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Abstract: Robustness of aerial-ground multi-source image matching is closely related to the quality
of the ground reference image. To explore the influence of reference images on the performance of
air-ground multi-source image matching, we focused on the impact of the control point projection
accuracy and tie point accuracy on bundle adjustment results for generating digital orthophoto
images by using the Structure from Motion algorithm and Monte Carlo analysis. Additionally, we
developed a method to learn local deep features in natural environments based on fine-tuning the
pre-trained ResNet50 model and used the method to match multi-scale, multi-seasonal, and multi-
viewpoint air-ground multi-source images. The results show that the proposed method could yield
a relatively even distribution of feature corresponding points under different conditions, seasons,
viewpoints, illuminations. Compared with state-of-the-art hand-crafted computer vision and deep
learning matching methods, the proposed method demonstrated more efficient and robust matching
performance that could be applied to a variety of unmanned aerial vehicle self- and target-positioning
applications in GPS-denied areas.

Keywords: bundle adjustment; Monte Carlo analysis; digital orthophoto image; ResNet50 model;
image matching; GPS-denied

1. Introduction

Air-ground multi-source image matching is the process of finding corresponding
points between two images taken of the same scene but under different sensors, viewpoint,
time, and weather conditions [1]. Fast and accurate image matching is particularly impor-
tant for unmanned aerial vehicles (UAVs) to allow them to perform tasks such as image
registration, battlefield reconnaissance, and environmental monitoring [2,3]. Air-ground
image matching aims to find robust features of images acquired by UAVs that are consistent
with a previous reference image. The key to successful matching is an appropriate matching
strategy, making use of all available and explicit knowledge concerning the sensor model,
network structure, and image content. In the multi-source UAV image acquisition phase,
differences in resolution, viewpoint, scale, sensor model, and illumination conditions will
lead to feature confusion and object occlusion problems in the images. Differences in the
internal parameters of the camera can also cause differences in image quality. Additionally,
images collected at different times may show changes to the number or presence of objects.
These factors make image matching more difficult.

To represent the content of the image accurately, many feature extraction methods
have been designed. Conventional hand-crafted computer vision matching methods, such
as scale-invariant feature transform (SIFT) [4], speeded up robust features (SURF) [5],
oriented FAST and rotated BRIEF (ORB) [6], and AKAZE [7], are widely used to solve
matching tasks by computing the correspondences between two images. The point feature
matching method based on feature descriptors and geometric constraints is the most
widespread alternative. This typical method uses the similarity constraints of the feature
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descriptor set to calculate initial corresponding points and then eliminates mismatches
using geometric constraints between feature corresponding points set. The Euclidean
distance or Hamming distance of feature descriptors is used to measure similarity, which is
the basis of feature matching. However, the low-level information cannot effectively handle
image transformations such as rotations and illumination changes. When directly applying
these algorithms to multi-source image matching, it becomes difficult to obtain the desired
matching results [8]. Feature detection, feature description, and appropriate matching
strategies can be used to obtain a wide range of robust matching results. The complete
process of image feature matching involves three stages, each with a different emphasis.
The process includes feature detection, feature description, and feature matching, which are
all popular research topics. The feature matching stage requires an appropriate matching
strategy to generate correct and uniformly distributed information feature correspondences.
Improvements to the performance of feature matching have predominantly been achieved
by researchers through improving the feature extraction operator [9,10], improving the
feature descriptor [11], and improving the matching strategy [12]. However, they are still
not robust for large-scale multi-view and multi-temporal air-ground image matching.

In recent years, convolutional neural networks (CNN) have provided more power-
ful feature representations for various types of image feature recognition and matching
tasks [13]. The main difference between a deep feature and a visual feature is that image
deep features are learned automatically from large-scale datasets rather than being devel-
oped manually. Based on the characteristics of CNNs, the output layers of the different
networks have different levels of image visual representation [14,15]. In general, the sig-
nals of the input layer are highly versatile, and the signals of the output layer are easily
fitted using specific training data. Convolutional layer features have stronger associated
image discrimination and more detailed description capabilities than fully connected layer
features. Since deep features are a type of feature representation based on data-driven
learning, CNN models with strong feature representation and generalization capabilities
often require a large training dataset [16,17]. As the CNN layers continue to deepen, the
model’s expression capabilities are enhanced. However, collecting sufficient training data is
tedious and time-consuming, which may even be considered unrealistic in many scenarios,
especially in unknown areas which are not easily accessible. Research on the processing of
image features to improve CNN expression capabilities when training data are insufficient
is the focus of current research [18]. Oquab et al. [19] found that transfer learning between
different learning tasks can be achieved by fine-tuning pre-trained models to yield state-of-
the-art results on challenging benchmark datasets of much smaller sizes. Guo et al. [20]
proposed an adaptive fine-tuning algorithm that specializes in the fine-tuning strategy for
each training example of the target dataset. Comparison with other state-of-the-art fine-
tuning strategies shows its superior performance. Sara et al. [21] proposed a fine-tuning
model ensemble strategy that could be used to optimize deep learning model parameter
settings and save more computational resources. Nima et al. [22] demonstrated that a
pre-trained CNN with adequate fine-tuning performed as well as a CNN trained from
scratch. Fine-tuned CNNs were more robust to the size of the training datasets than CNNs
trained from scratch. They also found that shallow tuning nor deep tuning was the optimal
choice for a particular application. Maggiori et al. [23] fine-tuned a network by using a
small part of a carefully labeled image to output more accurate classifications. After proper
fine-tuning, low-level features tended to be preserved from one dataset to another, while
the higher layer parameters were updated to adapt the network to the new problem [24].
Since our study goal was to obtain UAV images of target areas by simulation in unknown
environments, the training dataset would typically be small. The existing studies mostly
used the matching of UAV’s look-down images with reference images [25,26], while the
study on the matching of large-inclination and multi-view UAV images with reference
images is relatively rare. The focus of this study was the development of a method of using
the pre-trained model to effectively represent the image deep features and thus improve
the robustness of large-scale and multi-temporal image matching.
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For the robust matching of air-ground multi-source images, the key problem is how to
design better image matching methods with superior performance in accuracy, robustness,
and efficiency [27]. In addition, reference image accuracy solution is an essential part of
aerial triangulation. To fully appreciate the impact of digital orthophoto map (DOM) and
digital surface model (DSM) accuracy on image matching, we first provided a detailed
description of problems related to quality when using UAV images to construct reference
images based on the structure from motion (SFM) algorithm. The local deep features
are extracted from multi-source UAV sequence images to match the deep features of the
reference image. The process involves two main stages:

1. For the generation of reference images, the different projection precision of control
points and tie points applied to bundle adjustment were comprehensively compared
based on the SFM method. The correlation between root means square error (RMSE)
of control points and checkpoints, and the variability of spatial point precision was
analyzed. Fifty percent of the ground control points (GCPs) were randomly selected
as control points and 50% were used as checkpoints. The horizontal and vertical
RMSEs of various GCPs and the overall RMSE were selected as control points for
further analysis. Finally, the effect of the number and quality of control points on the
bundle adjustment results was analyzed. These three methods were used to improve
and optimize the accuracy of the DOM and DSM obtained by the UAV, and also
to further improve the reliability and robustness of matching the UAV image and
reference image under various complex conditions;

2. We used transfer learning to fine-tune the pre-trained model to effectively repre-
sent deep features in air-ground multi-source images. Based on the pre-trained
ResNet50 model and the high-precision experimental area reference image obtained
using the SFM algorithm, a method was proposed to match UAV images and reference
images by integrating multi-scale local deep features. Matching experiments were
performed under various conditions, such as at various scales, viewpoints, lighting
conditions, and seasons images to explore the difference in corresponding feature
points between UAV images and the reference image under various complex condi-
tions. Compared with some classic hand-crafted computer vision and deep learning
methods, the proposed method provides a new solution for exploring the imme-
diate and effective positioning of the UAV itself and ground target in GPS-denied
environments.

2. Materials and Methods
2.1. Process Workflow

The accuracy of the reference image has an important impact on image geolocation. To
improve the accuracy of the reference image generated from UAV sequence images, we use
the stated Monte Carlo analysis and bundle adjustment algorithm to derive the reference
image with higher positioning accuracy. Increasing the number of network layers is one
of the methods used to improve the deep feature matching performance of CNNs. Based
on previous studies, this study employed transfer learning to fine-tune the pre-trained
residual neural network ResNet50 model for extracting deep features from multi-source
UAV images and the reference image. The classification loss function of the output layer
full CNN was used to train local deep features extracted from the UAV sequence images,
and two times scale factor image pyramid was constructed to deal with scale changes. The
image pyramid had a scale range from 0.125 to 2.0 with a total of 5 different levels used
to obtain the regional features of images at different scales. A full CNN was applied to
each level of the pyramid independently and the receptive field was configured through
the convolutional layer and the pooling layer to locate the feature points. We used pixel
center coordinates of the receptive field as the feature position. Local feature descriptors
were obtained from feature maps which could be used to describe image local features
at different scales through the use of image pyramids. Finally, we used the RANSAC
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algorithm to remove outliers to achieve coarse to fine image matching. The framework of
our image matching workflow is illustrated in Figure 1.
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Figure 1. The overall workflow of the multi-source image matching method.

2.2. Reference Image Generation

UAV images were initially processed through SFM and free network adjustment to
define the network of tie points and the camera orientation. Camera self-calibration was
predominantly used to adjust principal distance, image principal point, and camera radial
distortion parameters [28]. The main function of the tie points between images was to
identify feature point matching errors and to remove these from the free net adjustment.
After the camera model was determined, photographic quality was mainly affected by
the distribution density of control points, the layout method, and the accuracy of the
control points. To represent the influence of control point density and distribution on
the photographic quality, an appropriate number of GCPs were randomly selected as
checkpoints, and then a bundle adjustment was performed [28]. Monte Carlo analysis was
performed using different numbers of GCPs as control points to ascertain control point and
check point error distributions. The results were used to evaluate the change in accuracy
in different control density ranges. Alternatively, the error associated with any single
GCP after multiple Monte Carlo iterations could be evaluated using bundle adjustment
of a single control point or check point. We thus introduced the bundle adjustment (BA)
model [29]. This model aimed to minimize reprojection error by adjusting the camera pose
and position of spatial points [30].

For a set of control points Pi in a photographic area that is continuously observed
during camera movement, our goal was to calculate the pose transformation between the
moving image reference frame and the fixed reference frame along with the position of
all control points in the fixed reference frame. The observation equation was taken as
z = h(x, y), where x the target 3-D control point p and the observed data possess the pixel
coordinates [us, v2]

T of the feature points on the image. The observation errors can then be
expressed as:

e = z−h(ξ, p) (1)

Considering observations at other times, zi,j represented the data generated by observ-
ing the target point pj at pose ξi. The overall cost function can then be expressed as:

1
2∑m

i=1 ∑n
j=1

∥∥eij
∥∥2

= ∑m
i=1 ∑n

j=1

∥∥zij − h
(
ξi, pj

)∥∥2
(2)

Minimizing this cost function requires adjustments to both the pose and the 3D target
point to achieve better results.

For the overall objective function, the independent variables had to be defined as
quantities to be optimized:

x = [ξ1, ξ2, . . . , ξm, p1, p2, . . . , pn] (3)
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An increment of the independent variable yields the objective function:

1
2
‖ f (x + ∆x)‖2 ≈ 1

2∑m
i=1 ∑n

j=1

∥∥eij + Fij∆ξi + Eij∆pj
∥∥2

(4)

where Eij represents the partial derivative of the function for the target point position, and Fij
represents the partial derivative of the function to the camera pose, linearizing the equation.

A simplified expression for the objective function can then be obtained as follows:

1
2
‖ f (x + ∆x)‖2 =

1
2

∥∥e + F∆xc + E∆xp
∥∥2 (5)

here, the Jacobian matrices E and F must be the derivatives of the global objective function
to be global variables. They are large matrices composed of the derivatives Eij and Fij of
each error term. Here, the Gauss–Newton method is used to iteratively solve the system of
linear equations H∆x = g where:

H=JTJ=
[

FTF FTE
ETF ETE

]
(6)

The H matrix was caused by the Jacobian matrix J(x). One of cost functions eij can be
considered. Here it should be noted that the error term only describes an event in which the
Ti matrix sees pj landmark points, which involve the i-th camera pose and j-th landmark
point, while the derivatives of the remaining variables are 0.

Thus, the Jacobian matrix form corresponding to this error term can thus be expressed
as follows:

Jij(x) =
(

02×6, . . . , 02×6,
∂eij

∂ξi
, 02×6, . . . , 02×3, . . . , 02×3,

∂eij

∂pi
, 02×3, . . . , 02×3

)
(7)

The specific derivation of this formula is given above, where the 02×6 matrix represents
a 0 matrix with 2 × 6 dimensions. The error partial deviation ∂eij/∂ξi of the camera, the
pose was 2 × 6, and the partial deviation ∂eij/∂pj of the landmarks was 2 × 3. The Jacobian
matrix of this error term was 0 except for two non-zero blocks.

Then, we used the Levenberg–Marquart iterative method for iterative optimization
after obtaining ∆x. Here the sparseness was used to block the H matrix to separate camera
pose and landmarks, where:[

H11 H12
HT

12 H22

][
∆x1
∆x2

]
=

[
b1
b2

]
(8)

After elimination, the first line of the equation becomes a term that has nothing to do
with ∆x2. This was taken out separately to yield the incremental equation associated with
the pose as follows: (

H11 − H12H−1
22 HT

12

)
∆x1 = b1 − H12H−1

22 b2 (9)

Finally, we took the solution of the linear equation ∆x1 into the landmark partial
incremental equation HT

12∆x1 + H22∆x2 = b2, and solved for ∆x2. Thus far, we optimized
the camera pose and control points using bundle adjustment.

2.3. Image Deep Feature Extraction

In the image deep feature extraction process, the correlation between local features was
measured by training a feature classifier with an attention mechanism. In [31], each feature
learned a scoring function α( fn; θ), where θ was the parameter of the scoring function
α(·). To achieve this training, weighted sum pooling was used to process features during
training, where the pooling weights were obtained using the attention score network. The
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training process was described as continuously iterating fn ∈ Rd, n = 1, . . . , N, where
d represented the feature dimension, and learning together with the attention score model.
The output y of the network was generated by weighted summation of feature vectors and
given by:

y = W
(
∑n a( fn; θ)· fn

)
(10)

where W ∈ RM×d represents the final fully connected layer weight of the CNN used to
train and predict the M class.

The training process used the cross-entropy loss method, which is expressed as:

η = −y∗· log
(

exp(y)
1T exp(y)

)
(11)

where y∗ is the corresponding truth value, 1 is a unit vector, and the parameters of the
scoring function α(·) are trained using the backpropagation algorithm. Its gradient was
calculated as follows:

∂η

∂θ
=

∂η

∂y ∑
n

∂y
∂an

∂an

∂θ
=

∂η

∂y ∑
n

W fn
∂an

∂θ
(12)

where the backpropagation parameter θ of the output function αn = a( fn; θ) has the same
meaning as the parameters of a standard multi-layer perceptron, both representing the
weight Wn+1 corresponding to the n + 1 node with an input of 1.

2.4. Image Matching Process

We extracted feature keypoints and descriptors from the image database, and the
feature with the highest attention score in each image was selected. Based on the feature
nearest-neighbor search method, the k-d tree bottom-up backtracking strategy was used to
find the feature vector closest to the search target in the database. The distance between
the search image feature vector and the database feature vector was the Euclidean distance
between the vectors calculated from the symmetrical distance. The symmetrical distance
d(x; y) between the query vector x and the feature database vector y was expressed by the
centroid distance between them. The equation used to calculate the symmetrical distance is
as follows:

d(x; y) = d(q(x), q(y)) =
√

∑j d
(
qj(x), qj(y)

)2 (13)

where d
(
qj(x), qj(y)

)2 can be obtained by referencing the fast lookup table of the j-th sub-
quantizer. Each lookup table contained the squared distance between all centroids in the
sub-quantizer.

After the features to be matched were extracted from the search image, local feature
descriptors that were automatically extracted from the search image were used to perform
a nearest neighbor search. For the first K-nearest neighbor, local descriptors retrieved
from the database, all matches for each database image were then summarized. Finally,
an Affine transformation model was used to calculate the feature corresponding points in
the search image and the reference image, and geometric verification based on RANSAC
was performed to eliminate mismatches. The number of corresponding points in use as the
final matching result was based on the image deep features.

3. Experiments and Analysis

In this section, experiments performed on several different UAV images and Google
images are described to evaluate the number of correct matching points, matching preci-
sion, matching time, and robustness of our method. To evaluate the performance, camera
calibration and UAV reference image data production were performed. Then, UAV images
and reference image deep features were extracted and feature map visual results were
presented. We also displayed the matching results for the different variations. Finally, we
compared the proposed method with eight state-of-the-art image matching algorithms,
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including five classic hand-crafted computer vision image matching methods (SIFT [4],
SURF [5], ORB [6], AKAZE [7], RIFT [32]), and three deep-learning image matching meth-
ods (LPM [33], R2D2 [34], SuperPoint [35]).

3.1. Data Source

The experimental data were obtained from the UAV platform and Google Earth,
and the overall terrain in the experimental area was low hills with moderate elevation
differences and rich ground object types, which were conducive to verification robustness
of the UAV image and reference image matching algorithm. However, the UAV platform
is limited by the sensor field of view, and when acquiring a wide range of terrain data, it
needs to fly multiple routes to acquire all images in the survey to ensure the overlap of the
image data. The data source of the experimental UAV reference image was obtained from
UAV sequence images with 80% photographic course overlap and 60% lateral overlap. The
sequence images include top views at 1:500 and 1:1000 scales, oblique views at different
illumination and different seasons, and oblique views at different scales and different
viewpoints. The Google reference image was obtained from the Google Earth platform.

3.2. Experiment Platform

The experiments were performed on a 2.6GHz Intel CPU with 32GB RAM, NVIDIA
GTX 1660Ti, Win10 PC. The programming environment used was Anaconda3 5.2.0 (https:
//mirrors.tuna.tsinghua.edu.cn/anaconda/archive/) (accessed on 20 December 2021) with
TensorFlow 1.2.0.

3.3. UAV Reference Image

Camera calibration is a key link in camera measurement applications. The accuracy
of the calibration results affects the convenience and accuracy of the image [36]. In our
experiment, the average and standard deviation of parameters in the camera were obtained
based on the results of multiple self-calibrations using the Agisoft Metashape software. The
purpose was to make an image network for self-calibration to perform the strict quality
estimation. The results are shown in Table 1.

Table 1. Camera calibration results.

Camera Parameter Calibrate Values

Model DSC-RX1RM2
Image size 7952 × 5304 pixels

Focal length 35 mm
Pixel size 4.53 µm

Principal distance 7507.03 ± 11.41 pixels
fx and fy 7752.36 ± 17.65 mm(

cx, cy
)

(7.05 ± 0.94, −43.71 ± 2.04) mm
k1 −0.04 ± 0.05
k2 −0.22 ± 0.57
k3 0.33 ± 0.22

In the case of fixed camera calibration, the parameter size settings of the tie point
accuracy, GCP projection accuracy, and marker accuracy during the UAV image processing
have an important impact on the self-calibrated bundle adjustment results. To describe
this effect and determine a better marker accuracy value, we selected 12 GCPs as check-
points and 82 GCPs as control points. We then performed unified bundle adjustment and
calculated the range of adjustment results. The setting range for tie point accuracy and
projection accuracy was 0.1–4.0 and 0.1–1.0 pixels, respectively. Marker accuracy was set to
0.001, 0.005, 0.01, 0.02, and 0.05. As shown in Figure 2, the results showed that the RMSE
value of the control points was between 0–0.25 m and the RMSE value of the checkpoints
was concentrated in the range 0.10–0.15 m. It reflected the strong spatial variation of RMSE,
and the uneven distribution of the observation weights of the GCPs. The RMSE ratio

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
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(check/control and control/check) between check points and control points was helpful
in terms of confirming whether the error distribution was consistent during the bundle
adjustment process because a larger RMSE value indicated an overfit to the control point
measurement. In Figure 2, we show the ratio surface graph of an average checkpoint and
control point RMSE value for each marker accuracy in detail.
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Figure 3 shows the RMSE results of the bundle adjustment combined with the control
points and checkpoints from the stated Monte Carlo analysis, where each box wireframe
represents the results of the five self-calibration bundle adjustments performed with a
specific marker accuracy. The horizontal line indicates the median RMSE. The boxes
were distributed at 25% and 75% positions and the whiskers represent the full range of
adjustment results. They are not regarded as outliers and are represented by the “+” sign.

The experimental results showed that as the marker accuracy value continued to
increase, the box of the control point RMSE kept growing and its median value also
increased. In particular, when the marker accuracy value was greater than 0.01, the RMSE
value changed significantly. The marker accuracy value always kept the RMSE values in
the horizontal direction low. There was not much of a difference between the control point
and checkpoint values. The RMSE value in the vertical direction was significantly higher
than in the horizontal direction. As the difference between the control point and check
point increased, the “+” sign of whiskers value increased. In general, the RMSE values
of the control points and check points remained relatively stable and the median showed
no significant change. The marker accuracy value was 0.01 m as the boundary. When its
accuracy was greater than 0.01 m, the RMSE values of the control points and check points



Remote Sens. 2022, 14, 588 9 of 21

were significantly increased, its accuracy was greater than 0.01 m, and the RMSE values of
the control points and check points were significantly increased. When its accuracy was less
than 0.01 m, the RMSE value remained stable. To reduce the marker accuracy constraint
value and improve the RMSE accuracy of the bundle adjustment and remove the abnormal
values, the marker accuracy value was set to 0.01 m in the experiment.
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Based on the results of the stated Monte Carlo analysis, we obtained values for the
projection accuracy, tie point accuracy, and marker accuracy that could be used to balance
the bundle adjustment results. To further improve the bundle adjustment accuracy, a
specific number of different, randomly selected GCPs were used as control points for
each bundle adjustment and the remaining GCPs were used as checkpoints. The result
was determined by performing 20 adjustment iterations per analysis procedure. In our
experiment, a random selection of 10–90% of the GCPs was used as control points for each
bundle adjustment analysis procedure. The results of the stated Monte Carlo box analysis
are shown in Figure 4. As can be seen, the density of any specific control points and the
distribution of the RMSE values reflected the changes caused by the specific selection
of GCPs for control points or checkpoints. For regional network bundle adjustments
involving any number of control points, the change in RMSE value reflected the change
in results associated with selecting different control points. This figure also shows the
inverse correlation between the RMSE value and the proportion of control points. This
indicated that the overall error could be minimized by not allowing more control points to
participate in the regional network bundle adjustment. A small number of control points
participating in bundle adjustment will reduce the regional network constraints during
the adjustment to make the control point RMSE value smaller, which will also cause the
control point and checkpoint RMSE box to become more separated. Because fewer GCPs
were used as control points, the margin of error between the control points and checkpoints
varied. This constraint can be better adapted to bundle adjustment by reducing the number
of control points, resulting in a small control point RMSE value. However, the use of only
a few GCPs as control points increases the difficulty associated with providing effective
constraints for the bundle adjustment of large areas, causing checkpoints to vary widely.
Reducing the number of control points participating in adjustment gradually increases
the checkpoint error. Additionally, horizontal and vertical errors are highly systematic,
reflecting the fact that the positioning accuracy of UAV images depends on control point
distribution. Therefore, we believe that adjustment using more than 80% of the GCPs as
control points can effectively minimize the impact of any spatially weaker control point
distribution based on the analysis results for each GCP.
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Accuracy maps provide valuable insights into predicted photographic areas and
highlight the impact of photogrammetry and georeferencing on overall photographic
quality [37]. Therefore, the evaluation of the correlation between parameters can provide
insight into any self-calibration problems. Experimentally, the control point position is
measured using the global navigation satellite system (GNSS) to provide absolute position
and accuracy (accuracy is better than 2 mm in the horizontal direction and better than 1cm
in the vertical direction). Based on the Agisoft Metashape software used for UAV image data
processing, other parameter values were set as follows: the accuracy of photo alignment
was “medium”, and the limit to the number of tie points was set to 4000 to provide a tight
distribution of tie points for accurate analysis. For accuracy, dense cloud generation was
performed with “high quality”, and surface noise was minimized by “aggressive” depth
filtering. The final experimental results are shown in Table 2.

Table 2. Characteristics of the experimental area surveys.

Survey Parameters Values

Flight plan Altitude 350 m
Image overlap 80% forward 60% side

Camera orientations
Position (X, Y, Z; m) [0.029, 0.032, 0.025]

Rotation (roll, pitch, yaw; mdeg.) [0.005, 0.004, 0.002]

Processing

Number of images processed 327
GCPs (as control, [as check]) 82 [12]
GCP image precision (pix) 0.1

Tie point image precision (pix) 0.75

GCP RMS discrepancies Control points (X, Y, Z; m) [1.772, 1.603, 0.054]
Check points (X, Y, Z; m) [0.758, 0.186, 0.388]

Point coordinate RMS
discrepancies

Mean for all points (X, Y, Z; mm) 0.72
Std. deviation all points (X, Y, Z; mm) 0.57

Based on the above analysis, the final projection accuracy was set to 0.1 pixel, tie point
accuracy was 0.75 pixel, marker accuracy was 0.01 m, 80% of the GCPs were selected as
control points, and 20% of the GCPs were used as check points. The DOM and DSM of the
study area are shown in Figure 5.

3.4. Deep Feature Visualization

This study aimed to improve the accuracy and robustness of collaborative matching
between multi-source image deep features. An optical HD camera and infrared thermal
imager were used for collecting experimental data. The purpose was to verify the per-
formance of our algorithm for the collaborative matching of visible images and thermal
infrared images with a reference image. For the bottom-up hierarchical CNN structure,
different layers of neurons have learned different image feature types. The bottom layer of
the hierarchy learns basic features, and the features that are extracted upward are closer to
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the current work. Based on the ResNet50 pre-trained model, the first 5 layers of features
from the UAV sequence images and reference images were extracted after convolution. For
the hierarchical CNN structure, different levels of neurons learned different types of image
features, and the bottom-up features formed a hierarchical structure. The bottom layer of
the hierarchy learned basic features, and the features that were extracted upward were more
closely associated with the current task [16,38,39]. The image had 64-dimensional features
after the first convolutional layer, 256-dimensional features after the second convolutional
layer, 512-dimensional features after the third convolutional layer, 1024-dimensional fea-
tures after the fourth convolutional layer, and 2048-dimensional features were obtained
after the fifth convolutional layer. Figure 6 shows the feature maps of the first to the fifth
layer after convolution for various matching cases.
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Based on a comprehensive consideration and comparison of feature descriptor di-
mensions and feature complexity, we finally selected features of the fourth convolutional
layer output. The input of this layer was a 28 × 28 × 512 feature map. The output feature
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map was upgraded by first reducing the input feature map to 28 × 28 × 256 through a
1 × 1 × 256 convolutional layer, then through a 3× 3× 256 convolutional layer, and finally
through a 1 × 1 × 1024 convolutional layer.

3.5. Matching Results and Analysis
3.5.1. Matching Results Based on UAV Reference Image

In this section, experimental area DOM made using UAV images taken in winter was
used as the reference image and its deep features were extracted. Experimental data were
typical multi-source, multi-temporal, and multi-resolution images. We extracted local deep
features from different types of UAV images and matched these with the reference image.
Deep feature automatic recognition and matching system for complex conditions should
be able to adapt to some environmental change and still detect natural features stably.
This stability is termed repeatable detection capability, which indicates that significant
feature detection capabilities are independent of environmental changes such as camera
parameters, viewpoint changes, and changes in illumination. To verify the ability of the
proposed method to repeatedly detect significant feature locations, deep feature matching
experiments involving different scales, rotations, viewpoints, and changes in lighting
conditions were performed.

Photographic images vary in scale due to changes in the camera altitude or focal
length during the UAV image acquisition process. Viewpoint changes are typically divided
into two types. One involves long-distance images, large tilt, and small scale to match the
reference image. The other involves short distance images, small tilt, and large scale to
match the reference image. Image matching feature points with large changes in viewpoint
are concentrated in the central area of the image, with fewer matching points on the
edges. There are two reasons for the small number of feature matching points at the edges.
One is that the large tilt leads to longer distances. These greater distances lead to larger
deformations, including features being hidden in some cases, making matching difficult.
The second reason is that some features of an oblique image are not visible on the reference
image. Illumination changes will have a great impact on the overall grayscale distribution
of the image, the edge information, and the chromaticity space of the color image, which
will affect the accuracy of the feature points-based scene matching methods.

In this experiment, the reference images with 10-cm resolution, along with UAV images
taken at different resolutions, seasons, viewpoints, illuminations, and with different sensors
were used as the images to be matched. Among these, we used some historical DOM at
different periods as the target images to be matched. First, we performed scale, seasonal,
viewpoint, and illumination change experiments to verify the performance of the deep
feature matching, as shown in Figure 7.

Figure 7 shows the seven group images matched results based on UAV reference
image in different conditions which included variations in scale, season, viewpoint, and
illumination. The proposed method obtained a rich number of correct matching points, and
the identified corresponding points are sufficient and evenly distributed, indicating that
the proposed method has good robustness in matching multi-source images with different
viewpoints, different illumination, and different scales.

3.5.2. Matching Results Based on Google Reference Image

In this section, the reference image of the experimental area was obtained from
the Google Earth platform. The experimental data had obvious multi-source and multi-
temporal characteristics. We extracted local deep features from different types of images
and matched these with the reference image. Image temporal changes can typically change
the physical locations of matching feature points. It could cause textural differences, light-
ing differences, weather changes, object occlusion, and can increase or decrease the ground
objects on the image. This has an important impact on the extraction of deep features.
Therefore, the robustness of the image matching algorithm can be demonstrated by using
images with large temporal variations to test.
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Figure 8 presents the three group images matched results based on Google reference
images in different conditions which included variations in season, texture, time, and
season. The experimental results vividly describe the effects of image time, season, and
texture changes on the performance of multi-source image matching, indicating that these
features play an important role in multi-source image matching. However, the proposed
method could obtain a large number of matched point pairs, and the corresponding points
are evenly distributed, indicating that our algorithm has good robustness in multi-source
image matching based on Google reference images with different seasons, different textures,
and different times.
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Figure 7. Multi-source image matching based on UAV reference image. (a) Case 1: Image matching
at different scales; (b) Case 2: Image matching with seasonal differences; (c) Case 3: Image matching
with viewpoint changes; (d) Case 4: Image matching with sunny illumination; (e) Case 5: Image
matching with overcast illumination; (f) Case 6: Image matching with sunset illumination; (g) Case 7:
Image matching with rainy illumination.

3.6. Matching Performance Analysis

The above experimental results showed that our method could obtain many features’
corresponding points, which all had a good distribution on the matched images. The
matching was relatively dense on the search image. It displayed that the use of local deep
features and transfer learning to fine-tune the ResNet50 convolutional neural network
model imparted higher robustness in terms of changes in scale, season, viewpoint, and
illumination. To evaluate the performance of our method more comprehensively, image
matching precision and runtime are used as criteria in the evaluation. EC represented the
number of coarse matching points, CC represented the number of fine matching points,
and the precision criteria were defined as precision = CC/EC. The results are shown in
Table 3. We found that the image matching had higher precision and a lower time cost,
indicating that the proposed method can adapt more effectively to multi-source remote
sensing image matching. In matching results based on UAV reference, the highest precision
is viewpoint change in case 3, up to 32.7%, the lowest precision is rainy illumination in case
7, only 11.7%. In addition, the matching precisions of case 5 and case 6 with overcast and
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sunset illumination are also relatively low. In matching results based on Google reference
image, case 10 with more significant similarity had the best matching result, showing that
the higher the image similarity, the better the matching effect. It demonstrated that the
light and the seasonal difference had a great impact on the coarse and fine matching pairs
of multi-source images.
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Table 3. Multi-source image matching results for ten cases.

Image Pair
Indicators

EC CC Precision Time(s)

Figure 7

case1 1060 215 20.3% 5.925
case2 1040 199 19.1% 8.128
case3 241 79 32.7% 8.281
case4 471 141 29.9% 5.956
case5 484 75 15.5% 7.163
case6 383 50 13.1% 8.934
case7 1178 138 11.7% 5.863

Figure 8
case8 1655 87 5.3% 7.371
case9 2157 140 6.5% 6.301

case10 2448 949 38.7% 7.359

3.7. Matching Performance Comparison

To demonstrate the advantages of the proposed method, comparative experiments
with some popular image matching methods were conducted, including five hand-crafted
matching methods (SIFT, SURF, ORB, AKAZE, RIFT) and three deep learning matching
methods (LPM, R2D2, SuperPoint). SIFT and SURF descriptors were searched using the
fast approximately nearest neighbor method and the Euclidean distance was used for
similarity measurements. The AKAZE descriptor was searched using a brute force search
and similarity measurements were performed using the Euclidean distance. The ORB
feature was searched using a brute force search, and the Hamming distance was used for
similarity measurements. For these algorithms, we directly used the relevant functions
provided by OpenCV version 3.4.2.16, and the feature detection value was set to 5000.
The description and matching were left as default values. The parameters setting of RIFT,
R2D2, LPM, and SuperPoint methods follow the original paper for a fair comparison.
We performed a comparison with the above-mentioned hand-crafted and deep learning
methods in terms of the number of coarse and fine matches, matching precision, and
matching time. Experimental results are shown in Figure 9. From the experimental results,
we found that the hand-crafted matching algorithms provided by OpenCV library are
difficult to adapt to multi-source image matching, because the fine matching numbers
and the matching precision are low. The performance of deep learning methods varies
significantly in different cases. The proposed method could obtain a lot of fine matching
corresponding points in all cases. It is a significant advantage of the proposed method.
The fine matching number was always at a high level, and the stability was better than
other algorithms. Therefore, the proposed method achieved good matching precision,
which shows that it is suitable for multi-source image matching. In terms of matching time
consumption, the runtime of our method was relatively low and it was slightly higher than
other matching methods (SURF, ORB, AKAZE, SuperPoint) which are known for matching
speed, but the fine matching numbers and matching precision were much higher than these
methods. Comprehensive analysis shows that the proposed method has better robustness
for multi-source image matching.
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4. Discussion

This study involved the use of local deep features based on transfer learning to fine-
tune a pre-trained ResNet50 convolutional neural network model matching framework.
This was used to effectively find matches between the reference image and multi-source
UAV images with complex background variations to solve the problem of UAV self- and
target-positioning in GPS-denied environments. The experimental results showed that our
method was effective. The following steps were included in the proposed method.

Firstly, we obtained search images from different sensors at different periods, such as
oblique views at different seasons and illuminations, and oblique views at different scales
and viewpoints. Then, we combined the best practice of the SFM algorithm and Monte
Carlo analysis through free net adjustment and bundle adjustment. We found the optimal
control point projection accuracy, tie point accuracy, and mark accuracy to improve the
DSM and DOM accuracy of the study area.

Secondly, we fine-tuned the output feature vector of the pre-trained ResNet50 model
to extract the deep features from multi-source UAV images and reference images. Then,
a five-layer image pyramid model with two times scaling factor was used to solve the
problem of image multi-scale deep feature extraction. The method was also used to perform
multi-scale, multi-seasonal, multi-viewpoint matching of air-ground images.

Finally, a coarse-to-fine image matching strategy based on the RANSAC constraint
algorithm for multi-source UAV images and reference images was applied.

The precision of the UAV reference image depends on the projection accuracy, tie point
accuracy, marker accuracy, image texture, camera model, and camera geometry. In our
experimental results, the large changes in control point RMSE and checkpoint RMSE were
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caused by changing the input control and tie point image observation accuracy setting for
processing (Figure 2), which illustrated the importance of the settings. Therefore, appro-
priate observation accuracy values need to be used to avoid introducing processing errors
into the DSM and DOM. Suitable values for tie and control points can be determined from
the RMSE image residual magnitudes computed from the bundle adjustment. Through
using appropriate values for the tie point and GCP image projection accuracy, the differ-
ence in DSM and DOM RMSE with different GCPs improved from 15.9 to 3 mm, which
could be considered an improvement by a factor of 5.3 in precision. Appropriate setting
values resulted in the check point RMSE decreasing from 17 to 8.8 mm, representing an
improvement in accuracy of approximately 2 times. The Monte Carlo analysis suggested
that the assessed performance would not be substantially degraded if 50% fewer GCPs had
been deployed (Figure 4). This would also provide significant GCP redundancy in terms
of using the Monte Carlo approach for validating the quality. Our approach highlights
the utility of processing different GCPs and check point combinations to demonstrate a
reduction in the error associated with the bundle adjustment and provides a more reliable
reference image generation solution.

To acquire sufficient matches with good distribution, we used the transfer learning
method to fine-tune the pre-trained ResNet50 model with Google’s landmark dataset and
extracted the first 5 block layers of deep features from the convolutional layer module. We
selected descriptors of the fourth block convolutional layer output result, which the 1024-
dimension feature descriptors for initial image matching were used along with RANSAC
to achieve coarse-to-fine matching. The image matching pairs covered diverse scenarios
which included multi-scale, multi-season, and multi-viewpoint scene changes of the study
area. The results indicated that the proposed method was more effective and stable in terms
of multi-source remote sensing image matching than some state-of-the-art hand-crafted
computer vision methods and deep learning matching methods.

However, the reference image was generated from UAV sequence images, which are
still difficult to adapt in unfamiliar areas. Therefore, we supplemented it with Google
image as the reference image and got good results. Experimental results showed that the
proposed method could still obtain a good matching effect based on the Google reference
image. To realize engineering application, based on the findings and explorations in this
study, developing a real-time UAV pose estimation method using the deep feature of the
satellite image is the next step of our research.

5. Conclusions

In this paper, a learning feature matching method was proposed based on the pre-trained
ResNet50 model. The matching experiments were conducted under various conditions such
as different scales, different views, different illumination, and different seasons. The results
showed that the proposed method can obtain efficient and robust results in UAV image and
reference image matching under various complex conditions, and has obvious advantages
over some classical hand-crafted and deep learning methods. It is valuable to solve UAV self-
and target-geolocation based on image feature matching in GPS-denied environments.

However, the pre-trained ResNet50 model is limited by the time cost, which makes
it difficult to achieve real-time matching. Deep learning features are data-driven feature
representations, and a large amount of training data is often required to obtain convolutional
neural network models with powerful feature representation. In addition, the accuracy of
deep learning feature recognition and detection significantly depends on the quality and
variety of training datasets. Therefore, we can further exploit the idea of transfer learning to
find a pre-trained lightweight network and some labeled data which is close to the target
dataset, while using these models and data to build a model that would increase the labeling
of target data to achieve real-time image matching. Our future work will focus on improving
the efficiency of the matching algorithm of the proposed method to reduce time costs.
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