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Abstract: Vehicular positioning in urban environments has become a research hotspot in recent
years, and global navigation satellite system/inertial navigation system (GNSS/INS) tightly coupled
positioning is a commonly used method. With the broadcast of BDS-3 and Galileo four-frequency
signals, the multi-frequency and multi-system tightly coupled positioning method provides more
possibilities for vehicular positioning in urban environments. At present, most of the studies on multi-
frequency and multi-system mainly focus on static or baseline solutions, and there are few studies
on the urban dynamic environment. In this paper, based on the triple-frequency GPS/BDS-2/INS
tightly coupled positioning model, the BDS-3 four-frequency observation is introduced to conduct a
preliminary study on the performance of GPS/BDS-2/BDS-3/INS tightly coupled positioning. Taking
into account the positioning accuracy and calculation efficiency of the tightly coupled positioning,
single epoch extra-wide-lane/wide-lane (EWL/WL) observation is used to participate in the modeling
of tightly coupled positioning. The EWL/WL ambiguity is solved by the geometry-free (GF) method,
in which triple-frequency carrier ambiguity resolution (TCAR) and four-frequency carrier ambiguity
resolution (FCAR) are used for triple-frequency and four-frequency observations, respectively. Finally,
the positioning performance of the tightly coupled method in this paper is evaluated through
vehicular experiment. The experimental results show that in the urban dynamic environment, due
to the higher quality of the linear combination of BDS-3 four-frequency, the positioning accuracy
of the BDS-3/INS tightly coupled was slightly better than that of the triple-frequency BDS-2/INS.
Compared with GPS/BDS-2/INS, the GPS/BDS-2/BDS-3/INS tightly coupled positioning accuracy
increased by 29.1% and 58.7% in horizontal and vertical directions, respectively, which can realize
decimeter positioning accuracy in urban environments.

Keywords: GNSS/INS; tightly coupled positioning; BDS-3 four-frequency; EWL/WL; urban
environment

1. Introduction

With the demands of applications such as mobile measurement, autonomous driving,
and intelligent transportation increasing, vehicular positioning in urban environments
has attracted much attention in recent years [1–3]. As the main application scenarios of
smart carriers, the characteristics of the building structure and physical environment in
cities are complex and diverse. Especially in complex environments such as tree occlusion,
urban canyon, viaduct, and tunnel, it will cause global navigation satellite system (GNSS)
signal attenuation, occlusion, and even interruption, seriously interfere with the quality of
observation signal, and have a very adverse impact on positioning accuracy and reliability.
Therefore, it is difficult to obtain reliable high-precision positioning results in complex
environments such as urban canyons only by relying on GNSS [4,5].

Remote Sens. 2022, 14, 615. https://doi.org/10.3390/rs14030615 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030615
https://doi.org/10.3390/rs14030615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0841-7540
https://orcid.org/0000-0001-9208-0885
https://doi.org/10.3390/rs14030615
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030615?type=check_update&version=2


Remote Sens. 2022, 14, 615 2 of 22

To overcome this limitation, GNSS is often integrated and used with other sensors,
such as inertial navigation system (INS), camera, lidar, and odometer [6–9]. Among them,
the combination of GNSS and INS is the most common and has a wide range of applications,
mainly including the loosely coupled and the tightly coupled integration. Compared with
the loosely coupled architecture, the tightly coupled solution has distinctive advantages in
positioning accuracy and reliability [10]. Therefore, considering the cost and the stability
of the technical solution, the tightly coupled integration is more suitable for vehicular
positioning in urban environments.

In the past few years, the research on GNSS/INS tightly coupled integration posi-
tioning has evolved from single-system to multi-system. The positioning methods are
from single point positioning (SPP) to precision positioning, such as real-time kinematics
(RTK) and precise point positioning (PPP). The observation model is from pseudorange
observation to carrier phase observation. The current main research contents focus on
two aspects: model construction and ambiguity resolution. In [11], a differential global
positioning system/BeiDou navigation satellite system (GPS/BDS)/INS tightly coupled
positioning model based on carrier phase was proposed. Subsequently, Ref. [12] studied
the feasibility of a single-frequency GNSS RTK/INS tightly coupled positioning model
to achieve high-precision positioning in urban environments. With the development of
PPP, its integration with INS was gradually being explored by researchers. A PPP/INS
tightly coupled positioning model was proposed, which has obvious improvements in
positioning accuracy and initial convergence time [13]. To further achieve high-precision
and reliable urban positioning and reduce the PPP convergence time, a GNSS PPP/INS
tightly coupled integrated positioning model with atmospheric augmentation was pro-
posed [14]. In addition, the constraint information (zero speed, non-holonomic, attitude,
etc.) of the vehicle itself was introduced into the tightly coupled measurement model,
which can further enhance the ability of vehicle high-precision positioning in the complex
environment [15].

The correct resolution of ambiguity is a key issue to achieve high-precision dynamic
positioning. In tightly coupled positioning, there are generally two kinds of methods to
estimate the ambiguity parameters [16]. One is to take the INS position information as an
additional constraint observation to assist the independent resolution of ambiguity [17]. The
other is to estimate the ambiguity parameter together with other parameters to be estimated
in the tightly coupled state equation [18]. However, the correct fixation of the ambiguity in
the above two methods inevitably depend on the accuracy of pseudorange measurement.
When the pseudorange measurement has a relatively large error due to multipath or noise,
the positioning accuracy of the tightly coupled system will be decreased [19]. To avoid the
difficulties caused by ambiguity resolution, a model using GPS time differential carrier
phase (TDCP) to assist INS was proposed [20].

The aforementioned tightly coupled positioning models basically use single-frequency/
dual-frequency carrier phase and pseudorange observations to participate in measurement
update, and its development has been relatively mature. However, there are still problems
in the process of ambiguity resolution. For example, once the ambiguity is fixed incorrectly
or re-fixed, the stability of the tightly coupled positioning system is insufficient. In addition,
if the least-squares ambiguity decorrelation adjustment (LAMBDA) method is used to fix
the ambiguity, it is necessary to search for the correct integer solution through the float
ambiguity solution and its covariance matrix, which increases the computational burden.

At present, all major satellite navigation systems support broadcast data with three
or more frequencies for navigation and location services. With the development of multi-
frequency signals, more redundant observations can be provided, which helps to resolve
ambiguity and improve positioning performance [21]. The research on triple-frequency
positioning was started in the 1990s. Forssell and Hatch respectively proposed a triple-
frequency carrier ambiguity resolution (TCAR) method and a cascaded integer decomposi-
tion (CIR) method based on the geometry-free (GF) model. They mainly adopted the idea
of stepwise rounding and fixing to achieve the solution of the triple-frequency ambigu-
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ity [22,23]. Subsequently, Feng and Li applied the TCAR method to the geometry-based
(GB) model and the geometry-free ionospheric (GIF) model to further improve the strength
of the ambiguity model [24,25]. No matter which model is used to resolve the ambigu-
ity, the main idea is to use the advantages of the extra-wide-lane/wide-lane (EWL/WL)
combination, such as a longer wavelength, a small ionospheric delay scale factor, and a
small observation noise scale factor [26]. Since the combined observation of EWL/WL can
realize the rapid positioning of RTK in a single epoch, this is very meaningful for appli-
cation scenarios such as autonomous driving [27,28]. Xiao combined the triple-frequency
ambiguity resolution method with tightly coupled to build a triple-frequency differential
GNSS/INS tightly coupled model [29]. Compared with the traditional tightly coupled
model, it can obtain better real-time performance and considerable accuracy. The key is to
avoid the increase of filtering order and operation burden. However, for the narrow lane
(NL) ambiguity, when the observation environment is poor or the baseline is long, it is
difficult to solve the ambiguity with the GF-based TCAR method, and its reliability cannot
be guaranteed [30]. To ensure the system reliability of vehicle positioning in urban envi-
ronments, a tightly coupled positioning model based on the differential inter-system bias
(DISB) triple-frequency WL observation and INS was proposed to alleviate the impact of a
lesser number of visible satellites and difficult to fix ambiguity in urban environments [31].

There are few studies on multi-frequency GNSS/INS tightly coupled positioning,
mainly focusing on GPS and BDS-2 systems. With the full completion of the BDS-3 system,
it can support the public broadcast of four-frequency signals (B1I, B1C, B3I, and B2a)
data. Compared with the BDS-2 system, the BDS-3 system has obvious advantages in
terms of system coverage, spatial signal accuracy, availability, and continuity [32]. The
BDS-3 four-frequency signal provides more EWL/WL signals, and the linear combination
quality is better, which can improve the efficiency of ambiguity resolution and positioning
performance [33,34]. However, the research of BDS-3 four-frequency is still based on the
baseline solution, and there is no research on positioning in the dynamic environment.
Therefore, based on the triple-frequency GNSS/INS tightly coupled positioning model,
this paper introduces the BDS-3 four-frequency observations, uses the GF model to fix the
EWL/WL combined observations, and initially evaluates the influence of the BDS-3 four-
frequency on GNSS/INS tightly coupled positioning. By introducing four-frequency signal
observation information, more high-quality redundant observations are obtained, which
further improves the positioning accuracy and reliability of the tightly coupled system.

The rest of this paper is arranged as follows: the observation equation of the BDS-
3 four-frequency linear combination is first introduced in Section 2. On this basis, the
appropriate EWL/WL linear combination is selected and the ambiguity gets resolved,
and finally the tightly coupled positioning measurement model is constructed by using
the EWL/WL observation values with fixed ambiguity. In Section 3, the single epoch
ambiguity resolution and positioning results of the GNSS/INS tightly coupled using BDS-3
four-frequency in urban dynamic environments are given through vehicular experiment.
The experimental results are analyzed and discussed in Section 4, and some conclusions
are given in Section 5.

2. Methods
2.1. The Linear Combinations of Four-Frequency BDS-3 Observations

According to official information, BDS-3 four-frequency signals generally include
B1C, B1I, B3I, and B2a; and their frequencies and wavelengths are shown in Table 1 [35].
The BDS-3 four-frequency double-difference (DD) carrier phase and pseudorange linear
combination observations can be expressed as follows:

∇∆Φ(i,j,k,m) =
i · f1 · ∇∆Φ1 + j · f2 · ∇∆Φ2 + k · f3 · ∇∆Φ3 + m · f4 · ∇∆Φ4

i · f1 + j · f2 + k · f3 + m · f4
(1)

∇∆P(i,j,k,m) =
i · f1 · ∇∆P1 + j · f2 · ∇∆P2 + k · f3 · ∇∆P3 + m · f4 · ∇∆P4

i · f1 + j · f2 + k · f3 + m · f4
(2)
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where i, j, k, m are the combination coefficients of four-frequency signals; f1, f2, f3, and
f4 corresponded to B1C, B1I, B3I, and B2a, respectively; ∇∆Φi and ∇∆Pi represent the
DD carrier phase and pseudorange observations corresponding to the frequency (the
unit is meter). The corresponding linear combination frequency, wavelength, and integer
ambiguity are respectively expressed as follows:

f(i,j,k,m) = i · f1 + j · f2 + k · f3 + m · f4 (3)

λ(i,j,k,m) =
c

i · f1 + j · f2 + k · f3 + m · f4
(4)

∇∆N(i,j,k,m) = i · ∇∆N1 + j · ∇∆N2 + k · ∇∆N3 + m · ∇∆N4 (5)

where c is the speed of light; ∇∆Ni is the DD integer ambiguity of the corresponding fre-
quency. Under a short baseline, the ionospheric and tropospheric delay error, satellite clock
error, and receiver clock error can be eliminated through DD. The observation equation
corresponding to the above DD linear combination observations can be written as follows:

∇∆Φ(i,j,k,m) = ∇∆ρ + λ(i,j,k,m)∇∆N(i,j,k,m) + ε∇∆Φ(i,j,k,m)
(6)

∇∆P(i,j,k,m) = ∇∆ρ + ε∇∆P(i,j,k,m)
(7)

where ∇∆ρ is the DD geometric distance from the satellite to the receiver; ε∇∆Φ(i,j,k,m)
and

ε∇∆P(i,j,k,m)
respectively represent the corresponding linear combination observation noise.

Generally, it is assumed that the phase observation noise of each frequency is equal
and independent, and the noise accuracy of the corresponding DD carrier phase linear
combination observation can be written as follows:

σ2
ε∇∆Φ(i,j,k,m)

= (i· f1)
2+(j· f2)

2+(k· f3)
2+(m· f4)

2

(i· f1+j· f2+k· f3+m· f4)
2 σ2

ε∇∆Φ

= µ2
(i,j,k,m)σ

2
ε∇∆Φ

(8)

where σε∇∆Φ
is the equivalent DD carrier phase observation noise accuracy; µ(i,j,k,m) is the

phase noise factor (PNF) of linear combination observation. In addition, β(i,j,k,m) is the scale
factor (ISF) corresponding to the first-order ionospheric delay of linear combination, it can
be expressed as follow:

β(i,j,k,m) =
f1

2(i/ f1 + j/ f2 + k/ f3 + m/ f4)

i · f1 + j · f2 + k · f3 + m · f4
(9)

Table 1. The frequency and wavelength information of BDS-3 four-frequency signals.

Number Signals Frequency (MHz) Wavelength (m) Code Chipping
Rate (Mcps)

1 B1C 1575.420 0.1903 1.023
2 B1I 1561.098 0.1920 2.046
3 B3I 1268.520 0.2363 10.23
4 B2a 1176.450 0.2548 10.23

2.2. The Linear Combination Selection of BDS-3 Four-Frequency Observations

The linear combination observation model is given in Section 2.1. Considering the
arbitrariness of the combination coefficient, an infinite number of linear combination
observations can be constructed theoretically. To improve the single epoch EWL/WL
ambiguity resolution, it is necessary to construct high-quality linear combined observations.
For a high-quality linear combination, the following conditions need to be met, such as
a long signal wavelength, a small ionospheric delay scale factor, and a small phase noise
factor [36].
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According to the above conditions, Table 2 shows some typical EWL/WL linear
combinations of BDS-3 four-frequency signals. Among them, the wavelengths greater
than 2.93 m are regarded as EWL, which are ∇∆Φ(1,−1,0,0), ∇∆Φ(−4,5,−3,2), ∇∆Φ(0,0,1,−1),
and ∇∆Φ(−1,2,−3,2) respectively; and the wavelength from 0.75 m to 2.93 m is WL, which
is ∇∆Φ(1,0,−1,0) and ∇∆Φ(0,1,0,−1) respectively. In EWL, the ISF of ∇∆Φ(−4,5,−3,2) is the
smallest, but the PNF is the largest. Compared with the other three,∇∆Φ(0,0,1,−1) is the most
qualified, ∇∆Φ(0,0,1,−1) is chosen to fix the EWL ambiguity. In WL, the wavelength and
PNF of the two combinations∇∆Φ(1,0,−1,0) and∇∆Φ(0,1,0,−1) are not much different, where
the PNF of ∇∆Φ(0,1,0,−1) is 5.082. From the PNF point of view, we choose ∇∆Φ(0,1,0,−1) to
fix the WL ambiguity.

Table 2. High-quality signals and the corresponding information of BDS-3 four-frequency.

Number (i,j,k,m) λ(i,j,k,m) β(i,j,k,m) µ(i,j,k,m)

1 (1,−1,0,0) 20.932 −1.009 154.858
2 (−4,5,−3,2) 5.861 −0.052 214.747
3 (0,0,1,−1) 3.256 −1.663 18.791
4 (−1,2,−3,2) 3.185 −0.489 60.338
5 (1,0,−1,0) 0.977 −1.242 6.591
6 (0,1,0,−1) 0.779 −1.351 5.082

It should be pointed out that when the four-frequency signal is used to fix the am-
biguity, it is generally better to choose three EWL/WL linear combinations. For exam-
ple, an EWL linear combination ∇∆Φ(1,−1,0,0) is added on the basis of ∇∆Φ(0,0,1,−1) and
∇∆Φ(0,1,0,−1). It is proven in [37] that the accuracy of the two is equivalent. It can be found
from the literature that adding an EWL combination ∇∆Φ(1,−1,0,0) has little effect on the
positioning result, which is basically the same. However, since the wavelength of the EWL
combination∇∆Φ(1,−1,0,0) is 20.932 m, its ambiguity is easily fixed and can be used to assist
the ambiguity fixing of other combinations. In addition, in order to use four frequencies of
BDS-3, the use of combination∇∆Φ(1,−1,0,0) is added in the paper. Therefore,∇∆Φ(1,−1,0,0),
∇∆Φ(0,0,1,−1), and ∇∆Φ(0,1,0,−1) are finally selected for single epoch EWL/WL ambiguity
resolution.

The optimal pseudorange linear combination can be determined by a similar method.
The optimal pseudorange linear combination is mainly used to generate virtual signals
with higher accuracy, to assist in the fixed ambiguity. Under the short baseline, the optimal
pseudorange linear combination selection of BDS-3 four-frequency has higher accuracy
than the original pseudorange observation signal. Since the pseudorange observation
accuracy of B1C, B1I, B3I, and B2a is different, the equal weight model is not suitable. To
efficiently and reliably estimate the accuracy of these different pseudorange observations,
the code chipping rate is used. According to the code chipping rate information, the
pseudorange linear combination of BDS-3 four-frequency is selected as ∇∆P(0,1,1,0), which
has higher accuracy than the original pseudorange observation signal [36].

2.3. BDS-3 Four-Frequency EWL/WL Single Epoch Ambiguity Resolution Method

For four-frequency carrier phase observations, the ambiguity resolution method is
similar to that of triple-frequency. In [36], it is recommended to use the FCAR method based
on the GF model. The main reason is that the method is simple and can more intuitively
study the single epoch fixation effect of ambiguity. In addition, considering the balance of
positioning accuracy and calculation efficiency, the GF-FCAR method is used to solve the
ambiguity of four-frequency observations in this paper. In the case of a short baseline, the
GF model is used to resolve the EWL ambiguity by rounding to an integer, and then the
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WL ambiguity is fixed using four-frequency EWL observations with a fixed ambiguity. The
ambiguity resolution process of the EWL/WL based on the GF-FCAR model is as follows:

∇∆N̂(ie ,je ,ke ,me) =
∇∆P−∇∆Φ(ie ,je ,ke ,me)

λ(ie ,je ,ke ,me)
+

ε∇∆P − ε∇∆Φ(ie ,je ,ke ,me)

λ(ie ,je ,ke ,me)
(10)

∇∆
^
N(ie ,je ,ke ,me) = round

[
∇∆N̂(ie ,je ,ke ,me)

]
(11)

∇∆Φ̃(ie ,je ,ke ,me) = ∇∆Φ(ie ,je ,ke ,me) − λ(ie ,je ,ke ,me) · ∇∆
^
N(ie ,je ,ke ,me) (12)

where ∇∆N̂(ie ,je ,ke ,me) and ∇∆
^
N(ie ,je ,ke ,me) are the EWL float ambiguity and integer ambigu-

ity, respectively; round[·] represents the rounding calculation.

∇∆N̂(iw ,jw ,kw ,mw) =
∇∆Φ̃(ie ,je ,ke ,me) −∇∆Φ(iw ,jw ,kw ,mw)

λ(iw ,jw ,kw ,mw)
+

ε∇∆Φ(ie ,je ,ke ,me)
− ε∇∆Φ(iw ,jw ,kw ,mw)

λ(iw ,jw ,kw ,mw)
(13)

∇∆
^
N(iw ,jw ,kw ,mw) = round

[
∇∆N̂(iw ,jw ,kw ,mw)

]
(14)

∇∆Φ̃(iw ,jw ,kw ,mw) = ∇∆Φ(iw ,jw ,kw ,mw) − λ(iw ,jw ,kw ,mw) · ∇∆
^
N(iw ,jw ,kw ,mw) (15)

It should be noted that in short baseline positioning, the CF-FCAR method can gener-
ally be fixed to the NL ambiguity. However, the wavelength of NL observation is less than
0.19 m, which is smaller than the original carrier observation. Compared with the EWL/WL
observation, it is more difficult to fix the ambiguity. In the urban dynamic environment,
due to the influence of the surrounding physical environment, the noise and multipath
error of the observation signal will be further amplified after DD and linear combination,
the NL ambiguity is difficult to be fixed by rounding. Therefore, in order to ensure that the
reliability of the positioning system is not affected by the above situation, the ambiguity of
the four-frequency observation is only fixed at the WL level.

2.4. Multi-Frequency GNSS/INS Tightly Coupled Integration
2.4.1. System State Equation

The dynamic model of the GNSS/INS integrated system is mainly described by the
INS error equation. The psi-angle error equation model in the navigation frame (n-frame,
the three axes point to ENU, respectively) is used, it is expressed as follows [38]: δ

.
rn

δ
.
vn

.
ψ

n

 =

 −ωn
en × δrn + δvn

−(2ωn
ie + ωn

en)× δvn −ψn × fn + δgn + Cn
b δfb

ib
−(ωn

ie + ωn
en)×ψn − Cn

b δωb
ib

 (16)

where the superscript (n), the subscript (i) and (e) represent the navigation frame, the
inertial (i-frame), and the earth-center-earth-fixed frame (e-frame), respectively; δrn, δvn

and ψn are the position, velocity, and attitude error vector, respectively; Cn
b is the rotation

matrix from the body frame (b-frame) to the n-frame; ωn
ie is the angular velocity of earth

rotation; ωn
en is the rotation vector from the e-frame to the n-frame; fn is the specific force

vector; δgn is the gravity error vector in the n-frame; δfb
ib and δωb

ib are the accelerometer
and gyro error vector in the b-frame, respectively.

In addition, inertial device errors are the most influential error sources in inertial
navigation, including gyro errors and accelerometer errors. The error equation of the
inertial sensor is as follows:

δωb
ib = sg ·ωb

ib + bg + wg (17)

δfb = sa · fb + ba + wa (18)
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where sg, sa, bg and ba are the scale factor and bias vector of gyro and accelerometer,
respectively; wg and wa are white noise.

For the device error of INS, the bias error is mainly considered. It can generally be
represented by error modeling, such as first-order Markov process, random walk, and
random constant. Here the bias error is modeled as a random walk, which can be expressed
as follows: { .

ba = wba.
bg = wbg

(19)

where wba and wbg represent their random white noise.
The system state equation is determined by the INS dynamic model, and its system

continuous state equation is defined as follows:

.
X = F ·X + G ·W (20)

where F represents the state transition matrix of the system; W is the noise vector of the
system; G is the dynamic noise matrix of the system; X represents the system state vector,
which can be written as follows:

X =
[
δr, δv, ψ, bg, ba

]
(21)

According to the above error equation, F, G, and W can be derived, which are ex-
pressed as follows:

F =


Frr Frv 0 0 0
Fvr Fvv fn× 0 Cn

b
Fψr Fψv −(ωn

ie + ωn
en)× −Cn

b 0
0 0 0 0 0
0 0 0 0 0

 (22)

G =


0 0 0 0
0 Cn

b 0 0
−Cn

b 0 0 0
0 0 I 0
0 0 0 I

, W =


wg
wa
wbg
wba

 (23)

where Frr and Frv indicate state coefficients related to position; Fvr and Fvv indicate coeffi-
cients related to velocity; Fψr and Fψv indicate coefficients related to attitude, see [38] for
specific derivation.

The continuous state Equation (18) is discretized and can be written as follows:

Xk = Φk,k−1Xk−1 + wk−1 (24)

where Φk,k−1 is the discrete state transition matrix; wk−1 is the discrete system noise vector,
and its covariance matrix is Qk. They can be obtained by Equations (25) and (26), which are
specifically expressed as follows [39]:

Φk,k−1 ≈ I + F · ∆t (25)

Qk ≈
1
2
(Φk,k−1GkQGT

k + GkQGT
k ΦT

k,k−1) · ∆t (26)

where ∆t represents the Kalman filtering time interval.
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2.4.2. Measurement Equation

The measurement equation represents the relationship between the state parameter to
be estimated and the measured value in the same epoch. The general discrete measurement
equation is expressed as follows:

Zk = HkXk + Vk (27)

where Zk represents the measurement vector at the epoch k; Hk is the measurement design
matrix, which reflects the relationship between the system state and the measurement
vector; and Vk is the measurement noise vector.

In the GNSS/INS tightly coupled system, the measurement vector at the epoch k is
generally expressed as:

Zk = ∇∆ΦG,k −∇∆ρI,k (28)

where ∇∆ΦG,k represent the GNSS DD carrier observation at the epoch k; and ∇∆ρI,k is
the DD geometric distance calculated by INS.

Aiming at the multi-frequency GNSS/INS tightly coupled positioning model, this
paper uses the single epoch DD WL observation obtained by the multi-frequency EWL/WL
linear combination to replace the traditional DD carrier phase observation and pseudorange
observation. The forms of four-frequency and triple-frequency are basically the same.
Therefore, the measurement vector of the multi-frequency GNSS/INS tightly coupled
system can be expressed as:

∇∆
~
ΦWL −∇∆ρI = (∇∆lWL −∇∆lI)δx + (∇∆mWL −∇∆mI)δy+

= (∇∆nWL −∇∆nI)δz + (∇∆εWL −∇∆ε I)
(29)

where ∇∆Φ̃WL represents the multi-frequency WL observation after the ambiguity is fixed.
∇∆l, ∇∆m, and ∇∆n are the DD direction cosine; ffix, ffiy, and ffiz represent the three
components of the position error in the three directions; ∇∆ε is the DD measurement noise.

Let,

∇∆e =
[
∇∆lWL −∇∆lI ∇∆mWL −∇∆mI ∇∆nWL −∇∆nI

]
(30)

∇∆ε = ∇∆εWL −∇∆ε I (31)

Considering other state vectors, Hk and Vk can be written as follows:

Hk =
[
∇∆en×3 0n×12

]
(32)

Vk =
[
∇∆ε1 ∇∆ε2 · · · ∇∆εn ] T (33)

where n represents the number of visible satellites. Therefore, the measurement equation is
written in matrix form in combination with Formulas (29) to (33):

∇∆
~
Φ

1

WL −∇∆ρ1
I

∇∆
~
Φ

2

WL −∇∆ρ2
I

...

∇∆
~
Φ

n

WL −∇∆ρn
I

 =


∇∆e1 01×12
∇∆e2 01×12

...
...

∇∆en 01×12

 ·X +


∇∆ε1

∇∆ε2

...
∇∆εn

 (34)

2.4.3. Integration Scheme

Figure 1 is a flow chart of the multi-frequency GNSS/INS tightly coupled integrated
positioning method proposed in this paper. Based on the GPS/BDS-2 triple-frequency
WL observation, the BDS-3 four-frequency carrier observation is added to participate in
the tightly coupled positioning. Firstly, the BDS-3 four-frequency DD linear combination
observation model is constructed; and then the BDS-3 four-frequency optimal EWL/WL
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linear combination observation is selected according to certain criteria. Then, the EWL/WL
ambiguity is solved by the GF model, in which the TCAR method is used for GPS/BDS-2
triple-frequency observations, and the FCAR method is used for BDS-3 four-frequency
observations. Finally, the difference between the WL observation with the fixed ambiguity
and the DD geometric distance calculated by the INS is taken as the measurement vector
into the extended Kalman filter (EKF). The estimated positioning error is used to correct
the approximate coordinates calculated by the INS, and the accurate positioning result
after the current epoch correction is output, to realize the multi-frequency tightly coupled
GNSS/INS integrated positioning.

Figure 1. The flow chart of the multi-frequency GNSS/INS tightly coupled positioning method.

3. Results
3.1. Field Test Description

To evaluate the positioning performance of the multi-frequency GNSS/INS tightly
coupled after using the BDS-3 four-frequency observations in urban environments, a land
vehicular test of the integrated navigation system was carried out in Nanjing, China on
22 October 2020. The experimental test hardware platform and equipment were shown
in Figure 2. The inertial data acquisition was from a MEMS-IMU (ADIS16488A). The
IMU was composed of three MEMS gyros and three quartz accelerometers. Its output
frequency was 200 Hz. The main performance indicators can be obtained from Table 3. The
GNSS data were collected by two receivers composed of Sinan K708 board cards, both of
which support receiving BDS-3 data, one of which was located on the roof of a college of
Southeast University as a base station. For the sampling rate of the GNSS receiver, both the
base station and the rover were set to 1 Hz. In addition, the lever arm offset between the
GNSS antenna phase center of the rover station and the IMU measurement center has been
accurately measured before the test.
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Figure 2. The hardware platform and equipment of the vehicular experiment.

Table 3. The specific performance indicator of the MEMS-IMU.

IMU Bias Instability
(1σ)

Random Walk
(1σ) Bias Repeatability (1σ)

Gyro. 5.1◦/h 0.26
◦
/
√

h ±0.2◦/s
Accel. 0.07 mg 0.029 m/s/

√
h ±16 mg

The experimental data collection time lasted for about 40 min, in which the test route
included scenes such as open sky conditions and trees occluded. This paper took about
15 min of data for processing, including the above environment time lasting as long as
possible. The vehicular trajectory was shown in Figure 3, and the maximum baseline length
did not exceed 5 km. In the experiment, the post-processing tightly coupled differential
GNSS/INS integrated positioning and smoothing result solved by the commercial software
Waypoint Inertia Explorer was used as a reference value. The initial navigation parameter
information of the INS can be obtained through the reference value. The vehicular speed
and attitude changes during the experiment were shown in Figure 4. The driving speed
was within 20 m/s.

The experiment collected satellite observation data of the GPS, BDS-2, and BDS-3
systems. Among them, GPS and BDS-2 have triple-frequency observation data, namely
L1, L2, and L5 and B1, B2, and B3 respectively. BDS-3 has four-frequency observation data,
namely B1C, B1I, B3I, and B2a. In the process of data processing, triple-frequency EWL/WL
linear combination was constructed for triple-frequency observations, and four-frequency
EWL/WL linear combination was constructed for four-frequency observations. Among
them, the EWL and WL combinations of triple-frequency GPS/BDS-2 are (0,−1,1) and
(1,−1,0), respectively, and the EWL combination of pseudorange is (0,1,1). The selection of
the above EWL/WL combination can be referred to [40]. To research the influence of BDS-3
four-frequency observations on GNSS/INS tightly coupled positioning, firstly, the signal
quality of GPS/BDS-2 triple-frequency observations and BDS-3 four-frequency observations
in this experimental environment were given, including the number of visible satellites and
corresponding position dilution of precision (PDOP), as well as the signal-to-noise ratio
(SNR) of satellite observations. Secondly, the single epoch EWL/WL ambiguity resolution
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was analyzed, due to the different observation quality of triple-frequency data and four-
frequency data, their ambiguity resolution will also be different. Finally, GNSS/INS tightly
coupled positioning results with or without BDS-3 four-frequency observations were given.

Figure 3. The vehicular trajectory of the experiment (Green: reference result; red: our result).
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3.2. Satellite Availability

In this section, the signal quality of satellite observations during the experiment
was evaluated in terms of the number of visible satellites, PDOP, and SNR. The number
of visible satellites and the PDOP value of the rover station during the experiment are
shown in Figure 5, which is mainly divided into three types: GPS/BDS-2, BDS-3, and
GPS/BDS-2/BDS-3. Among them, GPS and BDS-2 are combined here. One reason is that
compared with BDS-2, the number of visible satellites of GPS is basically at 4, and there
are only 3 satellites in a few time periods, so its PDOP value cannot be calculated. The
other is to study the influence of BDS-3 on GNNS/INS tightly coupled positioning based
on GPS/BDS-2, and the experimental result will be more intuitive.

According to Figure 5a, it can be found that there were about 5 visible satellites of
BDS-3, which can be used for positioning. GPS/BDS-2 had a relatively large number of
visible satellites, about 11 on average. However, during some periods of the experiment,
due to the occlusion of trees, frequent satellite changes occurred. Especially in the last stage,
the number of visible satellites decreased significantly. The PDOP value in Figure 5b was
also further explained. When the number of visible satellites increased, its PDOP value also
significantly improved.

Figure 6 shows the SNR of the triple-frequency and four-frequency observations
during the experiment. The triple-frequency signal shows the observation quality through
the BDS-2 C07 satellite SNR, and the four-frequency signal shows the observation quality
through the BDS-3 C36 satellite SNR. As can be seen from Figure 6 that the SNR of the
three frequencies (B1, B2, B3) of the C07 satellite was above 30 dB-Hz, and most of the time
period was 35–40 dB-Hz. The SNR of the four frequencies (B1C, B1I, B2a, B3I) of the C36
satellite was also above 30 dB-Hz. The SNR of B2a was between 35–40 dB-Hz, and the other
three frequencies were between 40–50 dB-Hz. Compared with the three frequencies of
BDS-2, the SNR of each frequency of BDS-3 was overall higher, and the signal observation
quality was better.



Remote Sens. 2022, 14, 615 13 of 22

Remote Sens. 2022, 13, x FOR PEER REVIEW 13 of 23 
 

 

3.2. Satellite Availability 

In this section, the signal quality of satellite observations during the experiment was 

evaluated in terms of the number of visible satellites, PDOP, and SNR. The number of 

visible satellites and the PDOP value of the rover station during the experiment are shown 

in Figure 5, which is mainly divided into three types: GPS/BDS-2, BDS-3, and GPS/BDS-

2/BDS-3. Among them, GPS and BDS-2 are combined here. One reason is that compared 

with BDS-2, the number of visible satellites of GPS is basically at 4, and there are only 3 

satellites in a few time periods, so its PDOP value cannot be calculated. The other is to 

study the influence of BDS-3 on GNNS/INS tightly coupled positioning based on 

GPS/BDS-2, and the experimental result will be more intuitive. 

 
(a) 

 
(b) 

Figure 5. The number of visible satellites and PDOP of GPS/BDS-2, BDS-3, and GPS/BDS-2/BDS-3 

(all) in the rover station: (a) number of satellites; (b) PDOP. 

According to Figure 5a, it can be found that there were about 5 visible satellites of 

BDS-3, which can be used for positioning. GPS/BDS-2 had a relatively large number of 

visible satellites, about 11 on average. However, during some periods of the experiment, 

due to the occlusion of trees, frequent satellite changes occurred. Especially in the last 

stage, the number of visible satellites decreased significantly. The PDOP value in Figure 

5b was also further explained. When the number of visible satellites increased, its PDOP 

value also significantly improved. 

Figure 6 shows the SNR of the triple-frequency and four-frequency observations dur-

ing the experiment. The triple-frequency signal shows the observation quality through the 

Figure 5. The number of visible satellites and PDOP of GPS/BDS-2, BDS-3, and GPS/BDS-2/BDS-3
(all) in the rover station: (a) number of satellites; (b) PDOP.



Remote Sens. 2022, 14, 615 14 of 22

Remote Sens. 2022, 13, x FOR PEER REVIEW 14 of 23 
 

 

BDS-2 C07 satellite SNR, and the four-frequency signal shows the observation quality 

through the BDS-3 C36 satellite SNR. As can be seen from Figure 6 that the SNR of the 

three frequencies (B1, B2, B3) of the C07 satellite was above 30 dB-Hz, and most of the 

time period was 35–40 dB-Hz. The SNR of the four frequencies (B1C, B1I, B2a, B3I) of the 

C36 satellite was also above 30 dB-Hz. The SNR of B2a was between 35–40 dB-Hz, and the 

other three frequencies were between 40–50 dB-Hz. Compared with the three frequencies 

of BDS-2, the SNR of each frequency of BDS-3 was overall higher, and the signal observa-

tion quality was better. 

 
(a) 

 
(b) 

Figure 6. The signal-to-noise ratio of triple-frequency and four-frequency observations in the exper-

iment: (a) BDS-2 C07; (b) BDS-3 C36. 

3.3. Single Epoch EWL/WL Ambiguity Resolution 

For single epoch EWL/WL ambiguity resolution, there is no need to detect and iden-

tify cycle slips since the ambiguity is processed epoch-by-epoch. To evaluate the perfor-

mance of each linear combination, the ambiguity resolution success rate used is widely 

adopted. It is defined as follows: 

= 100%suc

all

N
P

N
  (35) 

where P  is the ambiguity resolution success rate; sucN  and allN  are the epoch numbers 

of successful ambiguity resolution and total epochs, respectively. However, in dynamic 

Figure 6. The signal-to-noise ratio of triple-frequency and four-frequency observations in the experi-
ment: (a) BDS-2 C07; (b) BDS-3 C36.

3.3. Single Epoch EWL/WL Ambiguity Resolution

For single epoch EWL/WL ambiguity resolution, there is no need to detect and identify
cycle slips since the ambiguity is processed epoch-by-epoch. To evaluate the performance
of each linear combination, the ambiguity resolution success rate used is widely adopted.
It is defined as follows:

P =
Nsuc

Nall
× 100% (35)

where P is the ambiguity resolution success rate; Nsuc and Nall are the epoch numbers
of successful ambiguity resolution and total epochs, respectively. However, in dynamic
positioning, there is no prior reference solution information, so it is impossible to directly
judge whether the ambiguity is fixed successfully. Therefore, it was considered to use the
ambiguity fractions to evaluate the fixation of ambiguity. The ambiguity fractions represent
the difference between the single epoch float ambiguity and the true ambiguity [33]. When
the probability distribution of fractions is within a certain range, it can be considered that
within this range, its ambiguity is successfully fixed.

The performance of the single epoch EWL AR was first studied. The EWL ambiguity
fractions of the GPS/BDS-2 and BDS-3 are given in Figure 7, different colors represent
different satellite pairs. Among them, BDS-3 has two EWL ambiguity fractions, namely
EWL1 and EWL2. EWL1 can be used to assist the ambiguity fix of EWL2. As can be seen
that the trend of the EWL ambiguity fractions of GPS/BDS-2 and BDS-3 was basically the



Remote Sens. 2022, 14, 615 15 of 22

same, within 0.2 cycles. A few scattered points were affected by the noise and multipath
of pseudorange observations in the EWL AR calculation. Table 4 shows mean and STD
values for EWL ambiguity fractions of GPS/BDS-2, BDS-3 EWL1, and BDS-3 EWL2. It
can be found from the table that most EWL ambiguity fractions were within the cycle,
and the average value were almost zero. For GPS/BDS-2, the STD of the EWL ambiguity
fractions was 0.068 cycles, and for BDS-3, it was 0.058 cycles and 0.069 cycles, respectively.
In the EWL AR, the ambiguity fixed rates of GPS/BDS-2 and BDS-3 were 98.9%, 99.0%,
and 98.8%, respectively, within 0.2 cycles, which can be solved reliably by using the single
epoch method.
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Table 4. Mean and STD values for EWL ambiguity fractions of GPS/BDS-2, BDS-3.

GPS/BDS-2 BDS-3 EWL1 BDS-3 EWL2

Mean/cycle −0.002 0.001 −0.002
STD/cycle 0.068 0.058 0.069

Similarly, the WL ambiguity was still rounded and fixed using the GF model. Figure 8
shows the WL ambiguity fractions of GPS/BDS-2 and BDS-3. As can be seen, unlike EWL,
the WL ambiguity fractions of GPS/BDS-2 and BDS-3 had a significant gap. Among them,
the WL ambiguity fractions of BDS-3 was basically within 0.3 cycles, which indicated the
feasibility of single epoch WL AR. While the WL ambiguity fractions of GPS/BDS-2 was
more scattered, which had something to do with the quality of observation data in the
dynamic environment. Table 5 shows mean and STD values for WL ambiguity fractions. It
can be seen that the mean and STD value of WL ambiguity fractions of BDS-3 were better
than GPS/BDS-2, and their values were less than 0.03 and 0.2 cycles, respectively. The WL
ambiguity fractions of GPS/BDS-2/BDS-3 were also given here.
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GPS/BDS-2 BDS-3 GPS/BDS-2/BDS-3

Mean/cycle −0.112 0.022 −0.001
STD/cycle 0.164 0.104 0.147
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To further ensure the reliability of WL AR, the probability distribution of GPS/BDS-2
and BDS-3 WL ambiguity fractions under different thresholds |δ| are given in Table 6,
i.e., ambiguity fixed rate. It can be seen that the smaller the threshold, the smaller the
probability of their ambiguity fractions. Among them, the probability of ambiguity fractions
of BDS-3 was still 94.7% within 0.2 cycles, while GPS/BDS-2 was significantly worse. For
the static baseline solution, to ensure the reliability of AR, the threshold was generally set to
0.2 cycles. However, for the positioning in the urban dynamic environment, the observation
was significantly affected by noise and multipath and was not stable. Hence, the threshold
was set to within 0.4 cycles. At this time, the ambiguity fractions probability of GSP/BDS-2
and BDS-3 was 97.7% and 99.1%, respectively, which can guarantee the reliability of the
positioning results most of the time.

Table 6. The probability distribution of WL ambiguity fractions of GPS/BDS-2, BDS-3, and GPS/BDS-
2/BDS-3 under different thresholds |δ|.

|δ|/Cycle GPS/BDS-2 BDS-3 GPS/BDS-2/BDS-3

<0.45 0.989 0.995 0.990
<0.4 0.977 0.991 0.982
<0.3 0.927 0.983 0.945
<0.2 0.789 0.947 0.842

3.4. Tightly Coupled GNSS/INS Positioning Performance

After the above analysis, the positioning performance of the GNSS/INS tightly cou-
pled with or without BDS-3 four-frequency observations in urban environments was
evaluated. First, the tightly coupled positioning error of the BDS-2 triple-frequency and
BDS-3 four-frequency with INS was given, as shown in Figure 9. Through comparison, it
can be found that the positioning error of the BDS-3/INS tightly coupled was smaller than
the BDS-2/INS tightly coupled in the E, N, and U directions. In the vertical direction, the
tightly coupled positioning errors of the two were obviously different. In the last period of
time, there were fewer outliers in the BDS-3/INS tightly coupled positioning result, and
the positioning error became smaller.

The statistical results of the tightly coupled positioning error of BDS-2/INS and BDS-
3/INS are given in Table 7. By comparison with the BDS-2/INS, the BDS-3/INS tightly
coupled positioning accuracy was increased by 31.1% and 57.3% in the horizontal and
vertical directions, respectively, which further verified the above situation. Furthermore, it
was explained that the combination of BDS-3 four-frequency WL observation and INS can
meet the decimeter/meter-level positioning requirements in the urban environment, and its
tightly coupled positioning has better positioning accuracy and reliability than BDS-2/INS.

Table 7. Positioning error statistics of the BDS-2/INS and BDS-3/INS tightly coupled.

RMS/m

E N U 2D 3D

BDS-2/INS 0.510 0.350 1.951 0.512 2.047
BDS-3/INS 0.239 0.260 0.834 0.353 0.906

Improvement 53.1% 25.7% 57.3% 31.1% 55.7%
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After analyzing the positioning performance of BDS-3 four-frequency WL observation
and its tightly coupled positioning with INS, the positioning error of GPS/BDS-2/INS
tightly coupled positioning with or without BDS-3 four-frequency observations was finally
given, as shown in Figure 10. As can be clearly found, the positioning accuracy of the tightly
coupled with the participation of the BDS-3 four-frequency has been greatly improved, and
the positioning error was smaller in the place where the observation environment was poor
in the last segment.

Through further quantitative analysis, the statistical results of the GNSS/INS tightly
coupled positioning error with or without BDS-3 four-frequency WL observation were
given in Table 8. Compared with GPS/BDS-2/INS, the GPS/BDS-2/BDS-3/INS tightly
coupled positioning accuracy was improved by 36.4%, 23.8%, and 58.7% in the E, N, and U
directions, respectively. In particular, the vertical was the highest. It was believed that the
satellite structure distribution of BDS-3 was better, which was a very important reason. On
the whole, the GPS/BDS-2/BDS-3/INS tightly coupled positioning can achieve decimeter-
level positioning accuracy in the horizontal and vertical directions, respectively, which is in
line with theoretical expectations.
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Figure 10. The GNSS/INS tightly coupled positioning results of different satellite systems and INS:
(a) GPS/BDS-2/INS; (b) GPS/BDS-2/BDS-3/INS.

Table 8. Positioning error statistics of the GNSS/INS tightly coupled with or without BDS-3.

RMS/m

E N U 2D 3D

GPS/BDS-2/INS 0.236 0.269 1.345 0.358 1.392
GPS/BDS-2/BDS-3/INS 0.150 0.205 0.558 0.254 0.613

Improvement 36.4% 23.8% 58.7% 29.1% 56.0%

4. Discussion

In Section 3, through a set of vehicular experiments, the GNSS/INS tightly coupled
positioning performance with or without BDS-3 four-frequency observations in urban
environments was evaluated. First of all, from the observation data, the number of visible
satellites of BDS-3 was obviously less than that of GPS/BDS-2, but it was basically about 5,
which can complete positioning independently. However, in the last part of the experiment,
the observation environment became significantly worse, and the PDOP value also reflected
the distribution of its satellite structure. At this time, the PDOP of GPS/BDS-2 was worse
than that of BDS-3. This was also one of the reasons why the positioning result of BDS-3
was better than that of GPS/BDS-2 in the vertical direction. In addition, the SNR was
also one of the indicators reflecting the quality of the observation data. Compared with
the BDS-2 triple-frequency signal, the BDS-3 four-frequency signal had a higher SNR as a
whole. B2a was the lowest, but it was still above 30 dB-Hz. It can be found from Figure 6



Remote Sens. 2022, 14, 615 20 of 22

that in the last part of the experiment, the SNR of the three frequencies of BDS-2 has all
been reduced, which further shows that the quality of the BDS-2 observation data is poor.

Secondly, the single epoch EWL AR of GPS/BDS-2 and BDS-3 can basically be reliably
fixed from the perspective of the single epoch EWL/WL AR. Among them, the influence
of pseudorange observation noise and multipath was not obvious, mainly because the
wavelength of EWL was longer and AR was easier. However, in a dynamic environment,
there were still a few points that were relatively scattered, which can be seen from the
ambiguity fractions. In WL AR, the ambiguity fractions of GPS/BDS-2 was more scattered
than that of BDS-3. There were two reasons for this phenomenon. For one thing, GPS/BDS-
2 had large pseudorange noise and multipath in the dynamic environment; in another
respect, its EWL wavelength and noise were relatively large and the calculation of WL was
affected by them. The mean and STD value of the WL ambiguity fractions in Table 5 also
verified the above phenomenon. In the dynamic environment, the reliability of AR can only
be further explained by the probability distribution of ambiguity fractions, because there
was no reference integer solution. Compared with GPS/BDS-2, BDS-3 had a higher fixed
rate of ambiguity at different thresholds, within 94%. To be more rigorous, the threshold
can be set to within 0.3. At this time, GPS/BDS-2 and BDS-3 still have fixed rates of 92.7%
and 98.3%. Therefore, it can be believed that WL AR was relatively reliable for most of
the time.

Finally, it was believed that the BDS-3/INS tightly coupled positioning result was
better by comparing with the BDS-2/INS tightly coupled positioning, which was mainly
reflected in the vertical direction. This situation was analyzed in detail above, and it had
something to do with the quality of the observation. In addition, the experimental results
also show that the BDS-3 four-frequency WL observation can achieve decimeter/meter-
level positioning accuracy in urban environments. On this basis, the GNSS/INS tightly
coupled positioning results with or without the BDS-3 four-frequency were compared with
each other. In the horizontal direction and the vertical direction, the positioning accuracy of
GPS/BDS-2/BDS-3 tightly coupled was significantly improved, reaching 29.1% and 58.7%,
respectively. This clearly reflects the advantages of multi-frequency and multi-system
positioning in urban environments. In general, it can be believed that the participation of
BDS-3 four-frequency observations can improve the accuracy and reliability of GNSS/INS
tightly coupled positioning in urban environments. This is not only to add one more satellite
system, but more importantly, to build a higher-quality four-frequency linear combination,
which helps rapid fixing of EWL/WL ambiguity and improvement of positioning accuracy.

The influence of BDS-3 four-frequency WL observations on GNSS/INS tightly coupled
positioning is focused on in this paper. However, the quality control of tightly coupled
positioning in urban environments is expected to be further studied. In addition, the
collection of multi-frequency data in complex urban environments is limited by equipment
and other factors. We have also made preparations for this and will further study it in
the future.

5. Conclusions

The BDS-3 four-frequency WL observation is introduced to improve the positioning
accuracy and reliability of the GNSS/INS tightly coupled system in urban environments
based on the triple-frequency GPS/BDS-2/INS tightly coupled positioning model in this
paper. The positioning performance of GNSS/INS tightly coupled with or without BDS-
3 four-frequency is evaluated through vehicular experiment. The experimental results
show that the positioning accuracy of GPS/BDS-2/BDS-3/INS tightly coupled is 0.254
m and 0.558 m in the horizontal and vertical direction, respectively. By comparison with
GPS/BDS-2/INS, the results have increased by 29.1% and 58.7% in the horizontal and
vertical direction, respectively. In consequence, the multi-frequency and multi-system
tightly coupled positioning with the participation of BDS-3 four-frequency WL observation
can achieve fast and reliable decimeter-level positioning accuracy in urban environments,
which is in line with theoretical expectations. In addition, the BDS-3 four-frequency has a
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higher quality linear combination, which has a slightly higher positioning accuracy than
BDS-2/INS; and the BDS-3/INS tightly coupled can also achieve decimeter/meter-level
positioning accuracy.

The next step is to study the quality control of tightly coupled positioning in urban
environments, especially complex environments, which is expected to achieve a more stable
urban vehicular positioning system.
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