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Abstract: In recent years, due to its powerful feature extraction ability, the deep learning method
has been widely used in hyperspectral image classification tasks. However, the features extracted by
classical deep learning methods have limited discrimination ability, resulting in unsatisfactory classi-
fication performance. In addition, due to the limited data samples of hyperspectral images (HSIs),
how to achieve high classification performance under limited samples is also a research hotspot. In
order to solve the above problems, this paper proposes a deep learning network framework named
the three-dimensional coordination attention mechanism network (3DCAMNet). In this paper, a
three-dimensional coordination attention mechanism (3DCAM) is designed. This attention mecha-
nism can not only obtain the long-distance dependence of the spatial position of HSIs in the vertical
and horizontal directions, but also obtain the difference of importance between different spectral
bands. In order to extract the spectral and spatial information of HSIs more fully, a convolution
module based on convolutional neural network (CNN) is adopted in this paper. In addition, the
linear module is introduced after the convolution module, which can extract more fine advanced
features. In order to verify the effectiveness of 3DCAMNet, a series of experiments were carried
out on five datasets, namely, Indian Pines (IP), Pavia University (UP), Kennedy Space Center (KSC),
Salinas Valley (SV), and University of Houston (HT). The OAs obtained by the proposed method
on the five datasets were 95.81%, 97.01%, 99.01%, 97.48%, and 97.69% respectively, 3.71%, 9.56%,
0.67%, 2.89% and 0.11% higher than the most advanced A2S2K-ResNet. Experimental results show
that, compared with some state-of-the-art methods, 3DCAMNet not only has higher classification
performance, but also has stronger robustness.

Keywords: hyperspectral image; 3D coordination attention mechanism network; convolutional
neural network; dependency; classification

1. Introduction

In the past decades, with the rapid development of hyperspectral imaging technol-
ogy, sensors can capture hyperspectral images (HSIs) in hundreds of bands. In the field
of remote sensing, an important task is hyperspectral image classification. Hyperspec-
tral image classification is used to assign accurate labels to different pixels according to
multidimensional feature space [1–3]. In practical applications, hyperspectral image classi-
fication technology has been widely used in many fields, such as military reconnaissance,
vegetation and ecological monitoring, specific atmospheric assessment, and geological
disasters [4–8].

Traditional machine-learning methods mainly include two steps: feature extraction
and classification [9–14]. In the early stage of hyperspectral image classification, many
classical methods appeared, such as feature mining technology [15] and Markov random
field [16]. However, these methods cannot effectively extract features with strong discrimi-
nation ability. In order to adapt to the nonlinear structure of hyperspectral data, a pattern
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recognition algorithm support vector machine (SVM) was proposed [17], but this method
struggles to effectively solve the multi classification problem.

With the development of deep learning (DL) technology, some methods based on
DL have been widely used in hyperspectral image classification [18–20]. In particular,
the hyperspectral image classification method based on convolutional neural network
(CNN) has attracted extensive attention because it can effectively deal with nonlinear
structure data [21–28]. In [29], the first attempt to extract the spectral features of HSIs by
stacking multilayer one-dimensional neural network (1DCNN) was presented. In addition,
Yu et al. [30] proposed a CNN with deconvolution and hashing method (CNNDH). Ac-
cording to the spectral correlation and band variability of HSIs, a recurrent neural network
(RNN) was used to extract spectral features [31]. In recent years, some two-dimensional
neural networks have also been applied to hyperspectral image classification, and satis-
factory classification performance has been obtained. For example, a two-dimensional
stacked autoencoder (2DSAE) was used to attempt to extract depth features from space [32].
In addition, Makantasis et al. [33] proposed a two-dimensional convolutional neural net-
work (2DCNN), which was used to extract spatial information and classify the original
HSIs pixel by pixel in a supervised manner. In [34], Feng et al. proposed a CNN-based
multilayer spatial–spectral feature fusion and sample augmentation with local and non-
local constraints (MSLN-CNN). MSLN-CNN not only fully extracts the complementary
spatial–spectral information between shallow and deep layers, but also avoids the over-
fitting phenomenon caused by an insufficient number of samples. In addition, in [35],
Gong et al. proposed a multiscale convolutional neural network (MSCNN), which im-
proves the representation ability of HSIs by extracting depth multiscale features. At the
same time, a spatial spectral unified network (SSUN) based on HSIs was proposed [36].
This method shares a unified objective function for feature extraction and classifier training,
and all parameters can be optimized at the same time. Considering the inherent data
attributes of HSIs, spatial–spectral features can be extracted more fully by using a three-
dimensional convolutional neural network (3DCNN). In [37], an unsupervised feature
learning strategy of a three-dimensional convolutional autoencoder (3DCAE) was used
to maximize the exploration of spatial–spectral structure information and learn effective
features in unsupervised mode. Roy et al. [38] proposed a mixed 3DCNN and 2DCNN
feature extraction method (Hybrid-SN). This method first extracts spatial and spectral
features through 3DCNN, then extracts depth spatial features using 2DCNN, and finally re-
alizes high-precision classification. In [39], a robust generative adversarial network (GAN)
was proposed, and the classification performance was effectively improved. In addition,
Paoletti et al. [40] proposed the pyramid residual network (PyResNet).

Although the above methods can effectively improve the classification performance of
high HSIs, they are still not satisfactory. In recent years, in order to further improve the
classification performance, computer vision has widely studied the channel attention mech-
anism and applied it to the field of hyperspectral image classification [41–44]. For example,
a squeeze-and-excitation network (SENet) improved classification performance by intro-
ducing the channel attention mechanism [45]. Wang et al. [46] proposed the spatial–spectral
squeeze-and-excitation network (SSSE), which utilized a squeeze operator and excitation
operation to refine the feature maps. In addition, embedding the attention mechanism into
the popular model can also effectively improve the classification performance. In [47], Mei
et al. proposed bidirectional recurrent neural networks (bi-RNNs) based on an attention
mechanism. The attention map was calculated by the tanh function and sigmoid function.
Roy et al. [48] proposed a fused squeeze-and-excitation network (FuSENet), which obtains
channel attention through global average pooling (GAP) and global max pooling (GMP).
Ding et al. [49] proposed local attention network (LANet), which enriches the semantic
information of low-level features by embedding local attention in high-level features. How-
ever, channel attention can only obtain the attention map of channel dimension, ignoring
spatial information. In [50], in order to obtain prominent spatial features, the convolutional
block attention module (CBAM) not only emphasizes the differences of different channels
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through channel attention, but also uses the pooling operation of channel axis to generate a
spatial attention map to highlight the importance of different spatial pixels. In order to fully
extract spatial and spectral features, Zhong et al. [51] proposed a spatial–spectral residuals
network (SSRN). Recently, Zhu et al. [52] added a spatial and spectral attention network
(RSSAN) to SSRN and achieved better classification performance. In the process of feature
extraction, in order to avoid the interference between the extracted spatial features and
spectral features, Ma et al. [53] designed a double-branch multi-attention (DBMA) network
to extract spatial features and spectral features, using different attention mechanisms in
the two branches. Similarly, Li et al. [54] proposed a double-attention network (DANet),
incorporating spatial attention and channel attention. Specifically, spatial attention is used
to obtain the dependence between any two positions of the feature graph, and channel
attention is used to obtain the channel dependence between different channels. In [55],
Li et al. proposed double-branch dual attention (DBDA). By adding spatial attention and
channel attention modules to the two branches, DBDA achieves better classification per-
formance. In order to highlight important features as much as possible, Cui et al. [56]
proposed a new dual triple-attention network (DTAN), which uses three branches to obtain
cross-dimensional interactive information and obtain attention maps between different
dimensions. In addition, in [57], in order to expand the receptive field and extract more
effective features, Roy et al. proposed an attention-based adaptive spectral–spatial kernel
improved residual network (A2S2K-ResNet).

Although many excellent classification methods have been used for hyperspectral
image classification, extracting features with strong discrimination ability and realizing
high-precision image classification in small samples are still big challenges for hyperspectral
image classification. In recent years, although the spatial attention mechanism and channel
attention mechanism could obtain spatial dependence and channel dependence, there
were still limitations in obtaining long-distance dependence. Considering the spatial
location relationship and the different importance of different bands, we propose a three-
dimensional coordination attention mechanism network (3DCAMNet). 3DCAMNet mainly
includes three main components: a convolution module, linear convolution, and three-
dimensional coordination attention mechanism (3DCAM). Firstly, the convolution module
uses 3DCNN to fully extract spatial and spectral features. Secondly, the linear module
aims to generate a feature map containing more information. Lastly, the designed 3DCAM
not only considers the vertical and horizontal directions of spatial information, but also
highlights the importance of different bands.

The main contributions of this paper are summarized as follows:

(1) The three-dimensional coordination attention mechanism-based network (3DCAM-
Net) proposed in this paper is mainly composed of a three-dimensional coordination
attention mechanism (3DCAM), linear module, and convolution module. This net-
work structure can extract features with strong discrimination ability, and a series of
experiments showed that 3DCAMNet can achieve good classification performance
and has strong robustness.

(2) In this paper, a 3DCAM is proposed. This attention mechanism obtains the 3D coordi-
nation attention map of HSIs by exploring the long-distance relationship between the
vertical and horizontal directions of space and the importance of different channels of
spectral dimension.

(3) In order to extract spatial–spectral features as fully as possible, a convolution module
is used in this paper. Similarly, in order to obtain the feature map containing more
information, a linear module is introduced after the convolution module to extract
more fine high-level features.

The main structure of the remainder of this paper is as follows: in Section 2, the compo-
nents of 3DCAMNet are introduced in detail. Some experimental results and experimental
analysis are provided in Section 3. Section 4 draws the conclusions.
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2. Methodology

In this section, we introduce the three components of 3DCAMNet in detail: the 3D
coordination attention mechanism (3DCAM), linear module, and convolution module.

2.1. Overall Framework of 3DCAMNet

For a hyperspectral image, Z = {X, Y}, where X is the set of all pixel data of the
image, and Y is the set of labels corresponding to all pixels. In order to effectively learn
edge features, the input image is processed and filled pixel by pixel to obtain N cubes with
the size S ∈ RH×W×L. Here, H ×W is the space size of the cube, and L is the number of
spectral bands. The designed 3DCAMNet is mainly composed of three parts. Firstly, the
input image is extracted by convolution module. Secondly, in order to fully consider the
importance of the space and spectrum of the input image, a 3D coordination attention
mechanism (3DCAM) is designed. After feature extraction, in order to extract advanced
features more accurately, inspired by the ghost module, a linear module is designed. Lastly,
the final classification results are obtained through the full connection layer (FC) and
softmax layer. The overall framework of 3DCAMNet is shown in Figure 1. Next, we
introduce the principle and framework of each module in 3DCAMNet step by step.

Figure 1. The overall framework of the proposed method.

2.2. DCAM

Application of the attention mechanism in a convolutional neural network (CNN) can
effectively enhance the ability of feature discrimination, and it is widely used in hyperspec-
tral image classification. Hyperspectral images contain rich spatial and spectral information.
However, in feature extraction, effectively extracting spatial and spectral dimensional fea-
tures is the key to better classification. Therefore, we propose a 3D coordination attention
mechanism (3DCAM), which is used to explore the long-distance relationship between
the vertical and horizontal directions of spatial dimension and the difference of band im-
portance of spectral dimension. The attention mechanism obtains the attention masks of
the spatial dimension and spectral dimension according to the long-distance relationship
between the vertical and horizontal directions of spatial information and the difference of
importance of spectral information.

The structure of the proposed 3DCAM is shown in Figure 2. 3DCAM includes two
parts (spectral attention and spatial coordination attention). Spectral and spatial attention
can adaptively learn different spectral bands and spatial backgrounds, so as to improve
the ability to distinguish different bands and obtain more accurate spatial relationships.
Assuming that the input of 3DCAM is F ∈ RH×W×L, the output Fout can be represented as

Fout = F ·MH(F) ·MW(F) ·ML(F), (1)

where F and Fout represent the input and output of 3DCAM, respectively. MH(·) represents
the attention map in direction H, and the output size is H × 1× 1. MW(·) represents the
attention map in direction W, and the output size is 1×W × 1. Similarly, ML(·) represents
the attention map in direction L, and the output size is 1× 1× L. MH(·) and MW(·) are
obtained by considering the vertical and horizontal directions of spatial information, so as
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to obtain long-distance dependent information. Specifically, F obtains FH ∈ RH×1×1 in the
vertical direction and FW ∈ R1×W×1 in the horizontal direction through the global average
pooling layer, and the obtained results are cascaded. In order to obtain the long-distance
dependence in the vertical and horizontal directions, the cascaded results are sent to the
unit convolution layer, batch normalization layer (BN), and nonlinear activation layer. The
activation function of the nonlinear activation layer is h_swish [58], this kind of activation
function has relatively few parameters, which results in the neural network having richer
representation ability. The h_swish function can be expressed as

f (x) = x · sigmoid(αx), (2)

where α is a trainable parameter. Finally, the obtained results are separated and convoluted
to obtain the vertical attention map MH(·) and the horizontal attention map MW(·).

Figure 2. Block diagram of 3DCAM module.

Similarly, F passes through the global average pool layer to obtain FL ∈ R1×1×L,
and then the obtained result passes through the unit convolution layer and the activation
function layer to obtain the spectral attention map ML(F). The implementation process of
3DCAM is shown in Algorithm 1.

Algorithm 1 Details of 3DCAM.

1: Input:
2: Features: F ∈ RH×W×L.
3: Output:
4: Feature of 3DCAM: Fout ∈ RH×W×L.
5: Initialzation:
6: Initialize all weight parameters of convolutional kernels.
7: F passes through L Avgpool, H AvgPool, and W AvgPool layers to generate FL ∈ R1×1×L, FH ∈ RH×1×1, and
8: FW ∈ R1×W×1, respectively;
9: Reshape the size of feature FH to 1 × H × 1 and cascade with FW to generate FHW ;
10: Convolute FHW with the 3D unit convolution kernel and the results through regularization and nonlinear a:
11: tivation function layer to generate FHW

′;
12: Split FHW

′ and convolute the results with 3D unit convolution kernel to generate FH
′ and FW

′;
13: Normalize FH

′ and FW
′ with the sigmoid function to generate the attention features MH(F) ∈ RH×1×1 and

14: MW(F) ∈ R1×W×1;
15: Convolute FL with the 3D unit convolution kernel to generate FL

′;
16: Normalize FL

′ with the sigmoid function to generate the attention feature ML(F) ∈ R1×1×L;
17: Finally, the attention features MH(F) ∈ RH×1×1,MW(F) ∈ R1×W×1, and ML(F) ∈ R1×1×L are added to the input feature F to
18: obtain Fout ∈ RH×W×L.



Remote Sens. 2022, 14, 608 6 of 21

2.3. Convolution Module

CNNs have strong feature extraction abilities. In particular, it is possible to use the
convolution and pooling operations in a CNN to get deeper information from input data.
Due to the data properties of HSIs, the application of a three-dimensional convolutional
neural network (3DCNN) can preserve the correlation between data pixels, so that the data
will not be lost. In addition, the effective extraction of spatial and spectral information in
hyperspectral images is still the focus of hyperspectral image classification.

In order to effectively extract the spatial–spectral features of HSIs, a convolution block
based on space and spectrum is proposed in this paper. Inspired by Inception V3 [58],
the convolution layer uses a smaller convolution kernel, which can not only learn the
spatial–spectral features of HSIs, but also effectively reduce the parameters. The structure
of the convolution module based on space and spectrum is shown in Figure 3.

Figure 3. Convolution module structure diagram.

As can be seen from Figure 3, input Xi consists of c feature maps with the size of
n× n× b. Xo is the output of input Xi after multilayer convolution, which can be expressed
as

Xo = F(Xi), (3)

where F(·) is a nonlinear composite function. Specifically, the neural network consists of
three layers, and each layer is composed of a convolution, batch normalization (BN), and
nonlinear activation function (ReLU). The convolution kernel size of the convolution layer
is 1 × 1 × 3. The use of the ReLU function can increase the nonlinear relationship between
various layers of neural network, and then complete the complex tasks of neural network,
as shown below.

gactivate(x) =
{

x others
0 x ≤ 0

, (4)

where x represents the input of the nonlinear activation function, and gactivate(·) represents
the nonlinear activation function.

In addition, in order to accelerate the convergence speed, BN layer is added before
ReLU to normalize the data, which alleviates the problem of gradient dispersion to a certain
extent [59]. The normalization formula is as follows:

ˆ
x
(i)

=
x(i) − E

[
x(i)
]

√
Var

[
x(i)
] , (5)

where E[x(i)] represents the average input value of each neuron, and
√

Var[x(i)] represents
the standard deviation of the input value of each neuron.

2.4. Linear Module

In the task of hyperspectral image classification, extracting feature information as
much as possible is the key to improve the classification performance. Inspired by the ghost
module [60], this paper adopts a linear module. On the basis of the features output after the
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fusion of 3DCAM and convolution module, the feature map containing more information
is generated by linear module.

The structure of the linear module is shown in Figure 4. The input yi is linearly
convoluted to obtain ym, and then the obtained feature map ym is cascaded with the input
yi to obtain the output yo. The output ym of linear convolution is calculated as follows:

ym = ϕ(yi) = vx,y,z
i,j , (6)

vx,y,z
i,j = ∑

C

hi−1

∑
α=0

wi−1

∑
β=0

li−1

∑
γ=0

Kα,β,γ
i,j,C · v

(x+α),(y+β),(z+γ)
(i−1),C + bi,j, (7)

where ϕ(·) is a linear convolution function, vx,y,z
i,j represents the neuron at the position

(x, y, z) of the j-th feature map on the i-th layer, hi, wi, and li represent the height, width,
and spectral dimension of the convolution kernel, respectively, and C is the index of (i− 1)
feature map. In addition, Kα,β,γ

i,j,C represents the weight of the j-th convolution kernel on

(α, β, γ) at the C-th feature map position of layer i. v(x+α),(y+β),(z+γ)
(i−1),C represents the value

of the neuron at (x + α, y + β, z + γ) of the C-th feature map on layer (i− 1), and bi,j is the
bias term.

Figure 4. Structure diagram of linear module.

3. Experimental Results and Analysis

In order to verify the classification performance of 3DCAMNet, this section conducts
a series of experiments using five datasets. All experiments are implemented on the same
configuration, i.e., an Intel (R) core (TM) i9-9900k CPU, NVIDIA Geforce RTX 2080TI
GPU, and 32 GB random access memory server. The contents of this section include the
experimental setup, comparison of results, and discussion.

3.1. Experimental Setting
3.1.1. Datasets

Five common datasets were selected, namely, Indian Pines (IP), Pavia University (UP),
Kennedy Space Center (KSC), Salinas Valley (SV), and University of Houston (HT). The
IP, KSC, and SV datasets were captured by airborne visible infrared imaging spectrometer
(AVIRIS) sensors. The UP and HT datasets were obtained by the reflective optical spectral
imaging system (ROSIS-3) sensor and the compact airborne spectral imager (CASI) sensor,
respectively.

Specifically, IP has 16 feature categories with a space size of 145× 145, and 200 spectral
bands can be used for experiments. Compared with IP, UP has fewer feature categories,
only nine, and the image size is 610 × 340. In addition to 13 noise bands, 103 bands are
used in the experiment. The spatial resolution of KSC is 20 m and the spatial size of each
image is 512 × 614. Similarly, after removing the water absorption band, 176 bands are
left for the experiment. The SV space size is 512 × 217 and contains 16 feature categories,
while there are 204 spectral bands available for experiments. The last dataset HT has a
high spatial resolution and a spatial size of 349 × 1905, the number of bands is 114, and
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the wavelength range is 380–1050 nm, including 15 feature categories. The details of the
dataset are shown in Table 1.

Table 1. Experimental dataset information.

IP UP KSC

No. Class Number No. Class Number No. Class Number

1 Alfalfa 46 1 Asphalt 6631 1 Scrub 761
2 Corn-notill 1428 2 Meadows 18,649 2 Willow-swamp 243
3 Corn-mintill 830 3 Gravel 2099 3 CP-hammock 256
4 Corn 237 4 Trees 3064 4 Slash-pine 252
5 Grass/pasture 483 5 Painted metal sheets 1345 5 Oak/Broadleaf 161
6 Grass/trees 730 6 Bare Soil 5029 6 Hardwood 229
7 Grass/pasture-mowed 28 7 Bitumen 1330 7 Swap 105
8 Hay-windrowed 478 8 Self-Blocking Bricks 3682 8 Graminoid-marsh 431
9 Oats 20 9 Shadows 947 9 Spartina-marsh 520

10 Soybean-notill 972 / / / 10 Cattail-marsh 404
11 Soybean-mintill 2455 / / / 11 Salt-marsh 419
12 Soybean-clean 593 / / / 12 Mud-flats 503
13 Wheat 205 / / 13 Water 927
14 Woods 1265 / / / / / /
15 Bldg-Grass-Tree-Drivers 386 / / / / / /
16 Stone-Steel-Towers 93 / / / / / /

Total / 10,249 Total / 42,776 Total / 5211

SV HT

No. Class Number No. Class Number

1 Brocoil-green-weeds_1 2009 1 Healthy grass 1251
2 Brocoil-green-weeds_2 3726 2 Stressed grass 1254
3 Fallow 1976 3 Synthetic grass 697
4 Fallow-rough-plow 1394 4 Trees 1244
5 Fallow-smooth 2678 5 Soil 1242
6 Stubble 3959 6 Water 325
7 Celery 3579 7 Residential 1268
8 Grapes-untrained 11,271 8 Commercial 1244
9 Soil-vinyard-develop 6203 9 Road 1252

10 Corn-senesced-green-
weeds 3278 10 Highway 1227

11 Lettuce-romaine-4wk 1068 11 Railway 1235
12 Lettuce-romaine-5wk 1927 12 Parking Lot 1 1233
13 Lettuce-romaine-6wk 916 13 Parking Lot 2 469
14 Lettuce-romaine-7wk 1070 14 Tennis Court 428
15 Vinyard-untrained 7268 15 Running Track 660
16 Vinyard-vertical-trellis 1807 / / /

Total / 54,129 Total / 15,029

3.1.2. Experimental Setting

In 3DCAMNet, the batch size and maximum training rounds used were 16 and 200,
respectively, and the “Adam” optimizer was selected during the training process. The
learning rate and input space size were 0.0005 and 9× 9, respectively. In addition, the cross-
loss entropy was used to measure the difference between the real probability distribution
and the predicted probability distribution. Table 2 shows the superparameter settings of
3DCAMNet.



Remote Sens. 2022, 14, 608 9 of 21

Table 2. Superparameter setting of 3DCAMNet.

Layer Name Output Shape Filter Size Padding

Conv1 9 × 9 × L,24 1 × 1 × 7,24 N
ConvBlock_1 9 × 9 × L,24 1 × 1 × 3,24 Y
ConvBlock_2 9 × 9 × L,24 1 × 1 × 3,24 Y
ConvBlock_3 9 × 9 × L,24 1 × 1 × 3,24 Y
Avgpooling_h 1 × 9 × 1,24 / /
Avgpooling_w 9 × 1 × 1,24 / /
Avgpooling_l 1 × 1 × L,24 / /

Conv_h 1 × 9 × 1,24 1 × 1 × 1,24 Y
Conv_w 9 × 1 × 1,24 1 × 1 × 1,24 Y
Conv_l 1 × 1 × L,24 1 × 1 × 1,24 Y

Linear Conv 9 × 9 × L,48 1 × 1 × 1,48 Y
Conv2 9 × 9 × 1,48 1 × 1 × L,48 N

Avgpooling 1 × 1 × 1,48 / /
Flatten(out) class × 1 48 N

3.1.3. Evaluation Index

Three evaluation indicators were adopted in the experiments, namely, overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (Kappa) [61]. The measuremnet units
of these evaluation indicators are all dimensionless. The confusion matrix H =

(
ai,j
)

n×n
is constructed with the real category information of the original pixel and the predicted
category information, where n is the number of categories, and ai,j is the number of samples
classified as category i by category j. Assuming that the total number of samples of HSIs is
M, the ratio of the number of accurately classified samples to the total number of samples
OA is

OA =
∑n

i=1 ai,i

M
× 100%, (8)

where, ai,i is the correctly classified element in the confusion matrix. Similarly, AA is the
average value of classification accuracy for each category,

AA =
1
n

n

∑
i=1

ai,j

∑n
j=1 ai,j

× 100%, (9)

The Kappa matrix is another performance evaluation index. The specific calculation is
as follows:

Kappa =
∑n

i=1 ai,i −
∑n

i=1(ai,_a_,i)
M

M− ∑n
i=1(ai,_a_,i)

M

, (10)

where ai,_ and a_,i represent all column elements in row i and all row elements in column i
of confusion matrix H, respectively.

3.2. Experimental Results

In this section, the proposed method 3DCAMNet is compared with other advanced
classification methods, including SVM [17], SSRN [52], PyResNet [40], DBMA [53],
DBDA [55], Hybrid-SN [35], and A2S2K-ResNet [57]. In the experiment, the training
proportion of IP, UP, KSC, SV, and HT datasets was 3%, 0.5%, 5%, 0.5%, and 5%. In ad-
dition, for fair comparison, the input space size of all methods was 9 × 9, and the final
experimental results were the average of 30 experiments.

SVM is a classification method based on the radial basis kernel function (RBF). SSRN
designs a residual module of space and spectrum to extract spatial–spectral information
for the neighborhood blocks of input three-dimensional cube data. PyResNet gradually
increases the feature dimension of each layer through the residual method, so as to get more
location information. In order to further improve the classification performance, DBMA
and DBDA designed spectral and spatial branches to extract the spectral–spatial features of
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HSIs, respectively, and used an attention mechanism to emphasize the channel features and
spatial features in the two branches, respectively. Hybrid-SN verifies the effectiveness of a
hybrid spectral CNN network, whereby spectral–spatial features are first extracted through
3DCNN, and then spatial features are extracted through 2DCNN. A2S2K-ResNet designs
an adaptive kernel attention module, which not only solves the problem of automatically
adjusting the receptive fields (RFs) of the network, but also jointly extracts spectral–spatial
features, so as to enhance the robustness of hyperspectral image classification. Unlike the
attention mechanism proposed in the above methods, in order to obtain the long-distance
dependence in the vertical and horizontal directions and the importance of the spectrum,
a 3D coordination attention mechanism is proposed in this paper. Similarly, in order to
further extract spectral and spatial features with more discriminant features, the 3DCNN
and linear module are used to fully extract joint spectral–spatial features, so as to improve
the classification performance.

The classification accuracy of all methods on IP, UP, KSC, SV, and HT datasets are
show in Tables A1–A5, respectively. It can be seen that, in the five datasets, compared with
other methods, the method proposed in this paper not only obtained the best OA, AA,
and Kappa, but also almost every class had greater advantages in classification accuracy.
Specifically, due to the complex distribution of features in the IP dataset, the classification
accuracy of all methods on this dataset was low, but the method in this paper not only
obtained better accuracy in the categories that were easy to classify, but also obtained
better accuracy in the categories that were difficult to classify such as Class 2, Class 4, and
Class 9. Similarly, in the UP dataset, we can clearly see that the accuracy of the method
proposed in this paper, according to OA, AA, and Kappa or various categories, has great
advantages over other methods. Compared with the IP dataset, the UP dataset has fewer
feature categories, and all methods exhibited better classification results, but the method
in this paper obtained the highest classification accuracy. The KSC dataset has the same
number of categories as the IP dataset, in addition to 16 feature categories, but the KSC
feature categories are scattered. It can be seen from Table A3 that all classification methods
obtained ideal results, but the proposed method obtained the best classification accuracy.
In addition, because the sample distribution of the SV dataset is relatively balanced and the
ground object distribution is relatively regular, the classification accuracy of all methods
was high. On the contrary, HT images were collected from the University of Houston
Campus, with complex distribution and many categories, but the method proposed in this
paper could still achieve high-precision classification.

In addition, Figures 5–9 shows the classification visualization results of all methods,
including the false-color composite image and the classification visualization results of each
method. Because the traditional classification methods cannot effectively extract spatial–
spectral features, the classification effect was poor, while the image was rough and noisy,
as seen for SVM and the deep network methods based on ResNet, including SSRN and
PyResNet. Although these kinds of method can obtain good classification results, there was
still a small amount of noise. In addition, DBMA, DBDA, and A2S2K-ResNet all added an
attention mechanism to the network, which yielded better classification visualization results,
but there were still many classification errors. However, the classification visualization
results obtained by the method proposed in this paper were smoother and closer to the real
feature map. This fully verifies the superiority of the proposed method.
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In conclusion, through multiple angle analysis, it was verified that this method has
more advantages than other methods. First, among all methods, the proposed method had
the highest overall accuracy (OA), average accuracy (OA), and Kappa coefficient (Kappa).
In addition, the method proposed in this paper could not only achieve high classification
accuracy in the categories that were easy to classify, but also had strong judgment ability in
the categories that were difficult to classify. Second, among the classification visualization
results of all methods, the method in this paper obtained smoother results that were closer
to the false-color composite image.

Figure 5. Classification visualization results for IP dataset obtained using eight methods: (a) ground-
truth map, (b) SVM, (c) SSRN, (d) PyResNet, (e) DBMA, (f) DBDA, (g) Hybrid-SN, (h) A2S2K-ResNet,
and (i) proposed method.

Figure 6. Classification visualization results for KSC dataset obtained using eight methods:
(a) ground-truth map, (b) SVM, (c) SSRN, (d) PyResNet, (e) DBMA, (f) DBDA, (g) Hybrid-SN,
(h) A2S2K-ResNet, and (i) proposed method.
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Figure 7. Classification visualization results for UP dataset obtained using eight methods: (a) ground-
truth map, (b) SVM, (c) SSRN, (d) PyResNet, (e) DBMA, (f) DBDA, (g) Hybrid-SN, (h) A2S2K-ResNet,
and (i) proposed method.

Figure 8. Classification visualization results for SV dataset obtained using eight methods: (a) ground-
truth map, (b) SVM, (c) SSRN, (d) PyResNet, (e) DBMA, (f) DBDA, (g) Hybrid-SN, (h) A2S2K-ResNet,
and (i) proposed method.



Remote Sens. 2022, 14, 608 13 of 21
Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

(a)

(b)

Healthy grass

Stressed grass

Synthetic grass

Trees

Soil

Water

Residential

Commercial

Road

Highway

Railway

Parking Lot 1

Parking Lot 2

Tennis Court

Running Track

 

Figure 9. Classification visualization results for HT datasets: (a) ground-truth map, and (b) map of 

the proposed method. 

4. Discussion 

In this section, we discuss in detail the modules and parameters that affect the clas-

sification performance of the proposed method, including the impact of different attention 

mechanisms on classification accuracy OA, the impact of different input space sizes and 

different training sample ratios on classification accuracy OA, ablation experiments of dif-

ferent modules in 3DCAMNet, and the comparison of running time and parameters of 

different methods on IP datasets. 

4.1. Effects of Different Attention Mechanisms on OA 

In order to verify the effectiveness of 3DCAM, we consider two other typical atten-

tion mechanisms for comparison, SE and CBAM, as shown in Figure 10. The experimental 

results of the three attention mechanisms are shown in Table 3. The results show that the 

classification accuracy of 3DCAM on the five datasets was better than SE and CBAM, and 

the attention mechanism of CBAM was better than SE on a whole. The reason is that SE 

attention only emphasizes the importance differences of channels, without considering 

spatial differences. Although CBAM considers the channel dependence and spatial de-

pendence, it does not fully consider the spatial location information. Lastly, for hyper-

spectral data types, 3DCAM fully considers the position relationship in the horizontal and 

vertical directions of space, obtains the long-distance dependence, and considers the dif-

ferences in spectral dimension. Therefore, our proposed 3DCAM can better mark im-

portant spectral bands and spatial location information. 

H
 A

vg
 P

oo
l

W
 A

vg
 P

o
ol

C
on

ca
t 

+
 C

on
v

3
d

B
at

ch
N

o
rm

 +
 N

o
n-

li
n

ea
r

C
on

v
3

d
C

on
v

3
d

S
ig

m
o

id
S

ig
m

o
id

L
 A

v
g
 P

o
o
l

C
on

v
3

d

S
ig

m
o

id

(b) (c)

A
v

g 
P

o
ol

F
u
ll

 C
o

nn
ec

te
d

 N
o
n

-l
in

ea
r

F
u
ll

 C
o

nn
ec

te
d

S
ig

m
o
id

(a)

A
v

g 
P

o
ol

M
ax

 P
oo

l

C
on

v
3

d
 +

 R
eL

U

C
on

v

C
on

v
3

d
 +

 R
eL

U

C
on

v
3

d

 

Figure 10. Comparison of classification results using different attention mechanisms in the proposed 

method: (a) SE, (b) CBAM, and (c) 3DCAM. 

Figure 9. Classification visualization results for HT datasets: (a) ground-truth map, and (b) map of
the proposed method.

4. Discussion

In this section, we discuss in detail the modules and parameters that affect the classifi-
cation performance of the proposed method, including the impact of different attention
mechanisms on classification accuracy OA, the impact of different input space sizes and
different training sample ratios on classification accuracy OA, ablation experiments of
different modules in 3DCAMNet, and the comparison of running time and parameters of
different methods on IP datasets.

4.1. Effects of Different Attention Mechanisms on OA

In order to verify the effectiveness of 3DCAM, we consider two other typical attention
mechanisms for comparison, SE and CBAM, as shown in Figure 10. The experimental
results of the three attention mechanisms are shown in Table 3. The results show that the
classification accuracy of 3DCAM on the five datasets was better than SE and CBAM, and
the attention mechanism of CBAM was better than SE on a whole. The reason is that SE
attention only emphasizes the importance differences of channels, without considering
spatial differences. Although CBAM considers the channel dependence and spatial depen-
dence, it does not fully consider the spatial location information. Lastly, for hyperspectral
data types, 3DCAM fully considers the position relationship in the horizontal and vertical
directions of space, obtains the long-distance dependence, and considers the differences in
spectral dimension. Therefore, our proposed 3DCAM can better mark important spectral
bands and spatial location information.

Figure 10. Comparison of classification results using different attention mechanisms in the proposed
method: (a) SE, (b) CBAM, and (c) 3DCAM.
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Table 3. OA comparison of classification results obtained using different attention mechanisms (%).

Datasets SE CBAM 3DCAM

IP 94.22 94.96 95.81
UP 96.92 96.64 97.01

KSC 98.32 98.51 99.01
SV 96.86 97.10 97.48
HT 97.30 97.43 97.69

4.2. Effects of Different Input Space Sizes and Different Training Sample Ratios on OA

The size n× n of input space and the proportion p of different training samples are
two important superparameters of 3DCAMNet, and their changes have a great impact on
the classification performance. In particular, the selected input space sizes of 5 × 5, 7 × 7,
9 × 9, 11 × 11, and 13 × 13 were used to explore the optimal space size of 3DCAMNet
method. In addition, the proportion of training samples p refers to the proportion of
training samples used by the network. Among them, the value of p for the IP, KSC, and HT
datasets was {1.0%, 2.0%, 3.0%, 4.0%, 5.0%}, while the value of p for the UP and SV datasets
was {0.5%, 1.0%, 1.5%, 2.0%, 2.5%}. Figure 11 shows the OA results of 3DCAMNet with
different input size n and different training sample ratio p for all datasets. As can be seen
from Figure 11, when n = 5 and the proportion of training samples of IP, UP, KSC, SV, and
HT datasets was 1.0%, 0.5%, 1.0%, 0.5%, and 1.0%, respectively, the OA value obtained by
the proposed method was the lowest. With the increase in proportion of training samples,
OA increased slowly. In addition, when n = 9 and the number of training samples was the
highest, the classification performance obtained better results.

Figure 11. Relationship between the training proportion and OA with different patch sizes of n× n
for the proposed 3DCAMNet: (a) IP dataset, (b) UP dataset, (c) KSC dataset, (d) SV dataset, and
(e) HT dataset.
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4.3. Comparison of Contributions of Different Modules in 3DCAMNet

In order to verify the effectiveness of the method proposed in this paper, we conducted
ablation experiments on two important modules of the method: the linear module and
3DCAM. The experimental results are shown in Table 4. It can be seen that, when both the
linear module and 3DCAM were implemented, the OA value obtained on all datasets was
the largest, which fully reflects the strong generalization ability of the proposed method.
On the contrary, when neither module was implemented, the OA value obtained on all
datasets was the lowest. In addition, when either the linear module or the 3DCAM module
was applied to the network, the overall accuracy OA was improved. In general, the ablation
experiment shows that the classification performance of the basic network was the lowest,
but with the gradual addition of modules, the classification performance was also gradually
improved. The ablation experiments fully verified the effectiveness of the linear module
and 3DCAM.

Table 4. OA value of different modules in 3DCAMNet (%).

Modules
Linear Module —

√
—

√

3DCAM — —
√ √

HSI datasets

IP 95.02 95.78 95.00 95.81

UP 96.28 96.94 96.58 97.01

KSC 98.33 98.80 98.75 99.01

SV 96.20 96.56 96.87 97.48

HT 96.28 97.14 97.25 97.69

4.4. Comparison of Running Time and Parameters of Different Methods on IP Dataset

When the input size was 9 × 9 × 200, the comparison results of parameter quantity
and running time between 3DCAMNet and other advanced methods were as shown in
Table 5. It can be seen that the PyResNet based on space and spectrum needed the most
parameters. This is because it obtains more location information by gradually increasing
the feature dimension of all layers, which inevitably necessitates more parameters. In
addition, the longest running time of all methods was DBDA. However, the parameter
amount of the proposed method was similar to that of other methods, and the running time
was also moderate. For further comparison, the OA values obtained by these methods on
the IP dataset are shown in Figure 12. Combined with Table 5, it can be seen that, compared
with other methods, the parameter quantity and running time of the proposed 3DCAMNet
were moderate, while 3DCAMNet method could achieve the highest OA.

Table 5. Comparison of running time and parameters of different methods on IP dataset.

Network Input Size Parameters Running Time (s)

SSRN [52] 9 × 9 × 200 364 k 106

PyResNet [40] 9 × 9 × 200 22.4 M 56

DBMA [53] 9 × 9 × 200 609 k 222

DBDA [55] 9 × 9 × 200 382 k 194

Hybrid-SN [38] 9 × 9 × 200 373 k 37

A2S2K-ResNet [57] 9 × 9 × 200 403 k 40

3DCAMNet 9 × 9 × 200 423 k 146
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Figure 12. Comparison of the OA values obtained by the method on the IP dataset.

5. Conclusions

A 3DCAMNet method was proposed in this paper. It is mainly composed of three
modules: a convolution module, linear module, and 3DCAM. Firstly, the convolution
module uses 3DCNN to fully extract spatial–spectral features. Secondly, the linear module
is introduced after the convolution module to extract more fine features. Lastly, 3DCAM
was designed, which can not only obtain the long-distance dependence between vertical
and horizontal directions in HSI space, but also obtain the importance difference between
different spectral bands. The proposed 3DCAM was compared with two classical attention
mechanisms, i.e., SE and CBAM. The experimental results show that the classification
method based on 3DCAM could obtain better classification performance. Compared with
some state-of-the art methods, such as A2S2K-ResNet and Hybrid-SN, 3DCAMNet could
achieve better classification performance. The reason is that, although A2S2K-ResNet can
expand the receptive field (RF) via the adaptive convolution kernel, the deep features cannot
be reused. Similarly, Hybrid-SN can extract spatial and spectral features using 2DCNN
and 3DCNN, but the classification performance was still worse than that of 3DCAMNet
because of its small RF and insufficient extracted features. In addition, in order to verify
the effectiveness of the proposed method, a series of experiments were carried out on
five datasets. The experimental results show that 3DCAMNet had higher classification
performance and stronger robustness than other state-of-the-art methods, highlighting the
effectiveness of the proposed 3DCAMNet method in hyperspectral classification. In future
work, we will consider a more efficient attention mechanism module and spatial–spectral
feature extraction module.
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Appendix A

Table A1. Classification results of different methods on IP dataset (%).

Class SVM [17] SSRN
[52]

PyResNet
[40] DBMA [53] DBDA

[55]
Hybrid-SN

[35]
A2S2K-ResNet

[57]
Proposed

1 36.62 87.22 26.67 82.90 87.99 73.05 89.41 98.78
2 55.49 85.71 80.92 82.84 90.61 66.14 90.49 96.38
3 62.33 90.65 81.24 79.53 92.07 77.63 92.32 94.80
4 42.54 83.86 62.17 87.42 93.96 62.61 93.78 94.98
5 85.05 98.41 91.75 96.36 99.02 89.56 97.83 98.89
6 83.32 98.29 94.26 96.62 96.82 92.23 97.20 98.11
7 59.87 82.98 19.75 49.28 67.63 44.90 88.70 70.53
8 89.67 97.81 100.00 99.14 98.94 90.65 98.81 100.00
9 39.28 67.03 69.09 54.77 78.24 37.79 64.56 92.71
10 92.32 88.23 82.96 83.92 84.03 70.23 88.59 91.24
11 64.73 89.39 89.59 90.97 93.92 77.38 89.76 96.67
12 50.55 86.98 59.82 80.15 88.91 67.60 92.48 92.01
13 86.74 99.06 80.07 97.46 97.81 82.10 96.89 99.58
14 88.67 97.16 96.31 95.68 97.63 93.12 96.02 97.51
15 61.82 82.01 86.36 82.46 91.48 76.21 91.34 94.31
16 98.66 96.30 90.37 94.50 89.81 45.12 93.31 97.29

OA (%) 68.76 90.24 85.65 86.59 92.44 77.61 92.10 95.81
AA (%) 66.73 89.44 75.67 84.63 90.55 71.65 91.36 94.61
Kappa

(%) 63.98 88.86 83.6 84.79 91.38 74.35 90.97 95.22

Table A2. Classification results of different methods on UP dataset (%).

Class SVM [17] SSRN [52] PyResNet
[40]

DBMA
[53] DBDA [55] Hybrid-SN

[38]
A2S2K-ResNet

[57]
Proposed

1 81.26 94.60 88.11 92.22 94.24 74.67 83.81 95.57
2 84.53 98.15 97.77 96.34 99.16 92.08 92.72 99.38
3 56.56 74.38 30.97 83.79 91.03 63.00 72.97 92.63
4 94.34 96.11 84.79 95.92 97.01 83.44 98.12 97.77
5 95.38 98.94 96.64 98.85 98.83 88.95 98.68 98.74
6 80.66 92.09 54.3 91.58 98.27 83.42 86.51 98.45
7 94.13 69.86 38.3 88.04 98.48 68.86 88.07 99.66
8 71.12 84.54 75.5 81.64 88.38 56.96 74.11 87.19
9 99.94 88.86 91.15 93.22 97.98 65.31 90.97 98.87

OA (%) 82.06 92.76 83.01 92.32 96.52 81.33 87.45 97.01
AA (%) 79.22 88.61 73.06 91.29 95.93 75.19 87.33 96.47
Kappa

(%) 75.44 90.43 76.9 89.79 95.37 75.01 83.16 96.02

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-fusion-contest/
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Table A3. Classification results of different methods on KSC dataset (%).

Class SVM [17] SSRN [52] PyResNet
[40]

DBMA
[53] DBDA [55] Hybrid-SN

[38]
A2S2K-ResNet

[57]
Proposed

1 92.43 97.88 94.10 100.00 100.00 99.41 100.00 99.82
2 87.14 92.67 85.59 93.38 96.17 93.25 99.13 97.61
3 72.47 86.11 81.15 80.70 91.28 86.45 87.81 98.94
4 54.45 86.50 77.23 68.91 83.62 93.34 98.53 92.40
5 64.11 74.79 74.97 74.41 79.30 93.86 92.36 95.94
6 65.23 99.05 78.77 95.51 96.11 95.72 99.92 99.53
7 75.50 84.92 84.74 85.81 94.89 94.94 95.85 96.97
8 87.33 98.48 95.22 94.93 98.90 97.75 99.41 99.97
9 87.94 98.47 93.94 96.81 99.98 98.94 99.76 99.98
10 97.01 99.21 98.97 99.27 100.00 99.97 100.00 100.00
11 96.03 99.23 99.48 99.59 99.16 99.14 100.00 98.86
12 93.76 98.46 96.14 97.47 99.30 99.13 99.64 99.48
13 99.72 99.89 99.73 100.00 100.00 99.61 100.00 100.00

OA (%) 87.96 95.42 91.49 94.15 97.33 97.32 98.34 99.01
AA (%) 82.55 93.51 89.23 91.29 95.28 96.27 97.87 98.42
Kappa

(%) 86.59 94.91 90.52 93.48 97.02 97.02 98.84 98.88

Table A4. Classification results of different methods on SV dataset (%).

SV SVM [17] SSRN [52] PyResNet
[40]

DBMA
[53] DBDA [55] Hybrid-SN

[38]
A2S2K-ResNet

[57]
Proposed

1 99.42 96.56 98.49 100.00 99.62 96.70 99.84 100.00
2 98.79 99.72 99.69 99.98 99.25 97.11 99.99 99.95
3 87.98 93.64 96.37 97.43 96.85 95.83 94.98 97.80
4 97.54 97.29 96.69 93.46 94.34 53.87 96.16 97.06
5 95.10 94.47 91.03 98.70 95.42 90.34 99.13 98.92
6 99.90 99.74 99.61 98.86 99.99 97.03 99.73 99.96
7 95.59 98.86 98.69 97.98 98.58 98.35 99.72 99.89
8 71.66 88.73 83.09 91.98 86.80 85.17 90.15 95.84
9 98.08 99.52 98.86 98.62 98.99 97.93 99.67 99.67
10 85.39 97.05 97.55 96.95 97.62 94.65 98.52 99.10
11 86.98 94.69 95.31 92.83 94.28 59.18 95.21 96.43
12 94.20 98.15 98.19 98.63 97.95 93.87 97.64 99.79
13 93.43 97.86 75.11 98.51 99.45 54.35 97.10 99.93
14 92.03 93.24 87.30 94.28 95.29 59.06 93.29 96.53
15 71.02 76.41 81.15 87.54 81.18 83.34 84.79 92.20
16 97.82 99.20 98.55 99.55 99.71 85.75 99.77 100.0

OA (%) 86.98 91.12 91.52 95.22 92.32 89.10 94.59 97.48
AA (%) 91.56 95.33 93.48 96.58 95.96 83.91 96.61 98.32
Kappa

(%) 85.45 90.15 90.54 94.67 91.44 87.85 93.98 97.19



Remote Sens. 2022, 14, 608 19 of 21

Table A5. Classification results of different methods on HT dataset (%).

HT SVM [17] SSRN [52] PyResNet
[40]

DBMA
[53] DBDA [55] Hybrid-SN

[38]
A2S2K-ResNet

[57]
Proposed

1 95.99 94.63 89.05 93.13 95.55 78.34 98.51 97.37
2 96.97 98.82 95.92 97.10 98.14 83.13 99.38 99.39
3 99.56 99.95 99.95 99.91 99.97 97.15 99.98 100.00
4 97.94 99.00 95.86 98.34 98.10 84.55 97.81 99.67
5 95.58 97.07 98.66 98.24 99.88 85.82 99.42 99.13
6 99.54 99.93 94.24 99.20 99.66 87.66 97.89 99.86
7 88.55 95.07 94.99 93.29 95.52 68.43 97.35 95.32
8 84.14 90.59 90.42 94.12 98.04 66.54 99.05 99.36
9 82.56 94.90 83.48 93.20 95.22 61.04 94.08 96.06
10 86.82 92.43 78.95 91.38 92.78 65.34 94.81 96.11
11 87.94 98.71 87.87 95.24 96.27 65.41 97.25 97.99
12 84.29 95.34 88.31 93.20 95.28 62.86 96.82 97.21
13 76.40 96.93 94.41 91.53 94.69 79.14 97.09 90.59
14 97.29 99.18 97.95 98.76 99.92 79.85 97.65 99.24
15 99.37 98.68 98.60 97.99 98.06 80.77 99.16 99.02

OA (%) 90.93 96.02 90.67 94.88 96.69 73.31 97.58 97.69
AA (%) 91.53 96.75 92.58 95.64 97.14 76.40 97.75 97.75
Kappa

(%) 90.19 95.70 89.92 94.46 96.42 71.16 97.38 97.50
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