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Abstract: Vital transportation of hazardous and noxious substances (HNSs) by sea occasionally
suffers spill incidents causing perilous mutilations to off-shore and on-shore ecology. Consequently,
it is essential to monitor the spilled HNSs rapidly and mitigate the damages in time. Focusing on
on-site and early processing, this paper explores the potential of deep learning and single-spectrum
ultraviolet imaging (UV) for detecting HNSs spills. Images of three floating HNSs, including benzene,
xylene, and palm oil, captured in different natural and artificial aquatic sites were collected. The
image dataset involved UV (at 365 nm) and RGB images for training and comparative analysis of the
detection system. The You Only Look Once (YOLOv3) deep learning model is modified to balance the
higher accuracy and swift detection. With the MobileNetv2 backbone architecture and generalized
intersection over union (GIoU) loss function, the model achieved mean IoU values of 86.57% for
UV and 82.43% for RGB images. The model yielded a mean average precision (mAP) of 86.89%
and 72.40% for UV and RGB images, respectively. The average speed of 57 frames per second (fps)
and average detection time of 0.0119 s per image validated the swift performance of the proposed
model. The modified deep learning model combined with UV imaging is considered computationally
cost-effective resulting in precise detection accuracy and significantly faster detection speed.

Keywords: hazardous and noxious substances; marine pollution; spectral imaging; deep learning;
YOLO; image processing; object detection

1. Introduction

According to the International Maritime Organization, different chemical substances,
such as petrochemical products and vegetable oil other than crude oil, which varies in
physical and chemical properties [1], are considered colorless, hazardous, and noxious
substances (HNSs). Petrochemical products, such as benzene and xylene [2] exhibit a
broader range of properties (e.g., dissolving, floating, sinking, evaporation, etc.) and
different toxicity levels. These chemicals have both acute and long-term ecological effects
and cannot be easily recoverable if spilled in the sea [3]. In contrast, nontoxic vegetable oil,
such as palm oil can indirectly harm the marine ecosystem [4,5]. Therefore, HNSs spills
are considered one of the major causes of marine pollution, damaging aquatic and on-
shore human life and likely interfering with other legitimate uses of marine resources [6,7].
Consequently, specific emergency response measures are required if a spill occurs in the sea.

In the past two decades, the number of HNSs spill accidents increased by 3.5 times, for
a significant increase in chemical trading via marine transportation. Harmful environmental
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and economic threats posed by these incidents have led global environmental authorities
and scientific research communities to focus on developing specific response solutions to
avert and minimize the risk [8]. To deal with spill accidents, accurate, fast, and on-site
evaluation of location and features of the spill enable one to take countermeasures to reduce
the hazardous effects on marine ecology and estimate the financial cost of the cleaning
process [9]. The manual assessment of the HNSs spills is time-consuming and laborious.
Therefore, detecting these spills through automatic target detection and classification
techniques has become an important subject.

Previous researches have revealed that HNSs spills have their own discrete physico-
chemical characteristics different from oil spills, which reflect that the approaches for oil
spill imaging may not be suitable for HNSs spills. For HNSs detection, several laboratory
techniques have been developed which are limited to on-site detection, such as liquid
chromatography mass spectrometry [10], UV spectroscopy [11], and electrochemical meth-
ods [12]. Synthetic aperture radar (SAR) is an effective but costly imaging technique for the
on-site detection of oil spills [13]. In contrast with SAR imaging, optical imaging allows the
monitoring of spills at a relatively lower cost, providing more frequent information [14–16].
Oil spills exhibit fluorescence features that enable optical sensors to detect them easily.
Some potential HNSs, particularly hydrocarbons, possess similar chemistry as oil. This par-
allel structure and chemistry allow for the use of optical imaging for HNSs spill detection.
Spectral reflectance of these chemicals indicates that UV band imaging is appropriate for
chemical spill detection. However, unlike crude oil spills, detection of transparent HNSs
spills is very difficult due to the lack of color and thin layer floating on the water due to low
viscosity. Limited studies indicate that spectral imaging [17], especially in the ultraviolet
(UV) band combined with proper data analysis techniques, has an excellent potential for
on-site HNSs identification [18,19].

The advent of convolutional neural networks (CNNs) has revolutionized many ma-
chine learning areas, achieving success in a wide range of applications, such as object detec-
tion, image classification, and segmentation. To address these applications, researchers have
proposed several increasingly sophisticated network structures [20–22], which recently
demonstrated an astounding execution. Deep convolutional neural networks (DCNNs), a
derivative of CNN, have been the subject of extensive research in ocean applications [23].

Meanwhile, numerous researches have been carried out using different DCNN archi-
tectures to detect oil spills. Most of these studies are based on patch-based oil spill detection
using object detection techniques and semantic and instance segmentation of oil spills in
aerial and remote sensing data. A systematic summary of several most recent studies since
2017, based on oil spill detection through remote sensing imagery combined with DCNNs,
is presented in Table 1.

Presumably, a single study has been reported using applications of DCNNs for HNSs
spill detection. Huang et al. (2020) used single spectral imagery combined with Faster
R-CNN to detect and classify transparent HNSs floating on water [24]. However, the spills,
such as highly volatile HNSs chemicals require faster detection. In this regard, this proposal
study extends the applications of UV imaging combined with a lightweight YOLOv3
DCNN model to achieve accurate and swift HNSs spill detection. The critical contributions
of the work are highlighted as follows:

1. YOLOv3 [25] was modified by replacing the DarkNet53 backbone architecture with
MobileNetv2 [26]. Depthwise separable convolution layers were implemented in the
backbone architecture to obtain a lightweight YOLOv3 model with fewer parameters.

2. Loss function was updated by adding the generalized intersection over union (GIoU)
for bounding box regression, and k-means clustering was applied to regenerate the
appropriate anchor boxes for enhancement in detection accuracy.

3. Finally, the lightweight YOLOv3 was trained and tested on the HNSs dataset, and a
comparison in the detection based on UV and RGB images was conducted to validate
the proposal’s applicability.
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Table 1. Summary of reported studies using the applications of DCNN architectures for oil spill de-
tection.

Year Task DCNN Architectures Image Dataset References

2017 Pixel-based spill
classification

CNN with multiple convolutions and
pooling layers Radarsat-2 (SAR images) [27]

2018
Object (spill) detection 2-stage CNN SAR images [28]
Semantic segmentation SegNet Radarsat-2 (SAR images) [29]

2019

Pixel-based spill
classification 1-dimensional CNN AVIRIS [30]

Semantic segmentation DeepLabv3 Sentinel-1 (SAR images) [31]
Object (spill) detection Multiscale features DCNN Airborne hyperspectral images [32]

2020

Pixel-based spill
classification VGG-16 ERS-1,2, COSMO SkyMed,

ENVISAT (SAR images) [33]

Pixel-based spill
classification CNN + SVM Radarsat-2 (SAR images) [34]

Semantic segmentation DeepLab + Fully connected
conditional random field

QuickBird, Google Earth, and
Worldview [35]

Instance segmentation Mask R-CNN Sentinel-1 (SAR images) [36]

The rest of the paper is organized as follows: Methodology is discussed in Section 2,
including the HNSs spill dataset and proposed DCNN model for HNSs spill detection. Ex-
perimentation is thoroughly described in Section 3. Detection results are comprehensively
outlined in Section 4. A comparison of the HNSs detection models is discussed in Section 5.
Finally, in Section 6, the proposed work is concluded, and future research directions and
discussions are noted.

2. Methodology
2.1. HNSs Image Dataset

Generally, training a DCNN requires a large dataset containing thousands of images to
reduce overfitting in the model and enhance the accuracy. However, unlike oil spill datasets,
there is no globally available dataset for HNSs spill detection. Therefore, a distinct and
comparatively small HNSs spill dataset constructed by the authors of [24] using a spectral
and digital imagery system is used in this study. The dataset includes single spectrum UV
and RGB images of three colorless HNSs, benzene, xylene, and palm oil.

2.1.1. Image Acquisition

To obtain diversity in HNSs spill image features, imaging experiments were carried out
in three locations: A freshwater lake, canal, and artificial plastic-made pool. A multispectral
imaging system consisting of an UVTEC-1000 camera (Indigo, Beijing, China), 75 mm
optical lens, and a narrow band-pass filter was used to acquire UV images of the spill.
The system generated 8-bit grey level images at 365 nm with a resolution of 2016 × 1296.
With the exposure time set to 1/50 s, images were captured at an approximately 30 s
delay after the sample chemical was released, allowing for the stabilization of the spill on
the water surface. For RGB imaging, a digital camera (a6000, Sony, Tokyo, Japan) with a
16–50 mm Sony lens was used to obtain RBG images of the sample spills with the resolution
of 3008 × 2000.

Enhancement in the diversity of imaging helps in the detection approach by improving
the generalizability of the detection model. For this purpose, spill imaging was carried
out from various locations with the varying viewing geometry. By changing the angle
between 0–40◦, and imaging distance ranging from 1.5–10 m, images of varying shapes
and scales were obtained, respectively. Finally, all of the images were down-sampled to the
resolution of 350 × 250 to cope with the limited available computing resources. Sample
spill images collected from different locations, with varying ambient conditions, including
sun reflection and reflection from surrounding objects, are shown in Figure 1.
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Figure 1. Examples of sample spill images of three classes from the HNSs dataset collected at different
locations under varying ambient conditions: (a) Single spectrum UV images of sample spills; (b) RGB
images of sample spills.

2.1.2. Data Augmentation

Better performance of deep neural networks depends on the size of the training dataset.
Due to the insufficient number of images in the HNSs dataset, the model tends to overfit
during training. Random data augmentation techniques were implemented to overcome
the overfitting problem, including flipping of a horizontal and vertical axis, rotation, scaling,
and affine transformations to increase the dataset volume. After augmentation, all of the
images in the dataset were manually annotated using LabelImg [37] to locate the spill in
the image. Quantitative and exploratory data analysis of the HNSs dataset is presented in
Table 2. Compared to benzene and xylene, the number of sample images of palm oil was
larger, resulting in better detection accuracy.

Table 2. Quantitative and exploratory data analysis of HNSs sample spills image dataset.

Imaging Model Spilled Chemical
Number of Images Captured at Different Locations Total Training Images

Augmentation (Yes/No)
Total

Testing
ImagesFreshwater Lake Canal Artificial Pool No Yes

UV imaging
Benzene 16 29 16

387 958 60Xylene 11 28 31
Palm oil 53 168 35

RGB imaging
Benzene 09 37 –

468 1096 60Xylene 14 40 –
Palm oil 63 305 –

2.2. DCNN Model for HNSs Spill Detection

In this study, the YOLOv3 [25], as described thoroughly in Appendix A, is modified to
develop a lightweight detection model. Following the physicochemical behavior of sample
HNSs chemicals, a faster detection model was adopted by replacing DarkNet53 in the
YOLOv3 framework with a lightweight MobileNetv2 [26] as a backbone architecture for
feature extraction. With depthwise separable convolutions and inverted residual modules
in the network, the MobileNetv2 architecture has fewer parameters, resulting in faster
processing speed and requiring low computational power systems. MobileNetv2 utilizes
the idea of linear bottleneck residual block to condense the data flowing through the
network, which maintains the representation capability of the model. It has two types of
residual blocks: Stride 1 consisting of a residual connection and stride 2 for downsizing, as
shown in Figure 2. Each block holds three convolutional layers, an expansion layer with
1 × 1 convolution for uncompressing the input tensor size, followed by 3 × 3 depthwise
convolution for data filtering, and finally projection layer with 1 × 1 pointwise convolution
for compressing the data to bottleneck output. Each layer has ReLU 6 activation function,
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except for the projection layer to avoid adding non-linearity. Figure 3 represents the object
detection algorithm by YOLOv3 with MobileNetv2 backbone architecture.

Figure 2. Illustration of inverted bottleneck residual convolutional block of MobileNetv2.

Figure 3. Definition of lightweight YOLOv3 detection model explaining the detection algorithm with
MobileNetv2 backbone architecture (t, c, and s represent the expansion factor, number of output
channels, and stride, respectively).

Based on regression, the lightweight YOLOv3 is a fully convolutional network that is
constructed using depthwise separable convolution. After each convolutional layer, a batch
normalization layer is added to improve model convergence speed and solve gradient
explosion during backpropagation. In the depthwise separable convolutional network,
the standard convolution filter is replaced by the depthwise separable filter and pointwise
convolution filter, as shown in Figure 4.

The number of parameters of standard convolution filter and depthwise separable
convolution filter can be calculated as follows:

Parameters (standard conv) = D × D × N ×M (1)

Parameters (depthwise conv) = D × D ×M + N ×M (2)

Parameters (depthwiseconv)

Parameters (standardconv)
=

1
N

+
1

D × D
(3)

Equation (3) represents the compression ratio of standard convolution and depthwise
separable convolution filter. N and M represent the output and input feature maps, respectively.
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Figure 4. The architecture of depthwise separable convolutional network: (a) Standard convolution
filter; (b) depthwise separable convolution filter; (c) pointwise convolution filter.

2.2.1. Improved Loss Function

In YOLOv3, the evaluation index of object detection depends on IoU, which indicates
the amount that the predicted bounding box overlaps with the ground truth bounding
box. However, optimizing the loss function based on IoU calculations has significant
complications. Suppose the bounding boxes overlap in differential geometry with the same
intersection level. In this case, they will result in precisely the same IoU, but the bounding
box regression is different, as shown in Figure 5a. In another case, if the predicted and
ground truth bounding boxes do not intersect, then the resulting IoU value and gradient
will be zero, which cannot optimize the loss function. IoU does not predict the loss due
to the distance between predicted and ground truth bounding boxes. GIoU as a new
bounding box regression loss function is adopted to address these shortcomings. The
difference between IoU and GIoU is defined in Equations (4) and (5), as follows:

IoU =
|(A ∩ B)|
|(A ∪ B)| (4)

GIoU = IoU − |C (A ∩ B)|
|C| (5)

where A and B represent the bounding boxes, and C is the smallest circumscribed rectangle
enclosing A and B. Depending on the distance between the bounding boxes, the value of
IoU and GIoU ranges from [0, 1] to [−1, 1], respectively. In addition, the value of IoU and
GIoU is near 1 when the predicted and ground truth bounding boxes overlap. If there is no
overlap, the value of IoU is 0, and GIoU gradually approaches −1. Consequently, GIoU is a
reasonable distance measurement index that focuses on non-overlapping areas. Figure 5b
describes the GIoU variation of C with better and wrong predictions.

Figure 5. Description of overlapping and non-overlapping predicted and ground truth bounding
boxes: (a) Bounding boxes overlapping with better (left) and wrong (right) regression; (b) the variation
in C (large rectangle) with better (left) and wrong (right) predictions.
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Total loss in the lightweight detection model can be calculated by substituting the
bounding box regression loss based on GIoU in the YOLOv3 loss equation as in Ap-
pendix A.1, Equation (A2), as follows:

LossBboxRegression = 1−GIoU (6)

LightweightYOLOv3Loss = λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij (1−GIoU)

+
S2

∑
i=0

B
∑

j=0
1obj

ij
(
Ci − Ĉi

)2
+ λnoobj

S2

∑
i=0

B
∑

j=0
1noobj

ij
(
Ci − Ĉi

)2

+
S2

∑
i=0

1obj
i

B
∑

c∈classes
(pi(c) − p̂i(c))

2

(7)

2.2.2. Anchor Box Generation

In YOLOv3, the evaluation index YOLOv3 utilizes the concept of anchor boxes while
predicting the bounding box. These anchor boxes directly impact the speed and detection
accuracy. There are nine anchor boxes in YOLOv3, which are (10, 13), (16, 30), (33, 23),
(30, 61), (62, 45), (59, 119), (116, 90), (156, 198), and (373, 326) for the COCO dataset. In this
work, nine anchor boxes produced by k-means clustering are (38, 23), (78, 52), (112, 84),
(127, 117), (194, 98), (165, 139), (243, 155), (199, 205), and (297, 237).

3. Experimentation
3.1. Model Training

The experiments were performed by the DL open-source library TensorFlow 1.12,
OpenCV 4.1.1, and coding was concluded with the high-level language python 3.5 on
Ubuntu 18.04 operating system. The computational system included intel core i-7-7700,
GPU GTX1080Ti with 12 GB of memory. Multiscale image resolution was performed during
the training of the model, which changed the dataset resolution every 10 batches. The
learning rate was set to change gradually during training to enhance the convergence of
the model. The optimal values of hyperparameters as shown in Table 3 for training were
selected through a grid search. Training loss curves of the models are presented in Figure 6.

Table 3. Training parameters of HNSs spill detection model training.

Model Training Parameters Parameter Values

Learning rate 1 × e−4 and 1 × e−6

Total training epoch 300 for the baseline model, 450 for lightweight YOLOv3
Batch size 4 and 6
Image size 320 × 320 to 608 × 608

IoU threshold 0.5
Average decay 0.995

Gradient optimizer Adam

3.2. Evaluation Protocols

To evaluate the proposed model for HNSs detection, a performance evaluation is
conducted [38], and the following techniques were used to assess the model accuracy,
which include IoU, precision (P), recall (R), average precision (AP), and mean average
precision (mAP). In addition, to measure the efficiency and speed of the network, the
detection time and the frame per second (FPS) were also evaluated.
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Figure 6. YOLOv3 lightweight model training loss curves: (a) Confidence loss; (b) probability loss;
(c) GIoU loss; (d) total loss.

The prime purpose is to calculate the IoU between the predicted bounding boxes
and the ground truth. The test result will be true positive (TP) if IoU is higher than the
50% threshold, and false positive (FP) if the IoU value is less than the threshold. TP is the
detection of an object correctly with a positive sample, and FP is the detection of an object
negatively by accident of a positive sample. False negative (FN) shows that no targeted
object in the image carries a positive sample. The precision (P) and recall (R) are calculated
as follows:

P =
TP

FP + TP
(8)

R =
TP

FN + TP
(9)

AP =

1∫
0

P(R)dR (10)

The mAP is an extension of average precision (AP), where the average precision of
every class is calculated.

4. Detection Results of the Proposed Model

Multiple distinct experiments were conducted on RGB and UV images for test de-
tection of HNSs to better understand the behavior and evaluate the performance of the
YOLOv3 lightweight model.

4.1. Spill Location Detection

The test images were detected, and the IoU values were evaluated for UV and RGB
images. The bounding box produced by the YOLOv3 lightweight model is shown in
Figure 7. The aqua color is the ground truth of an object, and the red color is the predicted
bounding box. The predicted boxes for three samples can be considered correct, as the
average IoU values of all the samples is more than 50%. The model showed average
IoU values of 86.57% and 80.43% for UV and RGB images. The average IoU values of
detection explain that the bounding box regression loss function based on GIoU better fits
the proposed YOLOv3 lightweight model. Moreover, the results conclude that the detection
rate of palm oil has significantly better IoU values in both UV and RGB images.
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Figure 7. Examples of resulting IoU and bounding boxes generated by the YOLOv3 lightweight
model: (a) Detection results based on UV images; (b) detection results based on RGB images.

4.2. Evaluation Based on Precision and Recall

The precision–recall curve (PRC) is also one of the fundamental indexes to measure
the effectiveness and accuracy of the object detection model. The PRC of sample HNSs,
including UV and RGB images with the resolution of 608 × 608, is shown in Figure 8. The
curves represent linear and better convergence of the proposed model. Of note, PRCs
generated by UV images are overall better than RGB images. In UV images, palm oil
with the highest AP scores (95.32%) has a perfect classification effect, followed by benzene
(85.48%) and xylene (76.34%).

Figure 8. Precision and recall curves for three classes of sample spills detected by the YOLOv3
lightweight model: (a) PR curves based on UV images; (b) PR curves based on RGB images.
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Similarly, AP scores of palm oil, benzene, and xylene in RBG images are 91.49%,
76.24%, and 74.36%, respectively. The results provided evidence that the precision of the
proposed model had a transparent edge at a similar recall rate. Moreover, it specifies that
the GIoU loss function has enhanced its performance.

4.3. Evaluation Based on Multiscale Resolution

The multiscale resolution technique is used in the YOLOv3 lightweight model. Signifi-
cant variation in per class AP, mAP, detection time (D-time), and FPS can be observed from
lower resolution to higher resolution, as shown in Table 4. This study provides substantial
evidence of the influence of resolution on the detection behavior of the model. Moreover, it
can be observed that overall detection results are improved using UV imaging.

Table 4. Analysis of proposed YOLOv3 lightweight model based on multiscale resolution.

Image Size
Per Class AP (%) of UV Images Per Class AP (%) of RGB Images UV

mAP
RGB
mAP Avg D-Time (ms) FPS

Benzene Xylene Palm Oil Benzene Xylene Palm Oil

320 × 320 54.76 54.39 90.70 52.03 56.43 85.07 75.25 70.02 8.20 120
352 × 352 58.19 58.79 93.07 49.46 78.23 90.93 72.45 70.20 8.56 117
384 × 384 58.31 59.40 93.27 55.55 61.27 92.08 69.15 68.44 8.93 111
416 × 416 67.39 67.96 94.50 64.08 57.85 93.77 69.83 66.97 10.14 98
448 × 448 68.65 75.43 94.79 69.67 57.28 94.27 74.94 69.37 10.96 91
480 × 480 69.52 69.32 94.63 70.33 79.94 94.78 76.62 69.05 11.52 86
512 × 512 74.51 61.53 95.32 70.89 77.92 94.85 77.27 68.16 12.91 77
544 × 544 76.56 71.35 95.17 70.53 80.76 91.67 79.62 69.62 14.07 70
576 × 576 81.96 66.78 94.87 72.29 68.39 91.01 83.05 74.04 15.49 64
608 × 608 85.48 76.34 95.32 76.24 74.36 91.49 86.13 80.60 17.78 57

4.4. Sample HNSs Spill Classification

Figure 9 shows the classification results of three kinds of transparent HNSs spills in
UV and RGB images by the YOLOv3 lightweight model. Sample spills in these images
can be detected as undistinguishable targets via conventional procedures. The proposed
model can classify the transparent spill with advanced imaging techniques and a robust
feature extraction algorithm. Although the classification accuracy may differ a little in
different circumstances, the sample images carry unalike ambient conditions containing
similar objects, such as wave reflection and sun glitter, that are not detected as real targets.

Figure 9. Classification of sample HNSs spills by the proposed model (blue, green, and red represent
benzene, xylene, and palm oil, respectively): (a) Classification of spills in UV images; (b) classification
of spills in RGB images; (c) example of false identification by model.
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In UV imaging, the transparent spill target has a more significant difference to the
background that is ultimately helpful for the detection capabilities of the model. Moreover,
the results proved that UV images attained more exceptional accuracy than the detection
and classification of target spill in RGB images.

5. Discussion

To better evaluate the proposed YOLOv3 lightweight model, it is compared with the
YOLOv3 baseline network trained from scratch with the HNSs dataset using the same
training parameters as shown in Table 3. Unlike the YOLOv3 lightweight model, the
baseline YOLOv3 network used the IoU regression loss function. A comparative analysis
among the three models for HNSs detection is presented in Table 5. The results show that
the proposed YOLOv3 lightweight model is computationally cost-effective, consuming
about 9 times smaller data than the YOLOv3 baseline model. Further investigations
revealed that the improved lightweight model resulted in comparable detection accuracy
with faster image processing speed and around 3 times lower detection time than the
YOLOv3 baseline model. Moreover, the proposed model surpassed the previous study by
the authors of [24] in detection accuracy, FPS, and average detection time.

Table 5. Comparison of proposed YOLOv3 lightweight model.

Characteristic Parameters Proposed Model YOLOv3 Baseline Faster RCNN by the Authors
of [24]

mAP (UV) 86.89% 81.13% 86.46%
mAP (RGB) 72.40% 66.94% 66.73%

Parameters (million) 31 61 –
FPS 57 23 5

Average detection time (s) 0.0119 0.0316 0.607
Single Checkpoint size

(Megabytes) 107.6 985.1 –

Although the proposed study has made progress in detecting transparent HNSs spills,
it also resulted in false prediction as shown in Figure 9c. The encountered problems in the
models’ results can be due to the following reasons:

1. Overfitting problem caused by the small size of the dataset resulting in the detection
model may not generalize well to unseen features in test images.

2. Influence of ambient conditions, which may cause errors in detection. This problem
can be solved by enhancing the generalization capability of the detection model by
adding more training images.

6. Conclusions

The study proposed an improved and lightweight DCNN model to rapidly detect and
classify HNSs spills. Due to the unavailability of publicly accessible data, a distinct and
generic HNSs spill dataset is constructed, including UV (at 365 nm) and RGB images of
benzene, xylene, and palm oil in different aquatic environments. The collected dataset is
further augmented to meet the data volume requirement of the DCNN.

A DCNN named the YOLOv3 lightweight model is suggested, which is a modified
version of YOLOv3. DarkNet53 backbone architecture is replaced by lightweight Mo-
bileNetv2, and bounding box regression loss based on GIoU is introduced in the network.
The experiments show that the model is suitable for HNSs spill detection, which resulted in
overall IoU of 82.57% and 68.43%, and mAP of 85.89% and 70.40% for UV and RGB images,
respectively. The results also revealed that UV imaging is more apposite for the detection
purpose of HNSs spills.
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Following the physicochemical behavior of HNSs, which are transparent and highly
volatile, the proposed model outperformed benchmark DCNN models in accuracy and
detection speed. In addition, the model has 31 million parameters that are half of standard
YOLOv3 and occupies 107.6 MB on disk, 9 times less than the YOLOv3 baseline model. The
processing rate is 57 FPS, which is more than double of YOLOv3. Moreover, the proposed
model is 3 times faster in detection, which rapidly detects spills in 11.9 ms on average.

Furthermore, to the best of our knowledge, the suggested model is one of the few
reported studies using DCNN for HNSs spill detection. The model accurately and efficiently
detects and classifies transparent HNSs spills in coarse conditions, such as wave reflections,
water surface illumination, etc. Ultimately, the model can be utilized for swift detection,
not only limited to HNSs spill detection on a large-scale, but also any other phenomenon
requiring rapid and efficient detection using the lowest possible computational resources.
Future studies will include the extension of the HNSs spill dataset by adding a variety of
samples collected through monitoring the marine environment, which will enhance the
detection efficiency of the model. Moreover, the proposed model will be implemented and
tested on large-scale monitoring and mitigation of marine HNSs pollution.
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Appendix A

Appendix A.1. YOLOv3

YOLOv3 is an end-to-end single-stage object detection (including target localization
and classification) algorithm that encapsulates all of the steps in a single network. It
considers object detection a regression problem by eliminating region proposal generation
and feature resampling. Benefiting from single feed-forward CNN, YOLOv3 is significantly
faster than other algorithms with comparable performance, taking the whole image to
predict bounding box offsets to locate objects in the image and probabilities of object
categories. The object detection workflow is shown in Figure A1.

YOLOv3 is a deeper network based on backbone architecture, DarkNet53, with 53
convolution layers, including upsampling, route, detection, and residual units. There are
five residual units in YOLOv3 that perform feature extraction, each using successive 1 × 1
and 3 × 3 convolution layers with skip connections. The skip connections are used to feed
the output of the earlier layers to later layers by skipping some layers in between. Usually,
this is done due to features extracted at earlier layers that are required later during the
upsampling layer. Each convolution layer is followed by batch normalization and leaky
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ReLU layers for better convergence of feature maps and leaky ReLU layers. Gradient fading
can be reduced to a minimum by introducing residual units in the network. The residual
unit is shown in Figure A2.

YOLOv3 splits the input image into small S × S grids to perform object detection.
The representative grid is responsible for detecting the object, if the center of an object
falls in the grid field. These grids also locate the bounding boxes and later calculate the
objectness score corresponding to these bounding boxes. The objectness score represents
the probability that the object is located in the bounding box by calculating the IoU of the
ground truth box and the predicted bounding box.

Briefly, the YOLOv3 model takes an input image first and resizes it to 320 × 320,
which is randomly increased by 32 × 32 after certain successive epochs until a maximum
resolution of 608 × 608 is achieved. After multiple layers of convolution, the image is
downsampled 5 times. YOLOv3 makes detection predictions of targets in the last three
downsampled layers. Unlike prior models, YOLOv3 detects an object at three scales by
downsampling the feature maps to different levels. The feature map is downsampled by
8× at scale 3, 16× at scale 2, and 32× at scale 1 to detect small, medium, and big targets.
Small feature maps providing deep semantic, and large feature maps providing more
fine-grained information are resized, resulting in same size feature maps at different scales.
The feature maps are fused together to detect targets. Finally, YOLOv3 uses multiscale
features to detect and classify small objects and an independent logistic classifier rather
than a softmax layer with improved mean average precision (mAP). The YOLOv3 network
architecture is shown in Figure A3.

The loss function of YOLOv3 can be calculated as follows:

YOLOv3Loss = LossBboxRegression+Lossconfidence+Lossclassification (A1)

LossBboxRegression = λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

+ λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij

[(√
wi −

√
ŵi
)2

+

(√
hi −

√
ĥi

)2
] (A2)

Lossconfidence =
S2

∑
i=0

B

∑
j=0

1obj
ij
(
Ci − Ĉi

)2
+ λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
ij

(
Ci − Ĉi

)2 (A3)

Lossclassification =
S2

∑
i=0

1obj
i

B

∑
c∈classes

(pi(c) − p̂i(c))
2 (A4)

In the above equations, i represents the grid, j represents the bounding box predicted
by the grid, 1obj

ij is responsible for the existence of target object in grid i by the jth bounding

box, s2 denotes the grid space where bounding boxes are present, x and y denote the actual
and predicted coordinates of the bounding box, w and h represent the actual and predicted
width and height of the bounding box, obj and noobj indicate the presence and absence of an
object, Ci and Ĉi represent the class of actual and predicted objects, pi(c) and p̂i(c) indicate
the actual and predicted probability scores, respectively. In the equations, the penalty
coefficients λcoord and λnoobj are also included to optimize the detection model’s bounding
box regression loss and confidence loss. For the stability and enhanced convergence of the
model, λcoord is usually taken as 5 to increase the weight of the bounding box localization
and λnoobj is taken as 0.5 to decrease the confidence loss by 50%, since the boxes do not
contain any object.
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Figure A1. YOLOv3 object detection flow diagram.

Figure A2. Residual unit of DarkNet53 consisting of convolutional, batch normalization, leaky ReLU
layers, and a skip connection.

Figure A3. Illustration of YOLOv3 detection network architecture [39].



Remote Sens. 2022, 14, 576 15 of 16

References
1. Harold, P.D.; De Souza, A.S.; Louchart, P.; Russell, D.; Brunt, H. Development of a risk-based prioritization methodology to

inform public health emergency planning and preparedness in case of accidental spill at sea of hazardous and noxious substances
(HNS). Environ. Int. 2014, 72, 157–163. [CrossRef] [PubMed]

2. Michel, G.; Siemiatycki, J.; Désy, M.; Krewski, D. Associations between several sites of cancer and occupational exposure to
benzene, toluene, xylene, and styrene: Results of a case-control study in Montreal. Am. J. Ind. Med. 1998, 34, 144–156. [CrossRef]

3. Häkkinen, J.M.; Posti, A.I. Review of maritime accidents involving chemicals–special focus on the Baltic Sea. TransNav Int. J. Mar.
Navig. Saf. Sea Transp. 2014, 8, 295–305. [CrossRef]

4. Cunha, I.; Oliveira, H.; Neuparth, T.; Torres, T.; Santos, M.M. Fate, behaviour and weathering of priority HNS in the marine
environment: An online tool. Mar. Pollut. Bull. 2016, 111, 330–338. [CrossRef] [PubMed]

5. Cunha, I.; Moreira, S.; Santos, M.M. Review on hazardous and noxious substances (HNS) involved in marine spill incidents—An
online database. J. Hazard. Mater. 2015, 285, 509–516. [CrossRef] [PubMed]

6. Kim, Y.-R.; Lee, M.; Jung, J.-Y.; Kim, T.-W.; Kim, D. Initial environmental risk assessment of hazardous and noxious substances
(HNS) spill accidents to mitigate its damages. Mar. Pollut. Bull. 2019, 139, 205–213. [CrossRef]

7. Kirby, M.F.; Law, R.J. Accidental spills at sea–risk, impact, mitigation and the need for coordinated post-incident monitoring. Mar.
Pollut. Bull. 2010, 60, 797–803. [CrossRef]

8. Neuparth, T.; Moreira, S.; Santos, M.M.; Reis-Henriques, M.A. Review of oil and HNS accidental spills in Europe: Identifying
major environmental monitoring gaps and drawing priorities. Mar. Pollut. Bull. 2012, 64, 1085–1095. [CrossRef]

9. Yim, U.H.; Kim, M.; Ha, S.Y.; Kim, S.; Shim, W.J. Oil spill environmental forensics: The Hebei Spirit oil spill case. Environ. Sci.
Technol. 2012, 46, 6431–6437. [CrossRef]

10. Koeber, R.; Bayona, J.M.; Niessner, R. Determination of benzo [a] pyrene diones in air particulate matter with liquid chromatogra-
phy mass spectrometry. Environ. Sci. Technol. 1999, 33, 1552–1558. [CrossRef]

11. Li, C.-W.; Benjamin, M.M.; Korshin, G.V. Use of UV spectroscopy to characterize the reaction between NOM and free chlorine.
Environ. Sci. Technol. 2000, 34, 2570–2575. [CrossRef]

12. Hilmi, A.; Luong, J.H.T. Micromachined electrophoresis chips with electrochemical detectors for analysis of explosive compounds
in soil and groundwater. Environ. Sci. Technol. 2000, 34, 3046–3050. [CrossRef]

13. Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201,
133–147. [CrossRef]

14. Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal
waters-a case study in the Arabian Gulf. Opt. Express 2014, 22, 13755–13772. [CrossRef] [PubMed]

15. Taravat, A.; Frate, F.D. Development of band ratioing algorithms and neural networks to detection of oil spills using Landsat
ETM+ data. EURASIP J. Adv. Signal Process. 2012, 1, 1–8. [CrossRef]

16. Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, features, and machine
learning for oil spill detection and monitoring: A review. Remote Sens. 2020, 12, 3338. [CrossRef]

17. Park, J.-J.; Park, K.-A.; Foucher, P.-Y.; Deliot, P.; Floch, S.L.; Kim, T.-S.; Oh, S.; Lee, M. Hazardous Noxious Substance Detection
Based on Ground Experiment and Hyperspectral Remote Sensing. Remote Sens. 2021, 13, 318. [CrossRef]

18. Huang, H.; Liu, S.; Wang, C.; Xia, K.; Zhang, D.; Wang, H.; Zhan, S.; Huang, H.; He, S.; Liu, C.; et al. On-site visualized
classification of transparent hazards and noxious substances on a water surface by multispectral techniques. Appl. Opt. 2019, 58,
4458–4466. [CrossRef]

19. Zhan, S.; Wang, C.; Liu, S.; Xia, K.; Huang, H.; Li, X.; Liu, C.; Xu, R. Floating xylene spill segmentation from ultraviolet images via
target enhancement. Remote Sens. 2019, 11, 1142. [CrossRef]

20. Han, Y.; Hong, B.-W. Deep learning based on Fourier convolutional neural network incorporating random kernels. Electronics
2021, 10, 2004. [CrossRef]

21. Choi, J.; Kim, Y. Time-aware learning framework for over-the-top consumer classification based on machine- and deep-learning
capabilities. Appl. Sci. 2020, 10, 8476. [CrossRef]

22. Rew, J.; Park, S.; Cho, Y.; Jung, S.; Hwang, E. Animal movement prediction based on predictive recurrent neural network. Sensors
2019, 19, 4411. [CrossRef]

23. Song, H.; Mehdi, S.R.; Zhang, Y.; Shentu, Y.; Wan, Q.; Wang, W.; Raza, K.; Huang, H. Development of coral investigation system
based on semantic segmentation of single-channel images. Sensors 2021, 21, 1848. [CrossRef] [PubMed]

24. Huang, H.; Wang, C.; Liu, S.; Sun, Z.; Zhang, D.; Liu, C.; Jiang, Y.; Zhan, S.; Zhang, H.; Xu, R. Single spectral imagery and faster
R-CNN to identify hazardous and noxious substances spills. Environ. Pollut. 2020, 258, 113688. [CrossRef] [PubMed]

25. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
26. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 18–22 June 2018.
27. Guo, H.; Wu, D.; An, J. Discrimination of oil slicks and lookalikes in polarimetric SAR images using CNN. Sensors 2017, 17, 1837.

[CrossRef] [PubMed]
28. Nieto-Hidalgo, M.; Gallego, A.-J.; Gil, P.; Pertusa, A. Two-stage convolutional neural network for ship and spill detection using

SLAR images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5217–5230. [CrossRef]
29. Guo, H.; Wei, G.; An, J. Dark spot detection in SAR images of oil spill using Segnet. Appl. Sci. 2018, 8, 2670. [CrossRef]

http://doi.org/10.1016/j.envint.2014.05.012
http://www.ncbi.nlm.nih.gov/pubmed/24953645
http://doi.org/10.1002/(SICI)1097-0274(199808)34:23.0.CO;2-X
http://doi.org/10.12716/1001.08.02.16
http://doi.org/10.1016/j.marpolbul.2016.06.090
http://www.ncbi.nlm.nih.gov/pubmed/27389461
http://doi.org/10.1016/j.jhazmat.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25559778
http://doi.org/10.1016/j.marpolbul.2018.12.044
http://doi.org/10.1016/j.marpolbul.2010.03.015
http://doi.org/10.1016/j.marpolbul.2012.03.016
http://doi.org/10.1021/es3004156
http://doi.org/10.1021/es9805627
http://doi.org/10.1021/es990899o
http://doi.org/10.1021/es000888r
http://doi.org/10.1016/j.rse.2017.09.002
http://doi.org/10.1364/OE.22.013755
http://www.ncbi.nlm.nih.gov/pubmed/24921568
http://doi.org/10.1186/1687-6180-2012-107
http://doi.org/10.3390/rs12203338
http://doi.org/10.3390/rs13020318
http://doi.org/10.1364/AO.58.004458
http://doi.org/10.3390/rs11091142
http://doi.org/10.3390/electronics10162004
http://doi.org/10.3390/app10238476
http://doi.org/10.3390/s19204411
http://doi.org/10.3390/s21051848
http://www.ncbi.nlm.nih.gov/pubmed/33800839
http://doi.org/10.1016/j.envpol.2019.113688
http://www.ncbi.nlm.nih.gov/pubmed/32004855
http://doi.org/10.3390/s17081837
http://www.ncbi.nlm.nih.gov/pubmed/28792477
http://doi.org/10.1109/TGRS.2018.2812619
http://doi.org/10.3390/app8122670


Remote Sens. 2022, 14, 576 16 of 16

30. Liu, B.; Li, Y.; Li, G.; Liu, A. A spectral feature based convolutional neural network for classification of sea surface oil spill. ISPRS
Int. J. Geo-Inf. 2019, 8, 160. [CrossRef]

31. Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil spill identification from satellite
images using deep neural networks. Remote Sens. 2019, 11, 1762. [CrossRef]

32. Yang, J.-F.; Wan, J.-H.; Ma, Y.; Zhang, J.; Hu, Y.-B.; Jiang, Z.-C. Oil spill hyperspectral remote sensing detection based on DCNN
with multiscale features. J. Coast. Res. 2019, 90, 332–339. [CrossRef]

33. Zeng, K.; Wang, Y. A deep convolutional neural network for oil spill detection from spaceborne SAR images. Remote Sens. 2020,
12, 1015. [CrossRef]

34. Song, D.; Zhen, Z.; Wang, B.; Li, X.; Gao, L.; Wang, N.; Xie, T.; Zhang, T. A novel marine oil spillage identification scheme based on
convolution neural network feature extraction from fully polarimetric SAR imagery. IEEE Access 2020, 8, 59801–59820. [CrossRef]

35. Chen, Y.; Li, Y.; Wang, J. An end-to-end oil-spill monitoring method for multisensory satellite images based on deep 386 semantic
segmentation. Sensors 2020, 20, 725. [CrossRef]

36. Yekeen, S.T.; Balogun, A.-L.; Yusof, K.B.W. A novel deep learning instance segmentation model for automated marine oil spill
detection. ISPRS J. Photogramm. Remote Sens. 2020, 167, 190–200. [CrossRef]

37. Tzutalin. LabelImg. Git code (2015). Available online: https://github.com/tzutalin/labelImg (accessed on 19 January 2022).
38. Rew, J.; Cho, Y.; Moon, J.; Hwang, E. Habitat Suitability Estimation Using a Two-Stage Ensemble Approach. Remote Sens. 2020,

12, 1475. [CrossRef]
39. Zhao, H.; Zhou, Y.; Zhang, L.; Peng, Y.; Hu, X.; Peng, H.; Cai, X. Mixed YOLOv3-LITE: A lightweight real-time object detection

method. Sensors 2020, 20, 1861. [CrossRef] [PubMed]

http://doi.org/10.3390/ijgi8040160
http://doi.org/10.3390/rs11151762
http://doi.org/10.2112/SI90-042.1
http://doi.org/10.3390/rs12061015
http://doi.org/10.1109/ACCESS.2020.2979219
http://doi.org/10.3390/s20030725
http://doi.org/10.1016/j.isprsjprs.2020.07.011
https://github.com/tzutalin/labelImg
http://doi.org/10.3390/rs12091475
http://doi.org/10.3390/s20071861
http://www.ncbi.nlm.nih.gov/pubmed/32230867

	Introduction 
	Methodology 
	HNSs Image Dataset 
	Image Acquisition 
	Data Augmentation 

	DCNN Model for HNSs Spill Detection 
	Improved Loss Function 
	Anchor Box Generation 


	Experimentation 
	Model Training 
	Evaluation Protocols 

	Detection Results of the Proposed Model 
	Spill Location Detection 
	Evaluation Based on Precision and Recall 
	Evaluation Based on Multiscale Resolution 
	Sample HNSs Spill Classification 

	Discussion 
	Conclusions 
	Appendix A
	YOLOv3 

	References

