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Abstract: Point clouds acquired with LiDAR are widely adopted in various fields, such as three-
dimensional (3D) reconstruction, autonomous driving, and robotics. However, the high-density point
cloud of large scenes captured with Lidar usually contains a large number of virtual points generated
by the specular reflections of reflective materials, such as glass. When applying such large-scale high-
density point clouds, reflection noise may have a significant impact on 3D reconstruction and other
related techniques. In this study, we propose a method that uses deep learning and multi-position
sensor comparison method to remove noise due to reflections from high-density point clouds in large
scenes. The proposed method converts large-scale high-density point clouds into a range image and
subsequently uses a deep learning method and multi-position sensor comparison method for noise
detection. This alleviates the limitation of the deep learning networks, specifically their inability
to handle large-scale high-density point clouds. The experimental results show that the proposed
algorithm can effectively detect and remove noise due to reflection.

Keywords: LiDAR; point-cloud denoising; noise filtering; virtual point removal; glass reflection;
large-scale 3D point cloud

1. Introduction

With rapid advances in three-dimensional (3D) acquisition technology, various types
of 3D sensors, such as 3D scanners and light detection and ranging (LiDAR), are becoming
increasingly popular. The 3D data collected by these sensors can provide a wealth of
geometric and proportional information [1,2]. These data have many applications in
different fields (e.g., robotics, autonomous driving, and virtual/augmented reality) and
can generally be represented in different formats. A 3D point cloud is a commonly used
representation method; it retains the original geometric information in a 3D space without
discretization [3]. LiDAR can obtain a high-quality 3D point cloud by scanning the position
and shape of the object.

LiDAR sensors measure the distance between the scanner and target object by trans-
mitting laser pulses and receiving the return pulses. Reflective materials (such as glass,
displays, and walls with smooth surfaces) cause the return pulses received by the LiDAR
to be perceived as linear reflected pulses reaching the scanned object. In other words, when
using a LiDAR scanner to capture a 3D real scene, a single laser pulse from the scanner
initially hits the surface of reflective materials, and its echo pulse returns to the scanner
to create a 3D point on the glass plane. In addition, the penetration and reflection of light
occur simultaneously on reflective materials. The penetrating laser pulse hits the real object
front of the reflective materials, and its echo pulse is received by the scanner to generate
another 3D point [4], as shown in Figure 1. When the laser emitted by LiDAR hits the
glass at a certain angle, the nature of the glass reflects the laser to other locations (qreal
in Figure 1), however, LiDAR is not aware of the presence of the glass, so it registers the
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position of qreal at qvirtual . In this study, only specular reflections at specific angles are
considered. The effect caused by the refraction of the glass is not presently included. All
objects capable of producing specular reflections are referred to as reflective materials and
we refer to the noise due to reflective materials as reflective noise; this noise accounts for
most of the noise in the data used in this study. Therefore, this study aimed to automate the
elimination of noise due to specular reflections from reflective materials. Prior to this study,
the scan data used in point-cloud detection and denoising research [3] were essentially
scan datasets of small scenes or single objects. Specifically, a dataset, different to those
used in previous studies, was employed in this study. This dataset consists of a large
scene containing a variety of reflective materials, and the number of points and noise point
densities are extremely high.
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Figure 1. Reflective noise principal schematic.

Contemporary methods for removing 3D point-cloud noise are usually performed on
the point-cloud data of a single object, where the number of points is not particularly large,
or the point density is sparse. The number of point cloud points of a single scene used in
this study is approximately 40 million, of which, there are approximately 10,000 reflection
noise points. The total number of point clouds used in other denoising algorithms [3] is
approximately 30,000. Therefore, the noise scale of the point cloud used in this study is
huge and dense. Although traditional point-cloud noise filtering methods can effectively
remove outliers from dense point clouds, they cannot effectively detect and remove dense
noise or noise regions generated by reflective materials. This is because the point density
of the noise area generated by the reflection is extremely dense, and thus, the local noise
detection and removal method cannot be effectively performed. The dataset used in this
study contains scan data from large indoor scenes with rich scene information. The noise
generated by reflective materials is the sampling of real objects in front of the glass, outlined
in Figure 2.
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Figure 2. Overview of noise area. Part (a) is original point cloud view. The green part in (b) is the
noise region detected by the method proposed in this paper. (c) is the RGB image in the same view.
(d) is the point cloud after denoising by the method proposed in this paper.
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Recently, deep learning technology has dominated many research fields, such as
computer vision, speech recognition, and natural language processing. Deep learning
offers a new paradigm in 3D point-cloud detection and denoising technologies. With the
advancement of deep learning, researchers have been inspired to combine two-dimensional
(2D) image analysis and deep learning in the application of 3D point clouds. This study
proposes the use of a reflection value range image extracted from 3D LiDAR data as the
input, which is then combined with a transformer auto-encoder network to detect the noise
generated by an object with high reflection intensity in the point-cloud data. Unlike the 3D
convolution, which needs to convert the input into a regular grid, our proposed method
directly extracts the reflection value range image from the 3D LiDAR data into 2D image
data and uses it as input. The noise region is marked out using the transformer network [5],
and then, precise marking is performed using the multi-position comparison method, and
finally, the denoised point cloud is obtained.

Compared to our preliminary study [6], the contributions of this paper are as follows:

• To the best of our knowledge, this study is the first to use deep learning for denoising
large-scale point clouds containing only single-echo reflection values.

• In our preliminary study [6], the denoising effect is adjusted by manually setting
parameters, which requires some knowledge of the dataset. This study uses deep
learning to automate noise detection without the need for manual parameter tuning.

• Through qualitative and quantitative evaluations, the methods proposed in this study
were superior to the previous methods [6].

2. Related Works

In this section, we review several established methods employed for 3D point-cloud
denoising, mainly in two categories: traditional methods and deep learning methods. Few
studies have been conducted for large-scale, high-density point-cloud denoising, and we
present them separately in Section 2.3.

2.1. Traditional Method

There are several traditional methods for denoising 3D point clouds. However, most of
these methods are based on filtering methods, which denoise the 3D point cloud of a single
object. For example, kernel-based clustering methods move points to high-probability
locations and employ statistical-based filtering techniques to smooth point clouds through
an iterative scheme of mean shift technique channels [7]. These technique channels employ
a mean drift-based clustering process and filtering method to suppress noise of different
amplitudes and allow a simple outlier detection followed by a simple threshold for auto-
matic removal. The remaining great likelihood points then provide an accurate point-based
approximation of the surface. Kalogerakis et al. [8] provided a robust statistical framework
to filter point clouds. The framework estimates the curvature tensor in an iterative least
squares (IRLS) approach and assigns weights to the samples at each iteration to refine each
domain around each store. The robustly estimated curvature and normal provide a global
energy minimization process to drive outlier point-cloud suppression and denoising in a
feature-preserving manner. Jenke et al. [9] proposed a surface reconstruction method based
on Bayesian statistics. The method models the measurement process and prior assumptions
about the measured object as a probability distribution and uses Bayesian rules to infer the
reconstruction with maximum probability. The method is robust for general reconstruction
of a priori unknown topological models and removes noise while preserving and explicitly
reconstructing sharp features. Domain-based filtering methods use a similarity measure
between a point and its neighborhood to determine the filtering location of that point,
which can be defined by the location of the point, the location of the normal, or the location
of the region. Tomasi and Manduchi et al. [10] introduced the concept of bilateral filters
for edge-preserving smoothing, which was further extended to 3D mesh denoising by
Fleishman et al. and Jones et al. [11,12]. However, be-cause the noise is inherent in the
3D grid, bilateral filtering based on point position and intensity was applied directly to
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the point cloud [13]. Schall et al. [14] extended the image filtering non-local mean method
to 3D point clouds based on a similar idea of bilateral filtering. They introduced a new
non-local similarity metric that considers the local square neighborhood around the store.
This method yields more accurate filtering results and superior feature retention properties.

The projection-based filtering method filters point clouds by adjusting the position of
each point in the point cloud through different projection strategies. Lipman et al. [15] in-
troduced the local optimal projection (LOP) operator to denoise 3D point clouds. However,
the method becomes non-uniform in the projection when the input point-cloud height is
not uniform, which is undesirable in terms of both shape feature preservation and normal
score estimation. Liao et al. [16] proposed a method called spatial–temporal LOP operator
(STLOP), which is used for the geometric reconstruction of feature-preserving LOP oper-
ators (FLOPs). The method uses an accelerated FLOP operator based on kernel density
estimation (KDE) random sampling. This sampling method produces reconstruction results
similar to those produced using the complete point set data and within a given accuracy
range. Preiner et al. [17] designed an efficient variant of a locally optimal projection opera-
tor. The method uses a Gaussian mixture model formed by the regularized hierarchical EM
algorithm to cluster points that represent the density of the point cloud. Wang et al. [18]
proposed an algorithm that includes two steps: outlier filtering and noise smoothing. The
method designs a connectivity-based approach to remove sparse outliers based on the
relative deviations of local neighborhoods and the properties of local neighborhoods of
flat clouds and achieved satisfactory results. Signal processing methods can also be ex-
tended to point-cloud filtering. Pauly et al. [19] introduced a discrete approximation of
the Laplace operator to point clouds. They proposed a framework and algorithm for the
edge-resolution modeling of point sampling geometry that can effectively produce signifi-
cant model deformations. However, this approach can smoothen properties, consequently
resulting in vertex drift. Pauly and Gross [20] used the spectral processing of point clouds
for filtering. This method computes a set of add-window Fourier transforms to create a
spectral decomposition of the model. The direct analysis and manipulation of spectral
sparsity supports effective filtering, resampling, power spectrum analysis, and local error
control. This method allows the direct manipulation of points and normal without the need
for vertex connectivity information.

The aforementioned point-cloud filtering method can be effective in removing outliers
from point clouds in specific cases, such as point-cloud models with added Gaussian noise.
However, it is not effective in removing reflection noise in the form of non-anomalies.

2.2. Deep Learning Method

In recent years, deep learning methods have achieved great success in the denoising
of 2D images and object detection, but it is more difficult to process point clouds than
3D images because of the irregular structure of 3D point clouds [21]. With the advent
of PointNet [22], point-cloud processing based on deep learning has become easy, and
several methods for 3D point-cloud denoising have been proposed in the literature [23–27];
however, these methods use data obtained by adding random noise to the point cloud
and do not work for point clouds actually acquired using LiDAR. Deep learning research
for direct denoising of point clouds is scarce, so this study also refers to various deep
learning-based work on point-cloud processing.

Wu et al. [28] proposed a new convolutional operation named PointConv. This op-
eration is applied to build deep convolutional networks on point clouds, which can fully
approximate the 3D continuous convolution on any set of 3D points and directly perform
semantic segmentation on 3D point-cloud data. The network built on PointConv can match
the convolution on 2D images of similar structure network performance. Lei et al. [29] pro-
posed an octree-guided neural network architecture and spherical convolution kernel for
machine learning from 3D point clouds. The proposed spherical kernel system quantizes
point neighborhoods to identify local geometric structures in the data, while simultaneously
keeping the reviews undeformed and asymmetric. Lan et al. [30] proposed the GeoCNN
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network, which applies a generic convolution operation, referred to as GeoConv, to each
point and its local domain. GeoConv explicitly models the geometric structure between
two points by decomposing the feature extraction process into three orthogonal direc-
tions and aggregating features based on the angle between the edge vector and the basis.
Mao et al. [31] proposed an InterpConv layer-based interpolated convolutional neural net-
work (InterpCNNs) to solve the problem of point-cloud feature learning and understanding.
This operation uses a set of discrete core weights to interpolate point features to adjacent
core weight coordinates through an interpolation function for convolution to process point-
cloud recognition tasks, including shape classification, partial object segmentation, and
indoor scene semantic analysis. Zhang et al. [32] proposed a RIConv operator to achieve
point-cloud rotation without deformation. This operator considers low-order rotation
invariance geometric features as input and solves point sorting by seamlessly constructing
a boxing method in the convolution problem. Subsequently, the convolution operator is
used as the basic component of a neural network, which is robust to the point cloud under
the 6-DoF transformation. Liu et al. [33] proposed a new 3D point-cloud deep learning
model—Point2Sequence. The model obtains relevant information by concentrating the
multi-scale areas of each local area. Jiang et al. [34] designed a module called PointSIFT,
which realizes multi-scale representation by superimposing multiple directional coding
units. This module can be integrated into various point-net-based architectures to improve
presentation capabilities.

2.3. Reflection Noise Removal for Large-Scale 3D Point Clouds

The methods mentioned above are all used for small-scale point clouds, where most
of the data are processed and validated by adding random noise similar to a clean point
cloud, which can simulate, to some extent, the random errors generated when collecting
point clouds in devices like LiDAR. However, it is not possible to target the high density of
noise due to reflective materials. Yun et al. [35] proposed a method to detect reflected noise
based on the number of echo pulses of the emitted laser pulse. They then further proposed
a reflection noise removal method for removing multiple glass planes in a large-scale point
cloud [4]. Gao et al. [6] proposed a method to extract the features of reflection noise by
using sliding windows and calculating the variance, which achieved good results, but
required manual adjustment of the parameters. To the best of our knowledge, there are
no studies, other than the ones mentioned above [4,6,35], that can automate the removal
of reflection noise from large-scale point clouds. Additionally, this literature [4,35] uses
point-cloud data with multiple echoes, which does not apply to point-cloud data containing
only single-echo reflection intensity data.

3. Proposed Method

In a previous study [6], the characteristics of the reflective noise region were summa-
rized. Since the reflections were generated by LiDAR irradiation to the reflective material,
the obtained reflection values were confusing compared to other normal objects. Therefore,
in this study, the reflection value information of all points from the point-cloud image
scanned from a single scene are extracted and converted into a 2D range image, and then,
a transformer network is used to detect the reflection noise region for the range images.
The edges where two objects meet also produce reflectance value transformations similar
to noise regions, which cannot be recognized by the transformer network. Hence, the
results obtained from the transformer network are used in this study for more detailed
noise detection and removal, and the multi-position comparison method is used to further
improve the accuracy.

3.1. System Overview

The dataset used in this study is a large-scale scene comprising multiple scan data,
which not only contains a variety of objects, but also contains a large number of reflective
materials with high reflection intensity. The purpose of this research is to detect and remove



Remote Sens. 2022, 14, 577 6 of 20

high-density reflective noise caused by reflective materials with high reflection in-tensity.
By analyzing the noise-generating area in the point-cloud data, reflective mate-rials that
generate a wide range of noise areas are defined to have high reflectance [6]. Therefore,
to accurately detect the reflection noise area with high reflection intensity in the point-
cloud data, this study uses the transformer auto-encoder method, which has a significant
effect on the detection of noise areas in 2D images caused by objects with high reflectance
characteristics.

The data used in this study are 3D point-cloud data collected by LiDAR from several
different locations in the same scene using LiDAR devices. This study will perform noise
detection for the point-cloud data collected at a single location, then finally remove the
noisy area by comparing it with the point-cloud data from other locations. The first part
of the method involves the range image converting module, which converts the 3D point-
cloud data into a 2D range image; the second part is the noise detection module, which uses
the transformer for noise detection; the third part is the multi-position sensor comparison
module, which compares the results of the second part with the sensor data from other
positions and generates the denoised point-cloud data. These three parts are outlined in
Figure 3.
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3.2. Range Image Converting Module

In the first stage, the LiDAR position XYZ, color RGB, and reflection value denoting
seven channels of information are included in the laser radar scan data. The 3D LiDAR
sensor obtains multiple beams and multiple measurements from one scanning period, and
the returned value forms a distance picture. The pixel value in the distance picture contains
the distance of the corresponding point and the intensity of the returned laser pulse, along
with other auxiliary information. A 2D image is formed by extracting the intensity of the
returned laser pulse. Each scan line contains the same number of dots, and the scan lines
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are stacked horizontally to form similar structures. Therefore, any measurement value of
the sensor is arranged in a 2D image [36]. Hence, we can convert a piece of 3D point-cloud
data into a 2D picture. The pseudocode for converting 3D point-cloud data into a 2D image
is defined in Algorithm 1.

Algorithm 1. Converting 3D point-cloud data into a 2D image.

Input:
LiDAR sensor 3D point-cloud data
Output:
Reflection intensity range image
for all 3D point cloud reflection values
search every LiDAR sensor data reflection value
mapping and save to the 2D image.
end for

In the laser radar scan data, there are seven pieces of information regarding the LiDAR
positions X, Y, Z, colors R, G, B, and reflection value. Therefore, based on the description
in [6] and according to the 3D point-cloud data, the reflection value contained in each point
of the LiDAR scan data can be extracted from the 3D point-cloud reflection intensity value
data and mapped to a 2D image sequentially. It is then converted into a 2D reflection range
image, as shown in Figure 4.
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Because the scan data of each 3D point cloud in the dataset used in this study are
significantly large, the size of the 2D range image is also large, at 10,330 × 4268. Hence,
directly inputting the converted 2D reflection range image into the transformer network
will not allow the deep learning network to effectively detect the noise area in the 2D
reflection range image. Therefore, before inputting the 2D reflection range image into the
transformer network, each image is cropped to a size of 512 × 512.

3.3. Range Image-Based Noise Detection Module

This module treats noise detection in the range image as a semantic segmentation
problem of the image and uses a transformer auto-encoder network [5] with manually
denoised point clouds as the ground truth for training. The input image is a segmented re-
flective range image, and, after semantic segmentation using the transformer auto-encoder
network, the output mask map contains only two classifications: noise and normal regions.

First, the input reflective range image is fed to the CNN to extract the features Fcnn.
Second, for the transformer encoder, the features and location embeddings are spread
and fed to the transformer for self-attention, and the features Fencoder are output from the
transformer encoder. Third, for the transformer decoder, we specifically define a set of
learnable class prototype embeddings Ecls as queries and Fencoder as keys and compute the
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attention map using Ecls and Fencoder. Each class prototype embedding corresponds to a
final predicted class. The small conv head is used here to fuse the attention map and Res2
features from the CNN backbone, as shown in Figure 5.
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Figure 5. Range image-based noise detection module view.

Since transformer encoders consider a sequence as input, the range image extracted
from the 3D radar data is input to the image feature map extracted from the CNN backbone,
flattened into one dimension, and the flattened image is then input into a one-dimensional
(1D) image feature map in the encoder to compensate for the missing spatial information.
The position code is added to the 1D feature, which is then used to provide the relative
or absolute position information of the feature. The features extracted by the encoder are
used as the input of the decoder. The transformer encoder is composed of multiple encoder
layers, with each layer consisting of a multi-head self-attention module and a feed-forward
network, as shown in Figure 6.
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Figure 6. Transformer encoder view.

The transformer decoder considers features from the transformer encoder as keys and
values, then combines them with object query prototypes to obtain a query as input for
the transformer decoder. The decoder consists of five stacked identical decoder layers. In
addition to the masked multi-head attention module and feed-forward network sub-layers,
each decoder layer also inserts a third sub-layer, which performs multi-head attention on
the output of the encoder layer and embeds a set of learnable class prototype embedding
(the prototype embedding of each class corresponds to a final predicted category) as queries.
The transformer decoder takes as input a set of learnable class prototype embeddings as
queries, denoted by Ecls. The encoded features as keys and values are recorded as Fencoder,
and the final noise mask result is obtained by outputting the attention map followed
by Small Conv Head. Class prototype embeddings are learned category prototypes that
are iteratively updated by a series of decoder layers through a multi-headed attention
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mechanism. We use � to denote the iterative update rule, then the class prototype for each
decoding layer is:

Es
cls =

⊙
i=0,··· ,s−1

so f tmax
(

Ei
clsFencoder

)
Fencoder (1)

In the final decoder layer, the attention graph is extracted into the small conv head:

attention map = Es
clsFencoder (2)

The attention map from the decoder represents the shape of C, M, H/16, and W/16,
where C is the class number and M is the number of heads in multi-head attention. The
attention map is upsampled and the final output attention map shape is C, H/4, and W/4.
Subsequently, a pixel-wise argmax operation is performed on the output attention map
and, finally, the detection result is obtained, as shown in Figure 7.
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The input to this part is a learnable category prototype as the object query and features
from the transformer encoder as keys and values. The input is fed to a transformer decoder
consisting of five decoder layers. The attention map from the last decoder layer and the
Res2 features Fcnn from the CNN backbone are combined and fed to a small conv head to
obtain the final prediction results.

After all datasets were detected using our proposed method, we combined the detected
noise results using the multi-position sensor comparison method to further improve the
detection accuracy and delete the noise in the final detection results. After removing all of
the noise regions, we reconstructed the 3D point cloud from the noise-removed 2D range
image and restored the 2D range image to the 3D point-cloud data form.

3.4. Multi-Position Sensor Comparison Module

If the results of the transformer are solely used for noise region removal after obtaining
the results of the noise detection module, some normal points will be removed at the same
time, since the edges of the noise region will contain some normal points. Therefore, in
order to improve the accuracy of noise region removal, we used the multi-position sensor
comparison module provided by the previous method [6] for fine noise detection.

The multi-position sensor comparison compares the LiDAR information of the selected
target that requires noise detection with the LiDAR information of the relatively close
surrounding areas. The different point-cloud information in the compared LiDAR scan
data is then deleted to obtain the detection result. Specifically, the multi-position sensor
comparison module first reads the position information of all sensors, then selects several
suitable sensor data to load into the k-d tree according to the position information of the
currently processed sensors. Subsequently, according to the result of the transformer for
the noise region with the other position. The point-cloud data collected by the sensors are
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then compared. Since the location of noise is not fixed in the point clouds collected by
different sensors at different locations, if the points do not exist in the other sensors, they
are considered noise points. Hence, by using the multi-position sensor comparison module,
an accurate denoised point-cloud data can be obtained in this study.

4. Experiments

The primary purpose of this study is to detect and remove the noise generated by
objects with high reflection intensity in 3D point-cloud LiDAR data. In the detection of
3D point-cloud LiDAR data from large scenes, the proposed method converts the 3D
point-cloud data into a 2D range image without losing the 3D point-cloud LiDAR data
and discards the original input RGB image. To perform the reflective materials detection
method, the reflection value range image is input to complete the preliminary detection of
the noisy area, based on the high reflection value characteristic of the reflective materials
that produce noise. Subsequently, the 2D range image, after noise removal, is reconstructed
into a 3D point cloud to complete the noise removal of the 3D point-cloud radar data.

4.1. Implementation Details

The transformer auto-encoder network [5] used in this study implemented the noise
detection module. We implemented the transformer auto-encoder network with Pytorch.
For loss optimization, we used the Adam optimizer with epsilon set to 1 × 10−8 and weight
decay set to 1 × 10−4. The batch size was 4 per GPU. We set the learning rate as 1 × 10−4

and decayed the poly strategy [37] for 50 epochs. We used 2 Titan GPUs for training. For all
CNN based methods, we random scaled and cropped the images to 512 × 512 in training,
and resized the images to 512 × 512 in inference, following the common settings of PASCAL
VOC [38].

4.2. Experiment Environment and Dataset

Our proposed method was implemented in a Linux operating system and two Nvidia
TITAN V GPUs. Two Intel(R) Xeon(R) Silver 4114 CPUs running Python 3.7 were configured
for the system. The data used in this study was a real indoor scene captured by FARO
Focus 3D X 130 [39]. The main data were obtained from the ETRI exhibition hall, with
an area of about 300 m2, and contained a large number of exhibition areas and reflective
materials (e.g., glass, displays, smooth walls, etc.). Point-cloud data were collected from
a total of 72 different locations in the ETRI pavilion. The majority of the scanners used
default settings. Some of the settings data are provided in Table 1, however, this can be
changed for different scenarios. Here, we only provide the more typical scanner settings
data. The point-cloud registration is courtesy of FARO SCENE [40].

Table 1. Scanner setting parameters.

Scanner Setting Name Parameters

Scan Angular Area (Vertical) 90◦ ∼ −60◦

Scan Angular Area (Horizontal) 0◦ ∼ 360◦

Resolutions 10,240 point/360 ◦

Scanner Distance Range 130 m
Horizontal Motor Speed Factor 1.02

Table 2 shows the number of point clouds for four of the scenes, each with roughly
40 million points due to the noise in all data. The number of noise points generated varies
widely due to the location and amount of reflective materials in different locations in
the scene. In our previous work [6], abbreviated as MPMC (manual parameter multi-
position comparison) in this study, we manually denoised the point-cloud data from 19 of
these locations.
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Table 2. Point number of point clouds.

Sensor Number Total Number of Point Clouds Total Number of Noise Points

S001 44,088,440 128,601
S002 44,088,440 139,343
S003 44,122,584 80,130
S004 44,088,440 128,456

Table 3 shows the comparison between the dataset used in this study and other
datasets. The datasets used in this study all greatly exceed the other datasets in terms of the
number of points. The amount of noise in the dataset used in this study is larger than the
total number of point clouds in one scan of a single object. In the PointCleanNet Dataset [24],
noisy point clouds are generated by adding Gaussian noise with the standard deviations
of 0.25%, 0.5%, 1%, 1.5%, and 2.5% of the original shape’s bounding box diagonal [24].
Additionally, in LS3DPS [35,36], their objectives are consistent with this paper, but the total
amount of noisy data is not indicated in their data.

Table 3. Point numbers of point clouds.

Dataset
Name

Point Cloud Number of
a Single Scene/Object

The Total Number of
Point Clouds Scenes/Objects

PointCleanNet
Dataset [24] 100,000 2,800,000 Objects

LS3DPC [35,36] 857,142 6,000,000 Scenes
Ours 44,088,440 2,314,731,520 Scenes

In this study, we used these 19 manually denoised point-cloud data points as the
ground truth for training and validation. The specific data division is shown in Table 4.

Table 4. Point numbers of point clouds.

The Number of Point Cloud Data Points

Train 13
Validation 2

Test 4
Total 19

To compare the effectiveness of the methods proposed in this study, they were com-
pared to the method proposed by MPMC [6] and the denoising method provided by FARO
SCENE [40]. The parameter settings of the MPMC method and the FARO SCENE [40]
method are outlined in Table 5.

4.3. Noise Detection and Performance

This study used the same evaluation criteria as [41] to analyze the proposed method.
The four values of the outlier detection rate (ODR), inlier detection rate (IDR), false positive
rate (FPR), and false negative rate (FNR) were used as the evaluation criteria. In this section,
outliers are defined as noise to facilitate the calculation of the formula. In the ODR formula,
a higher outlier detection rate increases the amount of noise that our method is able to
detect. In the IDR formula, a higher inlier detection rate increases the number of normal
points that our method can detect. A high FPR indicates more noise points being detected
as normal points in the proposed method. A high FNR indicates a higher value of normal
points being detected as noise. In summary, higher ODR and IDR values and lower FPR
and FNR values indicate an enhanced performance of detection abilities of our proposed
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method. Combining the aforementioned four ratios, the accuracy rate illustrates the overall
effectiveness of the proposed method in detecting abnormal values. In the below formulas,

ODR =
number o f outliers correctly identi f ied

total number o f outliers
(3)

IDR =
number o f inliers correctly identi f ied

total number o f inliers
(4)

FPR =
number o f inliers identi f ied as outliers

total number o f inliers
(5)

FNR =
number o f outliers identi f ied as inliers

total number o f outliers
(6)

Accuracy =
TP + TN

total number o f points
(7)

TP and TN indicate the number of outliers and inliers that are correctly defined, respectively.

Table 5. MPMC method and FARO SCENE filter parameters.

Filter Name Parameter Name Parameters

MPMC [6] Method

Sliding window size 100 × 100
Stride 50

Depth variance threshold α 0.2
Reflection variance threshold β 10,000
Threshold of deletes nearest

sensor γ 4

Matching point threshold δ 1
Nearest neighbor number ε 8

Radius distance ζ 0.01

FARO Dark Scan Point Filter Reflectance Threshold 900

FARO Distance Filter
Minimum Distance 0
Maximum Distance 200

FARO Stray Point Filter
Grid Size 3 px

Distance Threshold 0.02
Allocation Threshold 50%

Table 6 shows the accuracy of the results of the proposed method and presents the
comparison results of FARO [40], MPMC [6], and our method. The accuracy is calculated
using Equation 7, where the accuracy represents the proportion of correctly detected points
(including outliers and inliers) among all point clouds. Since the density of the point clouds
and the percentage of normal points are very high, the values of accuracy are all relatively
high. However, the accuracy of the method proposed in this study is the highest among
the methods tested.

Table 6. Comparison of accuracy performance.

Sensor Number
Accuracy (the Higher, the Better)

FARO [40] Result MPMC [6] Result Our Result

S001 0.95351 0.94495 0.97139
S002 0.93753 0.99058 0.98322
S003 0.94718 0.96188 0.98905
S004 0.95088 0.98981 0.99058

Average 0.94146 0.97181 0.98381
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The performance of the various methods is compared in Table 7 by comparing their
ODR, IDR, FPR, and FNR values, and higher values of ODF and IDR and lower values of
FPR and FNR indicate better performance.

Table 7. Comparison of the quantitative performance.

Sensor
Number

ODR IDR FPR FNR

FARO [40]
Result

MPMC [6]
Result

Our
Result

FARO [40]
Result

MPMC [6]
Result

Our
Result

FARO [40]
Result

MPMC [6]
Result

Our
Result

FARO [40]
Result

MPMC [6]
Result

Our
Result

S001 0.1097 0.5870 0.7330 0.9710 0.9451 0.9726 0.0289 0.0548 0.0273 0.8902 0.4129 0.2669
S002 0.1474 0.7947 0.7646 0.9835 0.9911 0.9926 0.0164 0.0088 0.0073 0.8525 0.2053 0.2353
S003 0.1699 0.8102 0.8141 0.9558 0.9620 0.9780 0.0441 0.0379 0.0219 0.8300 0.1897 0.1858
S004 0.1897 0.8413 0.8037 0.9399 0.9902 0.9939 0.0600 0.0097 0.0060 0.8102 0.1586 0.1962

Average 0.1542 0.7583 0.7788 0.9625 0.9721 0.9843 0.0374 0.0278 0.0156 0.8457 0.2416 0.2211

Table 8 compares the computational resources used for each of the methods examined
in this experiment.

Table 8. Computational resources comparison.

Sensor
Number

Memory (GB) Time (Seconds)

FARO [40] MPMC [6] Ours FARO [40] MPMC [6] Ours

S001 1.2 9.51 0.12 54.21 2362.42 743.41
S002 2.6 13.49 1.86 113.65 4009.31 802.81
S003 2.3 13.60 2.89 110.85 3552.80 874.48
S004 2.4 13.59 2.89 114.72 4114.65 808.36

Average 2.125 12.52 1.25 98.35 3459.79 743.41

Figure 8 shows the denoising effect of the method proposed in this study on a single
sensor data point. Since the noise regions in the individual point-cloud data are discrete,
we will use the image after merging all point-cloud data in the subsequent presentation of
the results.
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Figure 9 outlines the results obtained by the proposed method, the FARO SCENE
method [39], and the MPMC method [6]. The figure shows noise locations in three different
regions and the results of denoising using the different methods.
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obtained by our method.
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Figure 10 shows the data from the ETRI showroom. There is a total of 72 point clouds
collected by sensors at different locations in this scene, and the results outlined in this
figure are the result of combining all of the point-cloud data together.
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Figure 11 shows results for other datasets from a total of 190 different locations where
the point-cloud data were collected. The figure shows the results after merging all data.
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Figure 12 outlines results for additional datasets from a total of 39 different locations
where the point-cloud data were collected. The figure shows the results after merging
all data.
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5. Conclusions

This study proposed a new method for detecting noise with high reflection intensity in
3D point-cloud LiDAR data. The proposed method first converts the 3D point-cloud LiDAR
data into a 2D range image, then extracts the reflection value range image as the input for
the transformer auto-encoder network. The feature map is output by the encoder and used
as the input for the decoder to detect objects with high reflection intensity that generate
noise. Experiments show that the proposed method, compared with traditional methods,
can effectively detect the noise area generated by reflective materials, or objects with high
reflectance, in large-scale scanning scenes containing rich object information. To determine
the validity of the proposed method, 3D point-cloud LiDAR data from several different
scenes were tested. The transformer auto-encoder was used to process the 2D image data
of the large-scale point cloud, and the noise area, generated by reflective materials or
objects with high reflection values, in the 2D image data was detected. Specifically, noise
point-cloud detection of large-scale 3D point-cloud scenes provides a new perspective on
the subject matter.

Since LiDAR is reflected by reflective materials and causes a large amount of noise in
the captured point cloud, some studies have analyzed the effect of reflective materials on
LiDAR and proposed some solutions. However, these studies have used sparse point-cloud
data or focused on detecting the location of reflective materials rather than removing the
noise generated by them. In our previous study, we analyzed and summarized the noise
region generated by reflective materials. The noise region is chaotic compared to other
objects due to the reflection of the laser, hence, the current study used the transformer
network to detect the noise region. Experiments show that the method proposed in this
study can effectively remove high-density reflective noise caused by reflective materials.
Unlike other studies that target individual object surfaces for noise removal methods, this
study uses the characteristics of the reflection intensity of LiDAR for noise determination
and achieves good results in different scenes. This study showed that the method has wide
applicability and can effectively eliminate the influence of reflective materials on point
clouds. To the best of our knowledge, this paper is the first study to use a deep learning
method to perform reflection noise cancellation on a large-scale point cloud containing
only single-echo reflection values. Moreover, compared with previous work, this paper
substantially improved the processing speed and improved performance.

It is essential to continue to explore the task of noise detection noise in the transformer
auto-encoder network to improve the accuracy of detection; this will be considered in
future studies. Additionally, in future studies, the dataset should not be limited to large
indoor scenes, but also include large outdoor scenes (such as cities or streets). In addition
to detecting the noise area generated by reflective materials or objects with high reflection
intensity, the types of objects detected should be expanded, thereby enhancing the versatility
of the proposed method, providing further scope for future research.
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