aquatic ecosystem
studies. Compared with multispectral satellite images, the Advanced Hyperspectral Imager (AHSI)
carried by the ZY1-02D satellite can capture finer spectral features, and the potential for CTSM retrieval
is enormous. In this study, we selected seven typical Chinese inland water bodies as the study areas,
and recalibrated and validated 11 empirical models and two semi-analytical models for CTSM retrieval
using the AHSI data. The results showed that the semi-analytical algorithm based on the 697 nm AHSI-
band achieved the highest retrieval accuracy (R2 = 0.88, average unbiased relative error = 34.43%).
This is because the remote sensing reflectance at 697 nm was strongly influenced by CTSM, and the
AHSI image spectra were in good agreement with the in-situ spectra. Although further validation is
still needed in highly turbid waters, this study shows that AHSI images from the ZY1-02D satellite
are well suited for CTSM retrieval in inland waters.

Keywords: total suspended matter concentration; hyperspectral imagery; ZY1-02D satellite; semi-
analytical algorithm

1. Introduction

More than 40% of the world’s population lives in coastal areas or along rivers and
lakes [1], while the water quality of numerous water bodies has deteriorated in recent
decades owing to intensified human activities. In particular, the widespread problem of
microplastics in water bodies poses a potential threat to the health of people [2]. Inland
waters are more fragile than marine ecosystems because of their more confined nature
and lower ecological stability [3]. Total suspended matter is a widely used water quality
parameter in aquatic environmental studies, which mainly refers to solids suspended in
water bodies, including inorganic substances that are insoluble in water, organic substances,
sediment, and microorganisms [4]. The presence of suspended matter alters the distribution
of light intensity in the water body, affecting the growth of aquatic vegetation and thus the
distribution of primary productivity and biomass in the water body [5].

Water quality monitoring based on in-situ measurements usually only represents the
status of stations. It is costly and difficult to provide continuous large-scale monitoring over
time. With the rapid development of remote sensing technology, large-scale and long time-
series remote sensing products are increasingly being used [6,7]. Satellite image-based CTSM
retrieval can effectively overcome the shortcomings of traditional methods and is being
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increasingly used for reflecting the water quality of the water body [8–10]. At present, the
main methods for estimating CTSM utilizing remote sensing products are empirical [7,11–14],
semi-analytical [15], and analytical [16]. Among them, empirical methods, with advantages
of simple steps and fast processing, are mainly based on linear regression of a single
band or a combination of bands [5,8,9,17,18]. However, the applicability of empirical
models varies widely across water bodies [19], and it is difficult to find a general empirical
model that can be applied to most water bodies. The semi-analytical method can avoid
the shortcomings of empirical models to a certain extent and has better applicability to
different water bodies. Nechad [15] developed a single-band semi-analytic CTSM retrieval
model based on a bio-optical model and provided calibration results for MODIS, MERIS,
and SeaWiFS sensors. This method was later successfully applied to Landsat8-OLI and
Sentinel2-MSI sensors [20] with good generalizability. The analytical method mainly
simulates the light field distribution of the water body based on the radiative transfer
model, and uses the relationship between the water color signal and the spectral properties
of the water body to estimate the content of each component of the corresponding water
body. The physical meaning of this process is clearer and more general in space and time,
but it is less commonly used in practical applications because the theoretical application
of absorption and scattering in different water bodies is still immature and the arithmetic
process is relatively more complicated [21].

The spatial, temporal, spectral, and radiometric resolutions of the satellite sensors
(Table 1) can affect their capabilities in water-color remote sensing [22]. Different types of
sensors have different limitations for estimating total suspended matter concentrations [19].
First, multispectral sensors with broadbands, such as Landsat8 OLI and Sentinel-2 MSI,
generally have relatively high spatial resolution, but with only a few numbers of bands.
Second, multi-spectral sensors with narrow widths, (e.g., Sentinel-3 OLCI and MERIS) can
capture the spectral characteristics of suspended matter more accurately. However, the
spatial resolution of this type of data is usually very low (300–1200 m), making it hard
to be applied to small- and medium-sized water bodies. In comparison, hyperspectral
data (e.g., GF-5 AHSI and ZY1-02D AHSI) have relatively spatial resolution (i.e., 30 m)
and abundant narrow bands, thereby serving as a suitable data source for total suspended
matter monitoring of inland waters [23,24].

China successfully launched the GF-5 satellite in May 2018. GF-5 carries the Advanced
Hyperspectral Imager (AHSI), which is capable of acquiring images with 5 nm and 10 nm
spectral resolution in the visible to near-infrared (VNIR) bands and short-wave infrared
(SWIR) bands, respectively. The number of bands was 330, and its spatial resolution
was 30 m, and the swath width was 60 km. Subsequently, the ZY1-02D satellite was
successfully launched in September 2019, carrying the new-generation AHSI, which has
the same spatial resolution and swath width as GF-5. However, to improve the signal-to-
noise ratio of the data, the spectral resolution in the VNIR and SWIR bands of ZY1-02D
AHSI was reduced to 10 nm and 20 nm [25], respectively. As a result, while maintaining
wide swath and coverage capability, the signal-to-noise ratio (SNR) of the ZY1-02D AHSI
sensor was improved compared with the GF-5 AHSI. The minimum SNR of the sensor
under typical operating conditions exceeds 120, allowing for uninterrupted long strip
imaging [26]. Therefore, ZY1-02D hyperspectral data have a high potential for application
in the quantitative information extraction of inland water bodies.

Table 1. Specifications of commonly used satellite-based hyperspectral sensors [27–29].

Sensor Spectral Range (nm) Spectral Bands Spectral Resolution (nm) Spatial Resolution (m) Swath Width (km)

Hyperion 357–2576 220 10 30 7.5
PROBA-CHRIS 415–1050 19/63 34/17 17/36 14

HICO 360–1080 128 5.7 90 192
PACE-OCI 342.5–887.5 - 5 1000 2663
HJ-1A HSI 450–950 115 5 100 50
GF5 AHSI 400–2500 330 5/10 30 60

ZY1-02D AHSI 400–2500 166 10/20 30 60
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The main purpose of this study is to test the capability of the ZY1-02D AHSI for total
suspended matter retrieval in inland waters, and thereby identify the optimal model that
can be applied to AHSI data of ZY1-02D. Section 2 describes the data and retrieval strategy,
Section 3 the data processing methods and alternative models, and Section 4 the calibration
and validation results of the selected model. An experimental discussion is presented in
Section 5 and conclusions are drawn in Section 6.

2. Materials
2.1. Rrs and CTSM Field Measurements

From May 2019 to July 2021, 9 field experiments were carried out in 7 inland lakes and
reservoirs of China. Details of the study areas and measurement information are given in
Table 2. Specifically, 7 field experiments conducted in 2019 include a total of 97 sets that
have CTSM of 2.6–49 mg/L. In-situ data of these 97 sampling sites were used as calibration
sets. Three field experiments conducted in 2020 and 2021 include 37 sampling sites in Taihu
Lake, Yuqiao Reservoir, and Qinghai Lake, with CTSM ranging from 1.9 to 53.5 mg/L. Field
measurements at these 37 sampling sites were used as validation sets.

Table 2. Study region, acquisition date, number of samplings (N), statistics of CTSM and Rrs.

No. Study Region Elevation (m) Acquisition Date N
CTSM (mg/L)

ZY1E Acquisition Date
Rrs(sr−1)

Mean Min. Max. Std (10−3)

1 Taihu Lake 4 1 May 2019 10 30.5 6.0 49.0 - 4.67
2 Baiyangdian Lake 5 21 May 2019 23 9.7 4.3 17.3 - 1.60
3 Guanting Reservoir 473 22 May 2019 18 10.9 5.5 33.0 - 2.07
4 Daheiting Reservoir 989 24 September 2019 10 5.7 3.7 7.5 - 0.63
5 Panjiakou Reservoir 172 24 September 2019 17 3.8 2.6 5.0 - 0.56
6 Yuqiao Reservoir 16 8 October 2019 19 18.3 7.3 29.0 - 6.42
7 Taihu Lake 4 6 September 2020 17 32.2 18.7 53.5 6 September 2020 2.90
8 Yuqiao Reservoir 16 8 November 2020 10 8.5 5.0 11.8 8 November 2020 1.49
9 Qinghai Lake 3260 27 July 2021 10 2.8 1.9 3.9 28 July 2021 1.41

As one of the five major freshwater lakes in China, Taihu Lake has a water area of
about 2338 km2. Nevertheless, it is a typical shallow lake, with an average water depth of
about 1.9 m [30]. Baiyangdian Lake is an important natural lake in northern China, and
located in the middle of the Daqing River Basin. It has a water area of about 366 km2 and
an average depth of about 3.6 m. Qinghai Lake, the largest inland lake in China, is located
in the northeastern part of the Tibetan Plateau, with an area of approximately 4553 km2.
Yuqiao Reservoir, also known as Cuiping Lake, is 15 km long from east to west and 5 km
wide from north to south, with a total watershed area of approximately 2060 km2 with a
water depth of approximately 4.7 m [31]. Other reservoirs can be found in northern China,
with water surface areas ranging from tens to hundreds of square kilometers, and their
water quality is generally good. The locations and sample points of the 3 study areas which
have AHSI concurrent images are shown in Figure 1.

The main indicators collected were CTSM and in-situ spectra. CTSM was measured by
the drying and weighing method. After obtaining surface water samples in the field, the
samples were brought back to the laboratory within 24 h. In the laboratory, water samples
were filtered using a 0.45 µm pore size filter membrane and dried to a constant mass at
103–105 ◦C. Repeated drying, cooling, and weighing was done until the difference between
two weighing results was less than or equal to 0.4 mg/L [32]. The sampling time and
the statistical information of CTSM are shown in Table 2. While collecting water samples,
in-situ spectra were collected using an ASD Field Spec Pro spectrometer according to the
above-water method [33].
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Figure 1. Study areas that have AHSI concurrent images and their sampling point distribution:
(a) Taihu Lake, (b) Yuqiao Reservoir, and (c) Qinghai Lake.

Remote sensing reflectance spectra were calculated by measuring the reference plate
radiance (Lp(λ)), sky radiance (Lskyλ), and water surface radiance (Luλ). For Luλ measure-
ments, the viewing zenith angle was 40◦ downward, and the azimuth angle was 135◦ away
from the sun azimuth. The viewing zenith angle was 40◦ upward for Lskyλ measurements,
and the azimuth angle was the same as for Luλ measurements. The reference plate radiance
was measured by aiming at the center of the reference plate vertically downward. For the
water surface radiance measurements at each sampling site, we performed 10 replicate
measurements and checked the results. Anomalous spectra caused by random solar flares
may be present in the measured result. These anomalous results were discarded, and the
remaining spectra were averaged.

The above-water remote sensing reflectance was calculated by the following equation:

Rrs =
Lu(λ)− ρsky(λ)Lsky(λ)

πLp(λ)/ρp(λ)
, (1)

where ρp is the standard panel reflectance calibrated in the laboratory and the ρsky is the
air–water interface skylight reflectance.

As shown in Table 2, a total of 134 sets of data were obtained, including Rrs and CTSM.
Among them, 97 of the sampling points with earlier sampling times had no concurrent
images, and they only had the in-situ measured Rrs and CTSM. So, they were used for
the original calibration of the CTSM estimation model. The in-situ measured Rrs of these
sampling points are shown in Figure 2.

Figure 2. In-situ measured Rrs spectra of the calibration datasets.
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In addition to this, there are 37 sampling points which have AHSI concurrent images
and their locations are shown in Figure 1. The in-situ Rrs and CTSM of these points were
used to validate the calibrated model. In-situ measured Rrs for these sampling points are
shown in Figure 3.

Figure 3. In-situ measured Rrs spectra of the validation datasets.

2.2. Concurrent ZY1-02D Image Acquisition

The ZY1-02D satellite AHSI images were selected based on the field measurement time
±1 d, and stable meteorological conditions. Specifically, all in-situ measurements of Taihu
Lake and Yuqiao Reservoir were measured within 3 h of the ZY1-02D satellite overpasses.
Images of Qinghai Lake were acquired 1 day after the in-situ measurements. Since Qinghai
Lake is a deep lake (average water depth of 21 m), and the meteorological condition is stable
during the in-situ measurements and satellite image acquisition, the CTSM is relatively
stable in this study region. Therefore, the in-situ measurements in Qinghai Lake are counted
as match-ups despite the 1-day difference between them. All images were acquired around
11:00 a.m. local time with less than 10% cloud coverage. To match the image Rrs with in-situ
Rrs, a 3 × 3 pixel window centered at the posistion of the sampling points was used. If the
coefficient of variation (i.e., standard deviation/mean) was less than 0.40 in the window,
the central pixel of the 3 × 3 pixel window was selected as a match-up [34].

AHSI concurrent images Rrs of 37 validation points in Taihu Lake, Yuqiao Reservoir
and Qinghai Lake were used to verify the accuracy of AHSI image retrieval CTSM.

3. Methods
3.1. AHSI Band Rrs Simulations

For hyperspectral sensors with narrow band widths, the spectral response function
(SRF) in each band is usually described using the Gaussian function [35,36] as follows:

fi(λ) = exp

[
−4ln2

(
λ− λi

∆λi

)2
]

(2)

where λi is the central wavelength of each band, ∆λi is the FWHM of each band. For AHSI
sensors, VNIR and SWIR have FWHMs of 8.76 and 16.26 nm, respectively. Based on SRF,
the in-situ Rrs can be converted to AHSI band-equivalent Rrs using the following equation:

Rm
rs(Bi) =

∫ λmax
λmin

Rm
rs(λ) fi(λ)dλ∫ λmax

λmin
fi(λ)dλ

(3)

where fi(λ) is the SRF of ith band, λmax and λmin represent the maximum and minimum
wavelengths in this band, respectively. According to Equation (3), the conversion of in-situ
Rrs to AHSI-band Rrs can be achieved.
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3.2. CTSM Model Development Using the In-Situ Dataset

Two methods are usually used to estimate CTSM using remote sensing reflectance:
1. The relationship between Rrs and CTSM, which is an empirical algorithm. They are
classified into single-band and multi-band algorithms; 2. The backscatter coefficient (bbp)
can be estimated by remote sensing reflectance, and then the relationship between bbp and
CTSM can be established, which is a semi-analytical method. The typical models of the
different algorithms are presented below.

3.2.1. Empirical Algorithm

• Single-band empirical models

As the CTSM in water increased, the reflectance of the water in the VNIR band also
increased gradually. The reflection peaks of the spectra of water with different CTSM
appeared at 580–700 nm. Among the related studies, red-band retrieval has been the most
frequently used [7–9]. However, when the CTSM is excessively high, the reflectance of the
visible region tends to saturate [37]. To avoid this phenomenon, there are models that
change the retrieval wavelength to the NIR band [14,17].

• Multi-band empirical models

With increasing CTSM in water, the wavelength of the reflection peak shifts towards the
long-wave direction. Therefore, the band-ratio model can be established using the reflection
peak of the red-NIR bands and the low reflectance of the blue-green bands. Because of
the strong absorption at 940 nm and 1130 nm, the choice of reflection peak wavelength is
mostly <850 nm, such as in Doxaran_02 [37], He_13 [13], and Hou_17 [38].

By constructing spectral feature parameters, the absorption and reflection characteris-
tics of the spectral profile can be effectively highlighted for accurate CTSM retrieval. Spectral
characteristic parameters are available in various forms. One of the typical combinations
is the spectral absorption characteristics obtained by the spectral absorption index or the
spectral envelope method, also known as the baseline model, such as in Kuster_16 [39] and
Liu_18 [40]. In addition, the three-band model (Zhang_10 [10]) and the normalized model
(Zhang_10_1 [41]) have also been developed and are applicable for different water bodies.

All the empirical models and their utilized bands or spectral indices are listed in
Table 3.

Table 3. Wavelength or spectral combinations used in empirical methods.

Model Type Model Name Band or Spectral Index Source

Single-band model
Zhang_09 Rrs(774) [17]
Petus_10 Rrs(645) [9]
Zhang_14 Rrs(705) [14]

Multi-bands models

Doxaran_02 Rrs(816)/Rrs(551) [37]
He_13 Rrs(748)/Rrs(490) [13]

Hou_17 Rrs(645)/Rrs(551) [38]

Kuster_16_1 Rmax(700− 720)− [Rrs(645) + Rrs(774)]/2 [39]
Kuster_16_2 Rrs(810)− [Rrs(774) + Rrs(842)]/2 [39]

Liu_18
SAI = d×Rrs(490)+(1−d)×Rrs(745)

Rrs(551) ,

d = 551−490
745−490

[40]

Zhang_10 X1 = Rrs(560) + Rrs(645); X2 = Rrs(490)/Rrs(560) [10]
Zhang_10_1 Rrs(490)−Rrs(645)

Rrs(551)+Rrs(551)
[41]

3.2.2. Semi-Analytical Algorithm

The backscattering coefficient (bbp) at specific wavelengths is closely linked to CTSM [15].
At present, the bbp of water bodies is mostly estimated based on semi-analytical methods,
which are more stable than empirical models owing to the incorporation of physical-optical
principles [42]. Therefore, the method of estimating CTSM based on bbp has higher stability
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and applicability. In this study, we consider 2 types of semi-analytic algorithms: QAA-
based and Nechad CTSM retrieval methods. They were applied to the ZY1-02D AHSI data,
and the accuracies were evaluated.

• QAA-based CTSM retrieval method

There are two main steps in this method: 1. Calculate bbp using the QAA; and 2. build
an empirical model between bbp and CTSM.

In this study, we calculated bbp using two original QAA models (QAA_V5 and
QAA_V6) and three improved models (Le_09 [43], Mishra_14 [44], and Jiang_21 [45]).
Among them, the reference wavelength of QAA_V5 is 555 nm [46], whereas the reference
wavelength of QAA_V6 is shifted to 670 nm to adapt to highly turbid or eutrophic wa-
ters [47]. The steps involved in the two types of QAA methods are listed in Table 4. In
addition, other scholars have modified the QAA model to adapt to inland water bodies
with complex optical properties, such as adjusting the empirical formula [43,44,48] and
developing a new semi-analytical algorithm to replace the original empirical algorithm
part [49].

Table 4. Steps of the two original types of quasi-analytical algorithm (QAA) method.

Step Property QAA_V5 (λ0 = 555) QAA_V6 (λ0 = 670)

1 rrs(λ) rrs(λ) = Rrs(λ)/(0.52 + 1.7Rrs(λ))

2 u(λ) u(λ) = −0.089+
√

0.0892+4×0.125rrs (λ)
2∗0.125

3 a(λ0)
a(λ0) = aω(λ0) + 10−1.146−1.366χ−0.469χ2

χ = log

(
rrs (443)+rrs (490)

rrs(λ0)+5 rrs (667)
rrs (490) rrs (667)

) IfRrs(λ) < 0.0015sr−1: Same as QAA_V5.

Else a(λ0) = aω(λ0) + 0.39
(

Rrs (670)
Rrs (443)+Rrs (490)

)1.14

4 bbp(λ0) bbp(λ0) =
u(λ0)×a(λ0)

1−u(λ0)
− bbw(670)

5 η η = 2.0
(

1− 1.2exp
(
−0.9 rrs (443)

rrs (555)

))
6 bbp(λ) bbp(λ) = bbp(λ0)

(
λ0
λ

)η

In Table 4, rrs(λ) is the remote sensing reflectance below the water surface, a(λ) is the
total absorption coefficient, and bbw(λ) is the backward scattering coefficient of pure water.
The major difference between QAA_V5 and QAA_V6 is that a(λ) is calculated differently.
The bbp(λ) calculated by the algorithm was then linked to the CTSM.

Linear models were used to retrieve the CTSM because of the linear relationship
between bbp and CTSM:

CTSM = a∗bbp + b, (4)

where a and b are the coefficients of the linear model obtained by calibrating the calibration
dataset.

Because the Jiang_21 model was obtained from a calibration dataset with a wider CTSM
range [45], the origin linear model was used directly in this study and was not recalibrated.

• Nechad retrieval method

Nechad_10 retrieval model is a simplified model based on reflectance, which links
single-band reflectance to TSM concentration. It has been successfully applied to water-
color satellite sensors such as SeaWiFS and MODIS [15], its main formulas are as follows:

CTSM =
πAρ(λ)Rrs(λ)

1− πRrs(λ)/Cρ(λ)
+ Bρ(λ), (5)

Aρ = A/γ (6)

Cρ = γC/(1 + C) (7)

γ = πR f ′/Q ≈ 0.216, (8)

where A = anp/b∗bp, anp represents the non-particulate absorption and b∗bp represents the
constant TSM-specific particulate backscatter. Aρ and Bρ were obtained by nonlinear fitting
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and reparametrized based on the calibration dataset used in this study. C = b∗bp/a∗p, a∗p
represents the constant TSM-specific particulate absorption coefficient, which is determined
by the IOPs and is independent of Rrs. therefore, the Nechad rated Cρ values were used
directly [15].

3.2.3. Calibration and Validation

First, the parameters of the empirical and semi-analytical models were calibrated based
on the in-situ Rrs and in-situ CTSM from 97 calibration datasets. Second, the calibrated
models were validated using in-situ Rrs and in-situ CTSM from 37 validation datasets.
Three indicators, i.e., the coefficient of determination (R2), root mean square error (RMSE),
and average unbiased relative error (AURE), were used for accuracy analysis and were
calculated as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (9)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, and (10)

AURE =
1
n
×

n

∑
i=1

|yi − ŷi|
0.5 ∗ (yi + ŷi)

× 100%, (11)

where n is the number of samples, ŷi is the model estimated value, yi is the in-situ measure-
ment value, and y is the mean value of the in-situ measurements.

3.3. CTSM Retrieval Based on AHSI Images

After testing the empirical and semi-analytical models based on in-situ data, to retrieve
the CTSM from AHSI images, we first performed atmospheric correction of the images and
extracted the water region. Then, the best empirical and semi-analytical models were
applied to the AHSI images, and finally the accuracy evaluation of the image retrieval
results was achieved by the in-situ measured CTSM.

3.3.1. AHSI Image Preprocessing

Pre-processing of the AHSI images is a prerequisite for estimating the total suspended
matter concentration, including atmospheric correction and water body extent extraction.
First, the Digital Number (DN) values were converted into apparent radiances using
radiometric calibration coefficients. Second, atmospheric correction was performed using
the FLAASH atmospheric correction tool. In the FLAASH module, most of the parameters
were set according to the official documentation [50]. For the ZY1-02D hyperspectral data,
the sensor altitude was set to 778 km, and we chose the 940 nm water vapor retrieval band.

Using the ZY1-02D surface reflectance (ρ) images retrieved from FLAASH, the auto-
mated water extraction index (AWEI) was calculated as follows [51]:

AWEInsh = 4 ∗ ρ559 − ρ1610

0.25 ∗ ρ842 + 2.75 ∗ ρ2183
. (12)

The delineation of water bodies was then achieved using the OTSU method [52]
based on the AWEI. To correct the skylight effect and retrieve remote sensing reflectance
from surface reflectance images, an image-based method for remote sensing reflectance
estimation [53] was applied as follows:

Rrs(λ) =
ρ(λ)−min(ρNIR : ρSWIR)

π
, (13)

where Rrs(λ) represents the remote sensing reflectance of the image; ρ(λ) represents the
surface reflectance; and min(ρNIR : ρSWIR) represents the minimum surface reflectance in
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the NIR and SWIR bands, respectively, where ρNIR and ρSWIR use the mean ρ in the AHSI
bands of 720–730 nm and 1530–1630 nm, respectively.

3.3.2. AHSI-Retrieved CTSM Accuracy Assessment

After the consistency check between AHSI image Rrs and in-situ Rrs, the models were
validated using the AHSI image-derived Rrs from the validation dataset. Then, models
with high accuracy were applied to AHSI images. It should be noted that in-situ Rrs was
converted to band-equivalent Rrs in the AHSI bands by the method in Section 3.1.

For the accuracy analysis of the satellite-ground spectral consistency, the spectral angle
cosine was calculated as follows:

cosα =
∑n

i=1 yi
jŷ

i
j√

∑n
i=1

(
yi

j

)2
∑n

i=1

(
ŷi

j

)2
, (14)

where n is the number of samples and yi
j and ŷi

j are the in-situ Rrs and AHSI image Rrs of
samples i and band j, respectively.

Based on the pre-processed AHSI images, CTSM was retrieved using the best empirical
and semi-analytical method and 37 matched points were used to evaluate the accuracy of
the image retrieval CTSM using R2, RMSE, and AURE.

4. Results
4.1. Accuracy Assessment of ZY1-02D Image Atmospheric Correction

The accuracy of the image-derived remote sensing reflectance affected the accuracy of
the estimated CTSM. Therefore, the accuracy evaluation of ZY1-02D image-derived Rrs was
conducted for the main bands utilized in the CTSM retrieval models using R2 and AURE.
The results are shown in Table 5.

Table 5. Accuracy analysis of the ZY1-02D image-derived Rrs.

ZY1-02D Bands (nm) Rrs(490) Rrs(551) Rrs(560) Rrs(645) Rrs(697) Rrs(748) Rrs(774) Rrs(800) Rrs(816) Rrs(842)

R2 0.68 0.87 0.88 0.95 0.96 0.52 0.53 0.73 0.71 0.29
AURE (%) 32.60 18.84 18.99 36.35 30.17 109.21 113.05 77.29 81.21 134.37

Among the major bands utilized by the models, 551 nm had the lowest AURE of
18.84%, which was the band with the highest agreement between image remote sensing
reflectance and in-situ remote sensing reflectance. As can be seen from Figures 2 and 3, the
energies of 551 and 560 nm were higher than that of other wavelengths; therefore, they were
relatively less affected by noise. Similarly, the red bands of 645–700 nm were also relatively
high in energy and received relatively little noise impact, with AUREs of approximately
30%. It is known from the remote sensing principle that the shorter the wavelength, the
weaker the penetration ability, while the atmosphere has a strong scattering effect in the blue
band. Therefore, the consistency of the 490 nm satellite spectrum was poor compared with
the red and green bands; however, the AURE was still controlled at 32.60%. The NIR band
after 750 nm was lower in energy, and there was only a very small reflection peak at 800 nm,
which was more affected by noise; therefore, its relative error was also relatively high.

Subsequently, the spectral angle cosine was calculated separately for the satellite-
ground spectra of each study area to determine the spectral consistency in different study
areas, as shown in Table 6.
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Table 6. Spectral angle cosine of validation datasets. SD—standard deviation.

Study Area
Spectral Angle Cosine

Mean Min. Max. SD

Taihu Lake 0.991 0.949 0.998 0.013
Yuqiao Reservoir 0.993 0.988 0.998 0.003

Qinghai Lake 0.909 0.838 0.955 0.038

The mean values of the spectral angle cosine in all three regions were >0.9, indicating
that the AHSI image spectra were in good agreement with the in-situ spectra.

4.2. CTSM Estimation from In-Situ Measurements by Empirical Models

First, we tested 11 empirical models, which were divided into two categories: Single-
band and multi-bands models. Among the empirical models, the selected bands for each
model were adapted according to the AHSI bands. For the model calibration, we compared
the model equation of the original literature, and four types of fitting functions: linear,
exponential, logarithmic, and power functions. The model with the highest R2 was chosen
as the best fitting model. In addition, the fitting function should be monotonous to avoid
estimation anomalies. The calibration and validation results of the models are presented in
Table 7 and Figure 4.

Table 7. Calibration and validation results of empirical models based on in-situ Rrs. Optimal results
in each type of model are shown in bold.

Model Name
Calibration Dataset Validation Dataset

Calibrated Model R2 R2 RMSE AURE (%)

Zhang_09 1056.1x0.71 0.85 0.93 4.36 21.48
Petus_10 1405.8x + 1.41 0.69 0.91 4.48 23.32
Zhang_14 523.7x0.71 0.86 0.92 5.29 21.68

Doxaran_02 e6.76x+1.19 0.52 0.56 11.38 48.22
He_13 51.98x + 0.47 0.52 0.42 12.84 68.76

Hou_17 1.50e3.1x 0.29 0.49 13.25 52.60

Kuster_16_1 3973.4x + 3.94 0.80 0.85 6.62 26.98
Kuster_16_2 10453x + 5.03 0.83 0.92 4.41 28.45

Liu_18 103.89∗x1+0.072 0.74 0.03 19.81 75.90

Zhang_10 101.16+17.33∗x1−0.97∗x2 0.44 0.89 4.96 19.08
Zhang_10_1 100.0156x3−1.17x+0.97 0.43 0.34 15.32 70.57

In the empirical models, the calibration of the single-band model based on the NIR
band after 700 nm was generally good, with R2 > 0.85. Among the multi-band models,
the baseline model was generally better; the Kuster_16_2 model (R2 = 0.83) was the best
calibrated multiband model. The results of the other multiband models were generally lower.

From the validation results, the Zhang_10 ratio model had the best validation results,
with the lowest AURE of 19.08%. The single-band model was also generally good, with a
validation AURE of approximately 20%. Among the multi-band models, Kuster_16 showed
better results on the validation set, with AURE < 30%, whereas the validation results of the
Liu_18 model were poor and not applicable to the estimation of CTSM in inland waters. The
ratio model still performed poorly in the validation set. Determining the optimal empirical
model applicable to AHSI images requires further validation.
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Figure 4. Retrieved CTSM from the in-situ Rrs of 37 validation data, based on the optimal model
among 4 types of empirical models: (a) Zhang_09, (b) Doxaran_02, (c) Kuster_16_1, and (d) Zhang_10.

4.3. CTSM Estimation from In-Situ Measurements by Semi-Analytical Models

bbp values were calculated using QAA and its improved models for indirect estimation
of the total suspended matter concentration. The Jiang_21 model established the relation-
ship between the bbp and CTSM over a wider range of CTSM. Therefore, the parameters
were not re-rated. Other models re-rated the relationship between bbp and CTSM based on
calibrated datasets to enable the estimation of CTSM. The Nechad_10 model showed the best
calibration results at 697 nm with parameters Aρ and Bρ: 934.09 (g/m3) and 4.39 (g/m3),
respectively. CTSM was then retrieved based on image-derived Rrs using various semi-
analytical models. The calibration and validation results of CTSM estimated on the ZY1-02D
match-ups are shown in Table 8 and Figure 5.

In the QAA-based CTSM retrieval method, even though the Le_09 and Mishra_14
models achieved the highest R2 in the calibration dataset, QAA_v5 achieved the optimal
performance in the validation dataset. This was mainly due to the utilization of the 551 nm
band, for which the image-derived Rrs was reasonably accurate.

The accuracy of the Nechad_10 model gradually improved as the wavelength shifted
toward the long wave direction, and the highest validation accuracy was achieved at
697 nm. Generally, the difference in the CTSM estimation accuracy between the two types of
semi-analytical models was insignificant.
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Table 8. Calibration and validation results of semi-analytical models based on in-situ Rrs. Optimal
results are shown in bold.

Model Name. Calibrated TSM Model Calibration Dataset R2 Validation Dataset
R2 RMSE AURE (%)

QAA_V5 145.83 ∗ bbp(551) + 1.44 0.68 0.92 4.76 25.96
QAA_V6 116.92 ∗ bbp(662) + 2.83 0.71 0.92 6.55 33.00

Le_09 97.4 ∗ bbp(714) + 3.08 0.85 0.87 7.00 32.84
Mishra_14 76.323 ∗ bbp(705) + 2.89 0.85 0.88 7.24 35.44

Jiang_21
i f Rrs(490) > Rrs(560) :

94.607 ∗ bbp(705)
else : 114.012 ∗ bbp(665)

0.82 0.87 8.45 59.38

Nechad_10 934.09Rrs(697)
1−Rrs(697)/0.05911 + 4.39 0.77 0.94 4.22 28.92

Figure 5. Retrieved CTSM from the in-situ Rrs of 37 validation data, based on the optimal model of
the two semi-analytical models: (a) QAA_V5 and (b) Nechad_10.

4.4. CTSM Estimation from AHSI Images

To investigate the applicability of different models to satellite images, optimal single-
band and multi-band empirical models, the QAA_V5 based model, and Nechad_10 (697 nm)
model were applied to the image-derived Rrs of match-ups, and the validation accuracy
results are shown in Table 9. The best results are shown in Figure 6.

Table 9. Validation results of the best CTSM retrieval models based on the AHSI images Rrs. Optimal
results are shown in bold.

Model Name R2 RMSE AURE (%)

Zhang_09 0.61 10.16 58.39
Kuster_16_2 0.87 6.34 39.27

Zhang_10 0.87 7.40 37.84
QAA_V5 0.87 6.31 40.34

Nechad_10(697) 0.88 6.66 34.43

Based on the Nechad_10 (697 nm) model, the total suspended matter concentration
distributions were produced for the three study areas (Figure 7). The overall trend of
CTSM in Taihu Lake decreased from northwest to southeast, while most rivers entering the
lake are located along the northwestern coast of Taihu Lake. The confluence of the rivers
increases the movement of the lake, resulting in higher CTSM at the northwest of Taihu Lake,
while the central and eastern parts are less affected by this trend [41]. The CTSM in Yuqiao
Reservoir did not vary considerably, with low CTSM values in the center of the reservoir and
high CTSM values along the northern coast due to human activities [31]. The highest CTSM
existed in the eastern part of the reservoir, where the Lin River entered the lake, reaching
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>13 mg/L. Due to the limited coverage of the AHSI image, only the CTSM in the central
region of Qinghai Lake was estimated. The overall CTSM in Qinghai Lake was very low,
mostly approximately 3 mg/L. The suspended matter concentration was low in the middle
of the lake, and showed an increasing trend from the center of the lake to the lake shore.

Figure 6. Retrieved CTSM from the AHSI image Rrs of 37 validation samples, based on the
Nechad_10(697) model.

Figure 7. CTSM images retrieved from ZY1-02D AHSI images in three study areas: (a) Taihu Lake,
(b) Yuqiao Reservoir, and (c) Qinghai Lake.

5. Discussion
5.1. Evaluation of CTSM Estimation Methods for AHSI Images

Based on calibration and validation results (Table 9), the final model chosen in this
study was the Nechad_10(697) model, which achieved the highest accuracy among all the
Nechad_10 models with different bands. As revealed by the in-situ CTSM estimation results
in Table 8, the AURE brought by the Nechad_10(697) is 28.92% (Figure 5b). Considering the
uncertainties in AHSI image-derived Rrs, we compared the image-derived CTSM with that
estimated based on in-situ Rrs. The corresponding results are shown in Figure 8, which
suggests the error brought by the image-derived Rrs uncertainty is 13.64%.
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Figure 8. Comparison of CTSM validation results from in-situ Rrs retrieval and AHSI Rrs retrieval
based on the Nechad_10(697) model.

In addition, Figure 5b demonstrates the accuracy of CTSM retrieval based on in-situ
measure Rrs. Most of the validation points are distributed along the 1:1 line. Bρ in the
Nechad_10(697) model is represented as the intercept of the fitting line, as CTSM is equal to
Bρ when Rrs is zero. Therefore, the retrieved CTSM is more sensitive to the parameter Bρ

when the CTSM is low. This results in the Nechad_10(697) model overestimating the CTSM
for Qinghai Lake as its CTSM is generally lower than Bρ, but a good retrieval for Yuqiao
Reservoir and Taihu Lake. Therefore, the Nechad_10(697) model may bring relatively large
errors for CTSM retrieval in clear water bodies.

The CTSM retrieval results of AHSI images showed an overall underestimation in the
Taihu Lake region. According to the studies of Doxaran et al. [37] and Petus et al. [9],
spectral saturation is more likely to occur when using wavelengths less than 600 nm to
estimate CTSM in regions with greater than 100 mg/L. However, the wavelengths and
CTSM chosen in this manuscript are not in this range. The high accuracy of image remote
sensing reflectance is a prerequisite for accurate estimation of CTSM. In the experiment, the
AURE between the in-situ Rrs and the AHSI image Rrs at 697 nm reached 29.17% (Figure 9).
When these two types of data were applied to TSM concentration estimation, it caused
a 13.64% difference in the AURE of the CTSM retrieval results. Based on the scatterplot
of the spectrum at 697 nm, the underestimation is more likely due to the AHSI image’s
uncertainties in atmospheric correction.

Figure 9. In-situ spectra compared to AHSI image spectra in the 697 nm band.

Overall, the Nechad_10 (697 nm) model provided the best prediction for AHSI images
in the validation of Taihu Lake, Yuqiao Reservoir, and Qinghai Lake. However, during the
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model calibration and validation, most sampling sites had a CTSM of less than 50 mg/L.
Thus, the calibrated model parameters may not be applicable in regions with higher CTSM.
Although these sampling sites were located in lakes and reservoirs of varying sizes in China,
the representativeness of the sampling areas is still limited. For example, the salt lakes in
the Qinghai-Tibet Plateau or the lakes in the Mongolian Plateau were not included [54].
Studies have shown that saline lakes tend to have a higher CTSM than freshwater lakes [55].
Saline lakes have longer water exchange times, and their absorption characteristics may be
significantly altered in the process of microbial degradation. Therefore, retrieval models
based on freshwater lakes may not be applicable in these areas. To sum up, when applying
AHSI images to retrieve CTSM, the Nechad model may be unable to achieve optimal
performance in all inland waterbodies. More in-situ measurements are needed for further
development of the CTSM retrieval model to be applied on ZY1-02D AHSI images.

5.2. Comparison of CTSM Retrieval with Multispectral Sensors

To verify that AHSI has advantages for CTSM retrieval compared with multispectral
sensors, a comparison was made with estimated CTSM based on band Rrs of Landsat-8
OLI, Sentinel-2 MSI, and Sentinel-3 OLCI. Since no images of Landsat-8, Sentinel-2, or
Sentinel-3 were acquired for the study areas on the same date of the ZY1-02D overpasses,
this comparison was conducted using in-situ measured Rrs.

First, band Rrs of the Landsat-8 OLI, Sentinel-2 MSI, and Sentinel-3 OLCI were simu-
lated using their respective SRFs and the in-situ measured Rrs. Second, parameters in the
optimal empirical and semi-analytical models (i.e., the Zhang_09 model and the Nechad_10
model) were recalibrated based on the calibration dataset of the simulated band Rrs. The
same as in Sections 4.2 and 4.3, the 97 and 37 datasets were used for model calibration
and validation, respectively. Third, simulated bands of Rrs of the 37 datasets were then
respectively applied to Zhang_09 and Nechad_10 models for CTSM estimation. Finally,
accuracy analysis was conducted for estimated CTSM using the simulated band Rrs of these
multispectral sensors, and then compared with the AHSI results in Tables 7 and 8.

In terms of the Zhang_09 model, Sentinel-2 MSI acquired the best performance among
the three multispectral sensors. Specifically, the 783 nm band of MSI was used and achieved
an AURE of 21.58%, which is slightly higher than the AURE of AHSI (21.48%). For
the Nechad_10 models established on band Rrs of the multispectral sensors, the highest
validation accuracy was also obtained by Sentinel-2 MSI with an AURE of 31.17%, which is
also greater than that of AHSI (28.92%). This indicates that the AHSI’s narrow bands can
help to improve the accuracy of CTSM retrieval models.

6. Conclusions

The new-generation hyperspectral imaging spectrometer AHSI onboard the ZY1-02D
satellite has continuous narrow spectral bands of 400–2500 nm, and can capture fine spectral
features, thereby showing great potential for inland water CTSM retrieval. In this study,
we recalibrated 13 widely used empirical and semi-analytical CTSM retrieval models using
in-situ AHSI equivalent spectra of six typical inland water bodies in China. Validations
based on in-situ spectra showed that the Zhang_10 model in the empirical model achieved
the lowest AURE, (i.e., 19.08%). Two semi-analytical models established with the green
and red bands, the QAA_V5-based model and the Nechad_10(697) model, had similar
accuracy with AUREs of 25.96% and 28.92%, respectively. In terms of the validation based
on the AHSI image-derived Rrs of 36 match-ups, Nechad_10(697) achieved the best retrieval
accuracy (AURE of 34.43%). This is owing to the robustness of the model, as well as the
highly accurate AHSI band Rrs at 697 nm.

Overall, the spectral and spatial resolution of ZY1-02D AHSI images makes it a useful
data source for CTSM retrieval of inland water bodies. With the advancement of atmospheric
correction accuracy and model optimization based on a larger range of in-situ data, the
accuracy of CTSM retrieval based on ZY1-02D AHSI images will be further improved.
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