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Abstract: The majority of existing deep learning pan-sharpening methods often use simulated de-
graded reference data due to the missing of real fusion labels which affects the fusion performance.
The normally used convolutional neural network (CNN) can only extract the local detail information
well which may cause the loss of important global contextual characteristics with long-range depen-
dencies in fusion. To address these issues and to fuse spatial and spectral information with high
quality information from the original panchromatic (PAN) and multispectral (MS) images, this paper
presents a novel pan-sharpening method by designing the CNN+ pyramid Transformer network with
no-reference loss (CPT-noRef). Specifically, the Transformer is used as the main architecture for fusion
to supply the global features, the local features in shallow CNN are combined, and the multi-scale
features from the pyramid structure adding to the Transformer encoder are learned simultaneously.
Our loss function directly learns the spatial information extracted from the PAN image and the
spectral information from the MS image which is suitable for the theory of pan-sharpening and makes
the network control the spatial and spectral loss simultaneously. Both training and test processes
are based on real data, so the simulated degraded reference data is no longer needed, which is quite
different from most existing deep learning fusion methods. The proposed CPT-noRef network can
effectively solve the huge amount of data required by the Transformer network and extract abundant
image features for fusion. In order to assess the effectiveness and universality of the fusion model,
we have trained and evaluated the model on the experimental data of WorldView-2(WV-2) and
Gaofen-1(GF-1) and compared it with other typical deep learning pan-sharpening methods from both
the subjective visual effect and the objective index evaluation. The results show that the proposed
CPT-noRef network offers superior performance in both qualitative and quantitative evaluations
compared with existing state-of-the-art methods. In addition, our method has the strongest gener-
alization capability by testing the Pleiades and WV-2 images on the network trained by GF-1 data.
The no-reference loss function proposed in this paper can greatly enhance the spatial and spectral
information of the fusion image with good performance and robustness.

Keywords: pan-sharpening; transformer; pyramid structure; no-reference loss; remote sensing image
fusion; deep learning

1. Introduction

With the development of remote sensing technology, high spectral and high spatial
resolution remote sensing images have played a major role in many fields of remote sensing
applications such as target detection and ground object recognition. However, due to
the limitations of the imaging and sensor manufacturing process, it is difficult to acquire
the image with both high spectral resolution and high spatial resolution using a single
sensor. Therefore, it is necessary to fuse the multi-spectral (MS) image with a high spectral
resolution and the panchromatic (PAN) image with a high spatial resolution to obtain the
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fusion image with both high spatial and spectral resolution simultaneously to provide
high-quality data for subsequent remote sensing applications [1,2].

Since the spectral coverage of MS and PAN images cannot guarantee complete overlap
between different types of sensors in many cases, and the fusion process involves highly
nonlinear transformation between spectral domain and spatial domain, traditional image
fusion methods which have certain limitations in simulating the process of image fusion
by the linear model, cannot achieve an optimal balance between improving spatial quality
and maintaining spectral quality.

Deep learning is now widely used in the field of remote sensing image fusion with its
significant non-linear feature representation ability in the local complex structure. The con-
volutional neural network (CNN) is widely applied in image processing [3]. CNN models
are built with multiple transforming layers. In each layer, its input is linearly filtered to
extract the local image features. Multiple layers are stacked to form a total transformation.
Under the supervision of training samples, all the parameters of the models can be updated,
and thus the requirement for prior knowledge is reduced and a high fitting accuracy can
be expected. The networks based on the convolution framework are quite diverse, like
fast region-CNN (Fast RCNN) [4], Faster R-CNN [5], RetinaNet [6], and region-based fully
convolutional networks (RFCN) [7]. Due to the desirable characteristics of the CNN, many
scholars have applied the CNN to the field of image fusion. The first pan-sharpening
method based on the CNN (PNN) is proposed by Giuseppe et al. [8]. With the deepen-
ing of the network, the features lose details in the transmission process from low level
to high level. Therefore, the residual idea is added to the fusion network, like the deep
residual pan-sharpening neural network [9], the residual pan-sharpening network [10],
the deep recursive residual network [11], and the dense convolution residual network [12].
The residual structure is usually used in networks with high complexity to address the
loss of image detail as the network deepens. Due to the continuous combination of the
extracted high-level image features and low-level features, the residual network alleviates
the problem of image details loss with the deepening of the CNN. However, by constantly
feeding the shallow features into the deep network, the number of network parameters and
the quantities of features to be processed for the deep layer of the network will increase,
which will make the network more complicated [13–15]. Subsequently, some methods [16]
are proposed to improve the running efficiency of the residual network in the field of com-
puter vision. Moreover, in order to ensure the adequacy of the network feature extraction
to reduce the sensitivity of the network to the scale of the inputting images to improve
the generalization ability of the network, multi-scale feature fusion methods have been
used [17].

Since the existing CNN-based fusion techniques implement the same convolution
filtering for each layer of images with the principle of weight sharing and improve general-
ization ability by learning local features, it fails to extract the long-range dependencies in
images, causing the loss of many important global context characteristics in fusion [18].

In recent years, self-attention models have gained much attention in many visual tasks.
Vaswani et al. [19] have proposed the Transformer structure to solve the problem of long
sequences in natural language processing tasks. The Transformer discards convolutional
operations in its structure and only consists of the self-attention and the feed-forward neural
network which can acquire more global context information than the CNN. The Trans-
former is originally based on sequence-to-sequence prediction so it needs to convert the
image into serialized data in the pre-processing of training. The Transformer structure has
achieved excellent results in the field of computer vision, such as image classification (vision
Transformer, ViT) [20], target detection [21], and semantic segmentation [22]. However, the
image extraction with the Transformer also has some limitations [23]:

(1) In order to better explore the relationship between pixels, the network training requires
a huge data set.

(2) The Transformer network extracts the global information without local interaction
in the image and it loses a great deal of local information such as the texture edge.
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So if a Transformer network structure is used to obtain an image with rich spatial
information, it needs to combine many local features.

Considering the two points above, in order to solve the problem that CNN can only
extract local features with short distance dependence, this paper proposes the idea of
combining the CNN with a Transformer network without increasing the complexity of
the network to realize the integration of local features obtained by the CNN and the
global context information of the Transformer, so as to realize the complementation of
fusion features.

In addition, deep learning fusion methods at present usually degrade the original MS
and PAN images according to the Wald protocol [24] as the input and take the original
MS image as the reference fusion image for loss calculation because there is no real fusion
image as the reference. This process leads to the loss of the original image information
and the MS with low spatial resolution is taken as the target for learning so the effect of
improving the spatial resolution of the fusion result is not satisfactory and the network
cannot learn the real fusion relationship. Xiong et al. [25] have established the novel loss
function by combining the spectral and spatial evaluation indexes without the reference
fusion result label which is a step forward in the field of pan-sharpening. Inspired by
this work, we established a new loss function that does not need to make the simulated
degraded data as the reference label from another perspective in this paper.

In order to make the network learn the spatial information of PAN image and the
spectral information of MS image directly, this paper establishes a set of loss functions from
the essential theory of fusion by allowing the PAN and MS to be fused as the reference
images, not using the simulated degraded data again. Since the reference image is the input
image to be fused, we call the loss function the no-reference loss function. Our no-reference
loss function can help the network to directly learn spatial and spectral information,
respectively, and strengthen the network generalization ability. The innovations of this
article are as follows:

(1) In terms of the fusion principle, this paper breaks through the fusion idea and frame-
work of the current deep learning fusion networks. The target of the fusion is changed
to learn the spatial information of the PAN and the spectral characteristics of the MS,
which is more consistent with the concept of spatial-spectral fusion. Moreover, the
network training and testing are based on the real image rather than the simulated
degraded data.

(2) This paper breaks through the traditional CNN and applies the state-of-the-art Trans-
former network to pan-sharpening. By combining the Transformer network with a
shallow CNN local feature extraction network, the dual advantages of both networks
can be fully taken and the comprehensive image features can be extracted without
deepening the complexity of the network.

(3) The idea of a pyramid network is added to the Transformer network so that the
pyramid Transformer can extract multi-scale global features from the shallow details
to the deep semantic information.

(4) Based on the fusion theory, a loss function without simulated data is established which
can greatly enhance the performance and the generalization ability of the network.

The rest of this paper is organized as follows: In Section 2, the dataset and the proposed
CNN+ pyramid Transformer network with no-reference loss (CPT-noRef) are described
in detail, the experimental setting and results by different test and generalization sensor
data are presented in Section 3, the discussion is analyzed in Section 4, and finally, the
conclusion of this paper is provided in Section 5.

2. Data and CPT-noRef Method
2.1. Dataset

In this paper, we used three different orbital remote sensing sensor data including
Gaofen-1(GF-1) (from China Centre for Resources Satellite Data and Application), Pleiades
(from Astrium GEO-Information Services satellite), and WorldView-2 (WV-2) (from Digital
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Globe’s high-resolution commercial satellite) to evaluate the performance of the proposed
fusion method. GF-1 and WV-2 are used as training sets, respectively. We used the WV-2
and Pleiades remote sensing images to do the generalization experiment on the model
trained by GF-1. The data information of the remote sensing images we used is shown in
Table 1.

Table 1. The information of remote sensing sensor data.

Band Number
Spatial Resolution/(m)

Location Landscape
MS PAN

GF-1 1PAN + 4MS 8 2 Beijing Rural + Urban
Pleiades 1PAN + 4MS 2 0.5 Shandong Urban

WV-2 1PAN + 8MS 2 0.5 Washington, DC Urban

2.2. CPT-noRef Method

In the proposed CNN+ Pyramid Transformer network (CPT network), CNN+ Pyramid
Transformer encoders are used to extract and fuse the image features. The Transformer
decoder is used to enhance and obtain the final fusion features and the reconstruction is
used to get the final fusion image as shown in Figure 1. Then, we designed a no-reference
loss and used it to train the above CPT network to get the final CPT-noRef network.
The framework of the CPT-noRef network will be introduced in detail in the following
four parts.
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2.2.1. CNN+ Transformer

In this paper, each band of the MS image was up-sampled to the size of the PAN image
through the bilinear method to get the MS-UP image, and then they were concatenated to
obtain the training data with N + 1 bands, as shown in Figure 2.
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In order to solve the Transformer network needing a large amount of training set data,
as well as the lack of local information supplement characteristics, we modified the input N
+ 1 bands of the PAN and MS images of the traditional Transformer network to the shallow
image features extracted from the CNN. The architecture of the basic CNN used to extract
shallow features is shown in Figure 3, and its parameters are shown in Table 2, where c1
means the band number N + 1 of the input image, c4 is the channel number 32 of the output
shallow feature map, and c2 and c3 are the number of filters. Ki ×Ki (I = 1, 2, 3) means the
filter kernel size and the rectified linear unit (ReLU) is used as the activation function.
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Table 2. The parameters of CNN structure.

1st ConV 2st ConV 3st ConV

c1 K1 ×K1 f1(x) c2 K2 ×K2 f2(x) c3 K3 ×K3 f2(x) c4

N + 1 9 × 9 ReLU 16 5 × 5 ReLU 32 5 × 5 ReLU 32

2.2.2. Pyramid Structure in the Transformer

Before applying the Transformer network to the remote sensing image, the image
needs to be segmented into a series of patches to obtain the serialized data which is similar
to the words in a sentence. Assuming that the size of the input image is W×H, the size of
each patch is p× p, and the image is decomposed into w× h vectors, where w = W/ p
and h = H/ p. We then computed the self-attention between these vectors. However,
through this operation, we can only obtain the relationship between the patches, and the
structural information in each patch is lost. So the patch size we set was always small to
avoid the loss of the internal details in each patch. However, this also means the deep
semantic information cannot be extracted and the global feature is inadequate. To solve
this problem, we considered adding the pyramid structure into the encoder part of the
Transformer to establish the contact between different feature levels by constantly changing
the corresponding receptive field of each patch.

The process of the pyramid Transformer in this paper is divided into the following
three parts: 

X f ea−down(i) = Downsample
(

X f ea

)
Fdown(i) = Trans f ormer

(
X f ea−down(i)

)
Fi = Upsample

(
Fdown(i)

)
F = F1

⊕
F2
⊕

. . .
⊕

Fl

(1)

(1) Firstly, the shallow features (X f ea) obtained from the CNN were down-sampled until
the feature size is the same as the patch size. The size of X f ea is (100,100), and the
patch size is (5,5), so the sizes of the sub-samples X f ea−down(i) (i = 0, 1, 2, 3) were set as
(100,100), (50,50), (25,25), and (5,5), respectively.
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(2) After each down-sampling of X f ea , X f ea−down(i) was inputted into the network, re-
spectively, to extract the corresponding features Fdown(i) (i = 0, 1, 2, 3).

(3) Finally, Fdown(i) was up-sampled to restore the original size. All the features Fi (i = 0,
1, 2, 3) were concatenated to obtain the feature F which is the result of the pyramid
Transformer encoder, where l is the number of down-sampling operations and

⊕
means concatenating the features Fi on the channel dimension.

The whole pyramid structure is shown in Figure 4. The pyramid structure expands
the patch receptive field by down-sampling the input feature map to extract the large-scale
semantic features. While the image down-sampling will cause the loss of detail information,
the patches with the small receptive fields can supply the edge contour, color distribution,
and other details of the image which makes the global features extracted by the pyramid
Transformer more comprehensive than the Transformer [11]. Moreover, the pyramid
Transformer can reduce the sensitivity to the input feature scales by learning multi-scale
feature information, which can enhance the robustness of the network to some extent.
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2.2.3. Transformer for Fusion

The proposed CPT fusion method firstly extracts the shallow features of the input
images through the basic CNN, and then these shallow feature maps are inputted into the
Transformer network to combine the global features to ensure the sufficiency of feature
extraction, which is described in Section 2.2.1. In this paper, the pyramid structure was
added into the Transformer encoder in order to get the multi-scale features to enhance
the robustness and improve the fusion result of the network, which has been described in
detail in Section 2.2.2. In addition, the Transformer network we used for fusion consists of
three parts: (1) Converting to the serialized data, (2) encoder, and (3) decoder.

(1) Converting shallow features to the serialized data.

Firstly, the feature map is converted into a series of patch tokens. This process is
consistent with that of ViT [18]. The difference is that we removed the learnable classi-
fication embedding in ViT because we do not need to classify the input. The size of the
feature map input in this paper is {B, c, H, W}, where B represents the batch size of the
training, c represents the number of the inputting feature channels, and H and W are the
height and width of the feature map, respectively. We set the patch size as p, slide the patch
and reshaped the map as {B, H×W/(p× p), c× p× p} which is simplified as {B, N, C}.
Then, through a full connection layer in Embedding, the vectors {B, N, C} were mapped to
{B, N, F}, F = f × p2, where f represents the number of feature channels. The process of
shallow features converting to patches is shown in Figure 5.
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Figure 5. Converting to patches.

(2) Transformer Encoder

The transformer encoder is mainly composed of the layer normalization (LN), the
multi-head self-attention layer (MSA), and the multi-layer perception (MLP). These three
parts are connected by the residual network structure [8], as shown in Equation (2), where
Fi is the inputting vectors converting from the feature map, and F′′i is the output of the
Transformer encoder and the input of the decoder part. LN ensures the stability of network
training. MSA computes self-attention in multi-heads in parallel that enables the network
to capture and consider the relationship globally. MLP enhances the features by adding
the channel dimension linearly, which is similar to using 1 × 1 kernel size convolution to
adjust the dimension in CNN. The structure of MSA is shown in Figure 6.{

F′i = MSA(LN(Fi)) + Fi
F′′i = MLP

(
LN
(

F′i
))

+ F′i
(2)
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In Figure 6, Q, K, V represent Query, Key, and Value, respectively, and their weight
matrices are Wq, WK, and Wv. When inputting X to MSA, Q, K, V are represented by the
linear transformation in Equation (3).

Q = WqX, K = WkX, V = WV X (3)

The matching degree between Q and K is calculated through the dot product in
Attention as shown in Equation (4), where dK means the dimension of Q, K. Furthermore,
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softmax gives attention values from 0 to 1 which differentiates the levels of importance to
V according to the results of the dot product of Q and K.

Attention = softmax
(

QKT
√

dK

)
V (4)

Each head produces an output attention vector Zi as shown in Equation (5). These at-
tention vectors need to be combined to a single vector through concatenating in Equation (6),
where h means the number of the head.

Zi = att((WqiX, WkiX) , WViX) (5)

Z = Z1
⊕

Z2
⊕

. . .
⊕

Zh (6)

The process of the Transformer encoder is shown in Figure 7. In addition, the position
sequence relationship between patches in the Transformer is learned by embedding the
position vector (the Pos Vector in Figure 7), whose size is the same as that of the feature
vector, which is obtained through the process in Figure 5. Therefore, the feature vector and
the position vector are combined before inputting into the encoder part of the Transformer.
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(3) The decoder process is similar to the process of the encoder though we added a layer
containing LN and MSA in order to enhance the fusion features in Equation (7), where
F
′′
i is the output of the encoder in Equation (2) and D′′i is the result of the decoder.


Di = MSA

(
LN
(

F′′i
))

+ F′′i
D′i = MSA(LN(Di)) + Di
D′′i = MLP

(
LN
(

D′i
))

+ D′i

(7)

After getting the fusion features D′′i , we reshaped {B, N, F} to {B, f, H, W}, where
f = F/p2 means the dimension of the final feature channels, and then reconstructed it to the
fusion result {B, c′, H, W} ( c ′means the dimension of the fusion result channels) through
1 × 1 kernel size convolution.

2.2.4. No-Reference Loss

In the course of fusion network training, the selection of loss function is also very
important. The classical fusion network chooses the mean square error (MSE) as the loss
function [26,27]. It can give sufficient attention to the samples with large deviation by
giving them a larger weight which can quickly reduce the difference between the fusion
image and the target image and make the network training more efficient.

However, at present, most ideas of deep learning image fusion still remain in the direc-
tion of creating simulated data sets. In the fusion model with simulated data, the original
MS image is taken as the reference fused image, and the PAN and MS images are degraded
as the input images according to the Wald protocol. This model has certain disadvantages:

(1) First of all, in the process of making the training set, the PAN image needs to be
down-sampled, which will lose important spatial information.
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(2) In the process of network training, the MS image is used as the reference image for
training, so the network model cannot learn the real spatial information and the real
fusion relationship.

(3) In the model testing stage, real remote sensing images are used for testing which
means the original PAN and MS images are tested on the network model trained by
the degraded PAN and MS images. Due to the scale difference between the training
data and the test data, the test result is not satisfactory.

Subsequently, Xiong has proposed the no-reference loss function through the combi-
nation of the no-reference spatial and spectral evaluation indexes based on the real PAN
and MS training data, which is state-of-the-art in deep learning pan-sharpening [28,29].
Based on the idea of training the fusion network on the real data, in this paper, we propose
the new no-reference loss function from another perspective based on the essence of fusion
theory, making the network learn the spatial information from the inputting PAN image
and the spectral information from the inputting MS image.

In terms of spatial details, it emphasizes the relationship between each pixel and its
adjacent pixels in each image and seeks the transformation of attributes and directions
between pixels, which is the high-frequency information of images that is spatial edge detail
information. In this paper, we selected the Laplace filter for extracting the spatial details of
the fusion image and the PAN image, respectively, and then the spatial information of the
two images was studied by MSE. We used function f (x, y) to represent the two-dimensional
image and ∇2 f (x, y) to represent the gray mutation region of f (x, y).

∇2 f (x, y) =
∂2 f
∂x2 +

∂2 f
∂y2 (8)

The mutation ∇2 f (x, y) containing two diagonal angles can be calculated as [30]:

∇2 f (x, y) = f (x + 1, y) + f (x + 1, y + 1) + f (x + 1, y− 1) + f (x, y + 1) + f (x, y− 1) + f (x− 1, y)
+ f (x− 1, y− 1) + f (x− 1, y + 1)− 8× f (x, y)

(9)

According to Equation (9), the Laplace filtering G used in this paper is as follows:

G =

 1 1 1
1 −8 1
1 1 1

 (10)

After filtering, the fusion image, PAN, and MS-UP are shown in Figure 8.
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The pixel digital number value of each remote sensing band image was determined by
the intensity of electromagnetic radiation detected by sensors and can represent the spectral
characteristics of each band image. Therefore, in terms of the spectral loss, the pixel value
of the fused image and that of the MS image are directly studied by MSE, making the pixel
value of the fused image as close as possible to that of the MS image.
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The total loss includes spatial loss and spectral loss as shown in Equation (11):

no_reference Loss = α× spatial loss + β× spectral loss (11)

Herein α represents the weight of the spatial loss and β represents the weight of the
spectral loss. The sum of α and β equals 1.

If α is set to 1, each band of the fusion result of the network will be infinitely close to the
PAN image. Oppositely, if α is set to 0, the output result will be close to the MS-UP image.
Therefore, we set up a comparative experiment to determine the optimal values of α and β.
The initial α is set to 0.1 and β is set to 0.9, respectively. They were gradually adjusted with
a step of 0.1 to achieve the optimal balance between spectral and spatial information.

Figure 9 shows the quality evaluation curves of fusion images with different weights.
Figure 10 shows the fusion images with different weights. We used evaluation indexes
Dλ, Ds and quality with no reference (QNR) to evaluate the fusion results with different

weight values. They are defined as Equations (12)–(14):

Ds =
q

√√√√ 1
L

L

∑
l=1

∣∣∣UQI( f usedl , P)−UQI
(

MSl , Pdg

)∣∣∣q (12)

Dλ=
p

√√√√ 1
L(L− 1)

L

∑
l=1

L

∑
r=1(r 6=l)

|UQI( f usedl , f usedr)−UQI(MSl , MSr)|p (13)

QNR = (1− Ds)
α × (1− Dλ)

β (14)

UQI =
σxy

σx × σy
× 2× x× y

x2 + y2 ×
2× σx × σy

σx2 + σy2 (15)
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Figure 9. Dλ, Ds , and QNR indexes of the fusion results with different values of α (0.1–0.9): (a) Ds ,
(b) Dλ, and (c) QNR.

Herein P is the inputting PAN image, Pdg is the degraded PAN image whose size is
the same as that of the MS image, f used is the fusion result, and L is the band number of
inputting MS images. p, q are typically set to 1 and α, β are the tradeoff coefficients, usually
α = β = 1 [31]. UQI is the universal image quality indices defined as Equation (15), where
σxy is the covariance of x and y, x, y are the average of x and y, and σx

2, σy
2 are the variance

of x and y, respectively. From Equations (12)–(15), it can be concluded that Dλ measures
the distance of the band correlation between fusion result and MS image. Similarly, Ds
measures the spatial consistency between the fusion result and PAN image. Therefore, the
closer Dλ and Ds are to 0, the better the evaluation index is. QNR represents the global
quality of the fusion image, and the maximum theoretical value of it is 1.

As can be seen from Figure 9, when α is set to 0.2, the global quality index QNR of the
fusion image is the best. Correspondingly, from Figure 10, we can see that it has a superior
spectral-spatial balance ability compared with other results. Therefore, the weights of the
spectral and spatial loss are set to 0.8 and 0.2, respectively, in our no-reference loss function
in this paper.
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3. Results
3.1. Experimental Setting

Our network model training was performed with the Pytorch framework in Linux
systems and accelerated on the NVDIA GeForce RTX 3090 GPU.

The parameters settings of the experiment are shown in Tables 3 and 4, where Table 3
is the basic parameter setting and Table 4 is the hyper-parameter setting. The number
ratio of the training set to the test set was four. The network inputs included the PAN
and the corresponding up-sampled MS images. The number of the training images was
102,400 pairs and that of the test images was 25,600 pairs.

Table 3. The basic training parameters settings of the experiment.

The Basic Training Parameters

Number of training sets (PAN/MS-UP) 102,400
Number of test sets (PAN/MS-UP) 25,600
The size of the training image data [100 × 100]

The size of patch size 5

Table 4. The hyper-parameters settings of the experiment.

The Hyper-Parameters Settings

The batch size 16
initiallr 1× 10−4

Number of the hidden nodes in MLP 2 × F + 1 (F means the number of input features)
Number of the heads in MSA 4
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For the learning rate (lr), if a large lr is used (0.1, 0.03 . . . ), the model will be unstable in
the initial training stage and the accuracy of the network is seriously affected, increasing the
difficulty of convergence. If a small lr is used (1× 10−5, 1× 10−6 . . . ), the training efficiency
of the network will be seriously decreased. Therefore, in our CPT-noRef, the initial learning
rate (initiallr) was set to 1× 10−4 according to experience. With the deepening of network
training, the value of the loss gets smaller so the fixed lr will cause the network to fall into
the local minimum value and stop learning. To avoid this problem, the step learning rate
(StepLR) strategy was used to update the lr as shown in Equation (16), where r (set as 0.3)
means the adjusting multiples of lr, and lr is updated every stepsize (set as 40) epoch.

newlr = initiallr × repoch//stepsize (16)

In deep learning models, the batch size is usually set to 8, 16, 32, 64, . . . etc.; the Trans-
former requires a large amount of data. The large batch size will cause the phenomenon of
over-memory during training and the small batch size will increase the number of iterations
in each training epoch, which will lead to a longer training time. After multiple adjustments
and experimentation, the batch size was set to 16.

For the number of hidden nodes in MLP, if the number is too small, the network
cannot obtain the necessary learning ability and information processing ability. On the
contrary, the complexity of the network structure will be greatly increased. Therefore, in
this paper, we set the number of hidden nodes to 2×F + 1, where F means the number of
the inputting features of MLP, according to the Kolmogorov theorem [20].

Moreover, in the structure of MSA, the number of heads needs to be determined.
In our experiments, the size of the inputting training image was {c× 100× 100} and
the size of patch size (p) was 5. Therefore, we could convert the inputting image into
400 patch vectors with the size of {c× p× p}, where c means the band number of the
inputting training image. When the number of heads is large, the network parallelism can
be enhanced, but the network parameters will also increase. When the number is small,
MSA is similar to the self-attention model, the network operation efficiency is low, and
the phenomenon of over-fitting will occur. Therefore, we divided these 400 vectors into
four heads for feature extraction. The optimizer for training was the Adam weight decay
optimizer (AdamW) [32].

3.2. Experimental Results and Analysis

In the experiment, we compared our CPT-noRef with other seven typical deep learning
fusion methods including PNN [8], improved-SRCNN [25], DRPNN [9], ResNet [33],
PanNet [34], TF-ResNet [35], and GAN [36]. We evaluated the fusion effect from both
the subjective vision and the objective indexes. The objective indexes we used mainly
divided into three aspects: The spectral evaluation indexes—correlation coefficient (CC),
spectral angle mapper (SAM), Dλ, and erreur relative global adimensionnelle de synthèse
(ERGAS); the spatial evaluation indexes—structural similarity index (SSIM), Ds; and the
comprehensive evaluation index QNR [37,38]. We also designed experiments to verify the
advantages of our designed loss function with the real input data and not the simulated
data again. Finally, we performed the generalization experiment to test the robustness of
these fusion networks. We evaluated the fusion results in the following four parts.

3.2.1. No-Reference Loss Comparison Results

In order to verify the feasibility and effectiveness of our no-reference loss function,
we selected four fusion methods including PNN, TF-ResNet, PanNet, and CPT to design
a comparative experiment. In the experiment, we trained these four methods by using
the with-reference loss function on the simulated data, and by using our designed loss
function on the real data in order to evaluate our no-reference loss function fairly and
comprehensively. The test image size of GF-1 and WV-2 is {400 × 400}. In this experiment,
Ds, Dλ , and QNR are used as the evaluation indexes.
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For the GF-1 data, the comparison results are shown in Figure 11 and the objective
assessment is in Table 5. In Table 5 the no-reference loss network names are suffixed with
noRef, and for all tables below, the bold result indicates the best result.
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PanNet-noRef, and (j) CPT-noRef (proposed method). 

Table 5. GF-1 objective evaluation indexes of the model trained by different loss functions. 

 ۲ૃ ܛ۲ ܀ۼۿ 
PNN 0.8006 0.0421 0.1642 

TF-ResNet 0.8891 0.0727 0.0412 
PanNet 0.8530 0.1284 0.0213 

CPT 0.9201 0.0560 0.0253 
PNN-noRef 0.9437 0.0330 0.0241 

TF-ResNet-noRef 0.9531 0.0273 0.0201 
PanNet-noRef 0.9548 0.0314 0.0142 

CPT-noRef 0.9675 0.0224 0.0103 

Figure 11. GF-1 true color (R, G, B) fusion results trained by using different loss function: (a) PAN,
(b) MS-UP, (c) PNN, (d) TF-ResNet, (e) PanNet, (f) CPT, (g) PNN-noRef, (h) TF-ResNet-noRef,
(i) PanNet-noRef, and (j) CPT-noRef (proposed method).

Table 5. GF-1 objective evaluation indexes of the model trained by different loss functions.

QNR Ds Dλ

PNN 0.8006 0.0421 0.1642
TF-ResNet 0.8891 0.0727 0.0412

PanNet 0.8530 0.1284 0.0213
CPT 0.9201 0.0560 0.0253

PNN-noRef 0.9437 0.0330 0.0241
TF-ResNet-noRef 0.9531 0.0273 0.0201

PanNet-noRef 0.9548 0.0314 0.0142
CPT-noRef 0.9675 0.0224 0.0103

From a visual point of view, the spatial detail of the fusion results using our no-
reference loss is significantly improved and the improvement effect of TF-ResNet and
PanNet is the most outstanding, as can be seen on the roof of the buildings especially
the blue one in the lower middle part of the image. Moreover, there is nearly no spectral
distortion in these four methods using our loss function where the suppression effect of the
spectral distortion in PNN is most obvious. Furthermore, the CPT trained with simulated
data has rich spatial information but light spectral distortion.

From the objective evaluation indexes, all indexes are enhanced drastically by using
our no-reference loss compared with the results using simulated data. The spectral dis-
tortion of PNN by using simulated data is serious with a large value of Dλ, but the value
decreases considerably by using our loss function. The Ds value of PanNet also decreases
sharply, which means the spatial details of PanNet get much more abundant by using our
no-reference loss. The proposed CPT-noRef has the best evaluation indexes wherever in
spatial and spectral quality.

For the WV-2 data, the loss function comparison results are shown in Figure 12 and
the quality evaluation is given in Table 6. In Table 6 the no-reference loss network names
are suffixed with noRef.
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In addition, we extracted five kinds of ground objects from the PNN fusion image to 
observe the fusion effect of PNN in detail which is shown in Figure 13. The first line is the 
spatial details of the fusion image trained by PNN with-reference loss and simulated 

Figure 12. WV-2 true color (R, G, B) fusion results trained by using different loss function: (a) PAN,
(b) MS-UP, (c) PNN, (d) TF-ResNet, (e) PanNet, (f) CPT, (g) PNN-noRef, (h) TF-ResNet-noRef,
(i) PanNet-noRef, and (j) CPT-noRef (proposed method).

Table 6. WV-2 objective evaluation indexes of the model trained by different loss functions.

QNR Ds Dλ

PNN 0.7027 0.0410 0.2673
TF-ResNet 0.7312 0.0237 0.2510

PanNet 0.8380 0.0702 0.0987
CPT 0.9015 0.0245 0.0759

PNN-noRef 0.8905 0.0101 0.1004
TF-ResNet-noRef 0.9086 0.0089 0.0832

PanNet-noRef 0.9073 0.0214 0.0728
CPT-noRef 0.9283 0.0066 0.0655

In addition, we extracted five kinds of ground objects from the PNN fusion image to
observe the fusion effect of PNN in detail which is shown in Figure 13. The first line is
the spatial details of the fusion image trained by PNN with-reference loss and simulated
data; the second line is that of the fusion image trained by our designed no-reference loss
function and real data.
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In Figure 13 for WV-2, the spatial details of the fusion results trained by our no-
reference loss improve markedly, which can be compared directly with the fusion results
trained by using the simulated data. We can see the moving cars, the pedestrian crossing,
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and the outline of the roof are clear in the fusion image trained by our designed loss
function. Additionally, in Figure 12, the spectral distortion of the method trained by using
the simulated data is serious except for CPT and PanNet. However, the fusion methods
trained by our loss function can maintain the spectral quality well, except for PNN with an
overall dark color.

In Table 6 for WV-2, all indexes of the method trained by our loss function are much
better than that of the method trained by simulated data which is the same as the GF-1
training results. Among methods trained by using the simulated data, the evaluation index
of CPT is the best, but the Ds, Dλ value can decrease further after using our designed loss.
In all evaluation indicators, CPT-noRef (our method) surpasses other methods.

3.2.2. GF-1 Remote Sensing Data Results

In order to better compare the fusion effect of different methods for GF-1 remote
sensing images, urban scenes (as shown in Figure 14) and rural scenes (as shown in
Figures 15 and 16) were selected for testing. The quantitative evaluation results of these
two scene types are provided in Tables 7 and 8, respectively.
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Figure 15. GF-1 false color (NIR, R, G) fusion results for the rural scene 1: (a) PAN, (b) MS-UP, (c) 
PNN, (d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) 
CPT-noRef (proposed method). 
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Figure 16. GF-1 true color (R, G, B) fusion results for the rural scene 2: (a) PAN, (b) MS-UP, (c) 
PNN, (d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) 
CPT-noRef (proposed method). 

  

Figure 14. GF-1 true color (R, G, B) fusion results for the urban scenes: (a) PAN, (b) MS-UP, (c) PNN,
(d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) CPT-noRef
(proposed method).
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Figure 16. GF-1 true color (R, G, B) fusion results for the rural scene 2: (a) PAN, (b) MS-UP, (c) 
PNN, (d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) 
CPT-noRef (proposed method). 

  

Figure 15. GF-1 false color (NIR, R, G) fusion results for the rural scene 1: (a) PAN, (b) MS-UP, (c) PNN,
(d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) CPT-noRef
(proposed method).
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Table 7. GF-1 objective evaluation indexes for the urban scenes.

CC SAM QNR Ds Dλ SSIM ERGAS

PNN 0.9648 1.0163 0.8006 0.0421 0.1642 0.9693 1.2815
DRPNN 0.9720 0.9517 0.7770 0.1310 0.1059 0.9479 1.2076
ResNet 0.9835 0.8389 0.8969 0.0731 0.0324 0.9587 1.0325

TF-ResNet 0.9814 0.8430 0.8891 0.0727 0.0412 0.9593 1.1504
GAN 0.9607 1.0829 0.6972 0.1433 0.1862 0.9453 1.2681

PanNet 0.9846 0.8279 0.8530 0.1284 0.0213 0.9486 0.9875
Improved-SRCNN 0.9785 0.9498 0.8131 0.1113 0.0851 0.9490 1.1842

CPT-noRef 0.9887 0.8042 0.9675 0.0224 0.0103 0.9876 0.8179

Table 8. GF-1 objective evaluation indexes for the rural scenes.

CC SAM QNR Ds Dλ SSIM ERGAS

PNN 0.9751 0.9320 0.8388 0.0392 0.1270 0.9825 1.2610
DRPNN 0.9810 0.8420 0.8282 0.1113 0.0681 0.9413 1.2342
ResNet 0.9852 0.8350 0.9073 0.0712 0.0232 0.9601 0.9547

TF-ResNet 0.9824 0.8342 0.9239 0.0521 0.0253 0.9643 0.9530
GAN 0.9598 1.1003 0.8002 0.0673 0.1421 0.9619 1.3230

PanNet 0.9873 0.8101 0.8955 0.0925 0.0132 0.9510 0.9421
Improved-SRCNN 0.9776 0.9232 0.8240 0.1210 0.0625 0.9421 1.0103

CPT-noRef 0.9895 0.7988 0.9763 0.0136 0.0102 0.9912 0.7213

For the urban scenes of the GF-1 remote sensing image test experimental results, the
size of each image is {400× 400}.

From the visual point of view, it can be seen from the red box in Figure 14, the spatial
details of our method are far clearer than other methods, especially in the built-up areas and
on the roofs of buildings; the spatial information of PNN, TF-ResNet, and ResNet are also
good. For the spectral quality, our CPT-noRef method, ResNet, and PanNet are basically
consistent with the MS-UP image. PNN, DRPNN, and GAN have some spectral distortion.

Considering the objective evaluation indexes, all evaluation indexes of our method
are the best, and the values of Ds, SSIM, and ERGAS significantly surpass that of other
methods. ResNet, PanNet, and TF-ResNet also have good spectral retention ability, next
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to our CPT-noRef. On the contrary, the spectral distortion of PNN, DRPNN, and GAN is
serious, which is the same as the subjective evaluation, and GAN has the worst spectral
fidelity. Moreover, the spatial details of PNN and TF-ResNet are abundant with good
value of Ds, SSIM, but GAN and DRPNN methods have insufficient spatial information.
The evaluation index of the improved-SRCNN is generally average.

In order to show the fusion effect of different band combinations and different land-
scapes, we cropped two rural fields as shown in Figures 15 and 16 with false and true color
compositions, respectively. The size of each result in Figure 15 is {400× 400}, and that of
each result in Figure 16 is {600× 600}.

From the perspective of subjective vision, the proposed CPT-noRef has the richest
spatial information; the texture of the river and arable land can clearly be seen in Figure 16j.
The spatial information of PNN, TF-ResNet, and GAN enhances sizably, as shown in
Figure 15, but the spatial information of improved-SRCNN and DRPNN is fuzzy. The spec-
tral quality of the CPT-noRef, PanNet, and ResNet images are similar to that of the MS-UP
image. In contrast, the spectral characteristics of PNN and GAN are not satisfactory.

According to the objective evaluation indexes in Table 8, the evaluation indexes of
our method are still the best in the rural region. The spatial information of PNN and
TF-ResNet is rich with a good value of Ds and SSIM. Compared to the fusion result for the
urban scenes, the spatial quality of GAN greatly improves. Oppositely, the spatial details of
PanNet, improved-SRCNN, and DRPNN are insufficient. As for the spectral information, in
addition to the CPT-noRef, the spectral retention ability of PanNet, ResNet, and TF-ResNet
is excellent. PNN and GAN have the poor learning ability of spectral characteristics. The
spectral retention of DRPNN and improved-SRCNN is moderate.

3.2.3. WV-2 Remote Sensing Data Results

In order to better compare the fusion effect of different methods, we cropped the vege-
tation (the size is {200× 200}) and highway region (the size is {400× 400}) in the urban
scenes of the test image for concrete display as shown in Figures 17 and 18, respectively.
The quantitative evaluation result of the test image is in Table 9.
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Figure 18. WV-2 true color (R, G, B) fusion results in highway region: (a) PAN, (b) MS-UP, (c) 
PNN, (d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) 
CPT-noRef (proposed method). 

  

Figure 17. WV-2 true color (R, G, B) fusion results in vegetation region: (a) PAN, (b) MS-UP, (c) PNN,
(d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) CPT-noRef
(proposed method).
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Table 9. WV-2 objective evaluation indexes.

CC SAM QNR Ds Dλ SSIM ERGAS

PNN 0.9421 1.5258 0.7027 0.0410 0.2673 0.9554 1.6237
DRPNN 0.9473 1.5227 0.7061 0.0432 0.2620 0.9549 1.5468
ResNet 0.9582 1.1846 0.8088 0.0322 0.1643 0.9643 1.3499

TF-ResNet 0.9495 1.3418 0.7312 0.0237 0.2510 0.9737 1.4429
GAN 0.9249 1.4238 0.7058 0.0181 0.2812 0.9797 1.7136

PanNet 0.9731 0.8909 0.8380 0.0702 0.0987 0.9355 0.9631
Improved-SRCNN 0.9625 0.8965 0.8433 0.0619 0.1010 0.9445 1.1267

CPT-noRef 0.9873 0.8155 0.9283 0.0066 0.0655 0.9997 0.8313

From the red box of the vegetation region, we know that the spatial information of
CPT-noRef, TF-ResNet, and GAN is more abundant than others, which can be seen from
the clear leaf textures. The spectral quality of CPT-noRef, PanNet, and improved-SRCNN
is similar to that of the MS-UP image. In the vegetation region, the road color of PNN,
DRPNN, ResNet, and GAN is lighter than that of MS-UP and the spectral distortion of
GAN is serious. The color of the green leaves in the TF-ResNet image is darker than
others. The visual effect of the highway image is similar to that of the vegetation region,
and the magnified parked vehicles in the red box in each image can highlight the spatial
enhancement advantages of CPT-noRef, TF-ResNet, and GAN, and the disadvantages of
PanNet and improved-SRCNN.

From the objective evaluation indexes, the Ds, SSIM values of CPT-noRef and GAN
are outstanding followed by TF-ResNet. On the contrary, the spatial effect of PanNet
and improved-SRCNN is not satisfactory with a large value of Ds and little value of
SSIM. Moreover, from the value of CC, SAM and Dλ the spectral retention ability of CPT-
noRef surpasses other methods. PanNet and improved-SRCNN also have good spectral
maintaining ability. The spectral distortion of GAN, DRPNN, TF-ResNet, and PNN is much
more serious with the bad value of spectral evaluation indexes.

3.2.4. Generalization Experiment Results

In order to verify the robustness and the stability of our CPT-noRef method, we use
the network model trained by GF-1 to conduct the cross-sensor generalization experiments
on Pleiades and WV-2 data (the size is {400 × 400}) directly and compare the visual effect
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of our method with that of other seven methods. The Pleiades image generalization results
based on the model trained by the GF-1 data are shown in Figure 19.
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Figure 19. The true color (R, G, B) generalized image testing on Pleiades image: (a) PAN, (b) MS-
UP, (c) PNN, (d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN,
and (j) CPT-noRef (proposed method).

The WV-2 image generalization results based on the model trained by the GF-1 data
are shown in Figure 20.
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Figure 20. The true color (R, G, B) generalized image testing on WV2 image: (a) PAN, (b) MS-UP, (c) PNN,
(d) DRPNN, (e) ResNet, (f) TF-ResNet, (g) GAN, (h) PanNet, (i) improved-SRCNN, and (j) CPT-noRef
(proposed method).

From Figures 19 and 20, we can see that the spectral distortion of PNN and ResNet
is serious, which will cause misjudgment of the ground objects. PNN loses much spatial
information simultaneously. We can hardly see the details of the ground objects in PNN.
The fusion color of DRPNN and GAN is darker than that of the MS-UP image, and that of
TF-ResNet is brighter. PanNet, improved-SRCNN, and CPT-noRef have excellent spectral
preservation ability, but the spatial information of PanNet and improved-SRCNN is fuzzy.
We cannot see the image details like the cars in the parking lot in Figure 19h,i, and the
roof of the buildings in Figure 20h,i. Our method is overwhelmingly superior in the two
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generalization experiments, which confirms that our method has strong generalization
ability. The reason is because the CPT-noRef method can extract comprehensive image
features by combining the short-distance local features with the long-distance global fea-
tures. Moreover, our loss function which extracts the edge information of PAN and the
pixel value of MS-UP can make the CPT-noRef network learn the real fusion relationship
between input and output.

3.2.5. The Time Performance of the Algorithm

Taking the GF-1 image training time as an example, the time performance of different
methods with two loss functions are shown in Tables 10 and 11, respectively. The epoch
number in Tables 10 and 11 is the number of training times when each network reaches its
optimal convergence.

Table 10. The GF-1 training time (with reference loss on the simulated data).

Method/Epoch
(Second) PNN DRPNN ResNet TF-ResNet GAN PanNet Improved-

SRCNN CPT

Average time 19.576 116.350 205.124 244.562 137.058 70.940 53.194 39.809
Epoch number 150 150 150 250 400 250 250 250

Table 11. The GF-1 training time (with a no-reference loss on the real data).

Method/Epoch (Second) PNN-noRef TF-ResNet-noRef PanNet-noRef CPT-noRef (Proposed)

Average time 287.543 3628.905 852.895 458.252
Equivalent average time 17.971 226.810 53.306 28.641

Epoch number 150 250 250 250

The input of the network with no-reference loss is the real PAN and up-sampled MS
image and the input of the network with reference loss is the degraded simulated PAN and
MS image. The spatial resolution of the real image is four times that of the degraded image.
Therefore, the amount of the input training data in the no-reference network is 16 times
that of the reference network. For intuitive comparison, we added the equivalent time in
Table 11 making sure the input data amount of the two networks are equal.

According to the training time, CPT has high training efficiency due to the high
degree of parallelization of the Transformer, whose training time is between the three-layer
convolutional PNN network and the four-layer convolutional improved-SRCNN network.
Moreover, the loss function we designed in this paper can also improve the operating
efficiency of the network to some extent.

4. Discussion

According to the ablation experiment results in Section 3.2.1, it is found that the
designed no-reference loss can significantly help the fusion network (whether simple or
complex) improve the spatial information and maintain the spectral quality. Meanwhile,
the proposed no-reference loss is based on real data, which can solve the problem of scale
difference between the test image and training image and improve the fusion effect of the
testing and real data.

Through the fusion experiments of different sensor (GF-1, WV-2) images in
Sections 3.2.2 and 3.2.3, it can be seen that except for the CPT-noRef, the other seven fusion
methods show different fusion effects on different sensor images. Through the qualitative
and quantitative evaluation indicators, we can conclude that for PNN in GF-1 image fu-
sion, the improvement of spatial information is good, but its spectral distortion is serious.
However, in WV-2 image fusion, PNN learns the poor spatial information and the spectral
quality of it is still unsatisfactory. For GAN, in the urban scenes of the GF-1 image, the
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spatial and spectral information is the worst among these methods, but the spatial infor-
mation enhances considerably in the rural scenes. Moreover, in the WV-2 image fusion,
the spatial information of GAN is rich, and its spatial evaluation indexes rank second
among these methods. For TF-ResNet in the fusion of GF-1, whether for the urban or
rural scenes, the overall fusion effect is excellent, but it has bad spectral fidelity in WV-2
fusion. The spectral quality of improved-SRCNN enhances markedly in WV-2 fusion, but
that of ResNet decreases slightly compared to the GF-1 fusion results. In the two sensor
fusion experiments, PanNet has the superior spectral retention capability, but its spatial
effect is always fuzzy which means the spectral quality is maintained but it neglects to
enhance the spatial information. The spatial information of DRPNN is inadequate in GF-1
fusion and the effect of it in WV-2 fusion is not outstanding both in the spectral and spatial
information. The proposed CPT-noRef method performs best in both spectral and spatial
information which can lead to the conclusion that the adequacy of multi-scale feature
extraction can enhance the stability of the network and its no-reference loss can help it learn
the real fusion relationship between the input image and the fusion image. Its excellent
generalization ability can be clearly seen when fusing the cross-sensor and cross-scale
images in the experiments in Section 3.2.4.

From the time performance test in Section 3.2.5, we know that the training time of
PNN and improved-SRCNN is relatively fast because their structures are shallow. PanNet
improves the operating efficiency by only learning spatial information in the high-frequency
area of the image. The training time of DRPNN and ResNet increases to a certain extent
because they have residual structures which make the networks more complex than others.
GAN takes a long time to train generators and discriminators separately. TF-ResNet is
divided into two branches to extract the information of PAN and MS images. The two-
stream residual networks have a large number of parameters, and the extracted information
of the image is rich, so the workload of fusion is large. The training efficiency of the
proposed CPT network is high because of a high degree of parallelization of the Transformer
in it. With the advantage of the Transformer’s outstanding global feature extraction ability,
the global contextual information is directly combined with the detailed local information
extracted from the shallow CNN, which can avoid adding the complexity of the CNN.
Moreover, the loss function we designed can slightly increase the network training speed,
which can be seen in Table 11.

5. Conclusions

The proposed CPT-noRef can solve the huge amount of data required by the Trans-
former network, improve the operation efficiency of the network, and control the loss
of spatial and spectral aspects simultaneously. The global contextual information from
the Transformer was combined with the local feature information from shallow CNN to
ensure the adequacy of the feature extraction. Since the pyramid structure was added
to the Transformer encoder, the robustness of CPT-noRef was enhanced by extracting
multi-scale features. Moreover, our designed no-reference loss function made the learn-
ing target change to learn the spatial information from the inputting PAN image and the
spectral information from the inputting MS image. The reference labels were changed to
inputting PAN and MS themselves, not the simulated high-resolution data, which broke
through the fusion framework of the current fusion network and improved the fusion effect
considerably. In this paper, different GF-1, Pleiades, and WV-2 remote sensing satellite
data with different land covers were used to verify the effectiveness of our CPT-noRef
method through fusion and generalization experiments. Furthermore, we also designed
an experiment to test the feasibility and validity of our no-reference loss function by ap-
plying it to four fusion networks. The results demonstrated that the proposed CPT-noRef
method achieves state-of-art performance in terms of both visual perception and objective
assessment. Our loss function, which is consistent with the theory of fusion, only used the
original PAN and MS data themselves as the reference labels, making the network monitor
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both the spatial and spectral loss and surpassing the fusion result trained by the simulated
degraded data.

The proposed CPT-noRef directly stacked the PAN and up-sampled MS together as
the inputting images for further processing. The features of PAN and MS were treated
equally, which may decrease the reconstruction quality to some extent. In addition, all
the features extracted from the pyramid Transformer encoder were equally concatenated
on the channel dimension which ignored the importance of certain features. In following
work, we will consider using a two-stream fusion framework to fully extract the features
of the PAN and MS images, respectively. Moreover, we will try to use a channel attention
mechanism module to replace the commonly used concatenation operation, considering the
relationship between different channels, thereby improving the quality of feature fusion.
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Abbreviations
All the acronyms used in this paper are listed as follows.

Acronyms The Full Name
CNN convolutional neural network
PAN panchromatic
MS multi-spectral
Fast RCNN fast region-CNN
RFCN region-based fully convolutional networks
CPT CNN+ pyramid Transformer
CPT-noRef CPT with no-reference loss
WV-2 WorldView-2
GF-1 Gaofen-1
PNN pan-sharpening method based on CNN
ReLU rectified linear unit
LN layer normalization
MSA multi-head self-attention layer
MLP multi-layer perception
AdamW Adam weight decay optimizer
StepLR step learning rate
P inputting PAN image
Pdg degraded PAN image
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fused fusion result
UQI universal image quality indices
Lr learning rate
initiallr initial learning rate
p patch size
ViT vision Transformer
MSE mean square error
CC correlation coefficient
SSIM structural similarity index
ERGAS erreur relative global adimensionnelle de synthèse
SAM spectral angle mapper
QNR quality with no reference
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