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Abstract: Identifying waterfowl habitat suitability under changing environments, especially land-use
change, is crucial to make waterfowl habitat conservation planning. We took Wetland Nature Reserve
of Liaohe Estuary, the largest breeding area of Saunders’s Gulls (Larus saundersi) in the world, as
our study area, generated land-use-type maps through interpretation of satellite images from four
different years (1988, 2000, 2009, 2017), and predicted the potential breeding habitat of Saunders’s
Gulls by MaxEnt model based on the land-use map, along with other environmental variables (NDVI,
distance to roads and artificial facilities, distance to rivers and water bodies, DEM and distance to
shoreline) for the four years, respectively. The models were evaluated using the area under the curve
(AUC). We analyzed the changes of the breeding habitat from 1988 to 2017 and utilized RDA to
explore the relationships among the changes of suitable habitat of Larus saundersi and the dynamics
of land uses. Our results showed that the most suitable habitat decreased by 1286.46 ha during
1988-2009 and increased by 363.51 ha from 2009 to 2017. The suitable habitat decreased by 582.48 ha
from 1988 to 2009 and then increased to 1848.96 ha in 2017, while the unsuitable habitat increased by
2793.87 ha during 1988–2009 and then decreased by 178.83 ha from 2009 to 2017. We also found that
land use, distance to the coastline, distance to artificial facilities, distance to rivers, distance to roads,
and NDVI had certain degrees of impact on the Larus saundersi distribution. The contribution of
land use ranged from 16.4% to 40.3%, distance to coastline from 34.7% to 48.0%, distance to artificial
facilities from 5.9% to 11.1%, distance to rivers from 5.5% to 11.0%, distance to roads from 3.9% to
12.5%, and NDVI from 0.3% to 6.3%. The change in suitable habitat of Larus saundersi has a positive
relationship with the change of seepweed marsh. Human-induced changes in seepweed marsh
and coastline position are the main factors influencing the potential breeding habitat of Saunders’s
Gulls. We suggest strict conservation of seepweed marsh and implementation of habitat management
practices to better protect Saunders’ Gull’s breeding habitat.

Keywords: breeding habitat; land use; MaxEnt model; Saunders’s gull

1. Introduction

Wetlands are large carbon sinks [1–3] that can be used for climate mitigation, maintain-
ing high biodiversity [4], and they are crucial habitats for various waterbird species [5,6].
However, to meet land requirements for social and economic development, wetland loss
and degradation are common phenomena in coastal regions worldwide. Research shows
that at least 33% of global wetlands have been lost [7]. The loss of these wetlands has
seriously threatened the habitat of waterfowl [8] and biodiversity [9].
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The loss of wetlands could be attributed to drought [10,11], urban growth and indus-
trial development [12–14], climatic variability [15,16], sea-level rise [17], coastal erosion [18],
etc. However, human-induced land-use changes are the key driver of wetland loss [19–21],
especially agricultural activities [22–25], all over the world. Therefore, exploring waterfowl
habitat suitability under changing land use could identify priority sites [26] to better plan
waterfowl habitat conservation [27].

Saunders’s gulls (Larus saundersi), which mainly breed along the east coast of China,
are recognized as “vulnerable” by the IUCN [28]. The Wetland Nature Reserve of the Liaohe
Estuary (WNRLE) is the largest breeding area in the world [29], accounting for nearly 70%
of the breeding habitat of this species in the world [30]. Saunders’s gulls depend on Suaeda
salsa habitats for breeding, which grow in mudflats [31]. In recent decades, some tidal
marshes have been converted to aquacultural ponds, paddy fields, industrial development,
and other land-use types [32]. The loss of tidal marshes shrinks the breeding habitat area of
Saunders’s gulls, which may lead to a decrease in Saunders’s gull populations. Knowing
how these conversions impact the breeding habitat of Saunders’s gulls may aid in better
conservation planning for this species. However, to date, long-term data on the extent to
which tidal marshes have been converted into other land-use types and the potential impact
of these conversions on the breeding habitat of Saunders’s gulls are largely unknown.

In this study, we first generated land-use-type maps of WNRLE for four different
years (1988, 2000, 2009, 2017) through interpretation of satellite images to explore how
land uses change during the three decades; then, we predicted the potential breeding
habitat of Saunders’s gulls in each of the four years using the MaxEnt model based on the
land-use map, along with other environmental variables, and analyzed the changes in the
potential breeding habitat of Saunders’s gulls from 1988 to 2017; finally, we proposed some
suggestions for Saunders’s gull conservation.

2. Methods
2.1. Study Area

The geographic location of our study area is between 121◦28′09.74′ ′E–122◦00′23.92′ ′E
and 40◦45′00′ ′N–41◦08′49.65′ ′N, with a total area of 10.9 × 105 ha. It is located on the lower
fluvial plain of the Liaohe River. It consists of two nature reserves—the National Wetland
Nature Reserve of the Liaohe Estuary and the Provincial Wetland Nature Reserve of the
Liaohe Estuary (Figure 1). The former has an area of 8.0 × 105 ha, and the latter has an area
of 2.9 × 105 ha. The study area has a northern temperate, semi-humid, seasonal monsoon
climate. The annual mean temperature is 8.4 ◦C, with a maximum of 35.2 ◦C in July and
a minimum of −28.2 ◦C in January. The frozen-free days are from 167 to 174 days. The
annual mean precipitation is 623.2 mm, with a maximum of 916.4 mm and a minimum of
326.6 mm. The main soil types include paddy soil, saline soil, meadow soil, and boggy
soil. The major vegetation types comprise the Phragmites australis community and Suaeda
salsa community. Other species include Leymus chinensis, Calamagrostis epigeios, Xeridium
sonchifolium, Plantago asiatica, Aeluropus sinensis, Scirpus planiculmis, and Typha orientalis.

2.2. Larus Saundersi Occurrence Dataset

We obtained bird-monitoring reports from 2010 to 2017 from the Wetland Nature
Reserve of the Liaohe Estuary. These reports provided a detailed inventory method for
counting the number of Larus saundersi, which includes direct counting by telescopes and
binoculars during the nonbreeding season (April) and breeding season (June) at certain sites
4–6 times each year. These observational sites were mainly located in seepweed marshes
and mudflats, which are the main habitats for Larus saundersi to forage and breed. We
compiled the records that had geographical positions at which Larus saundersi occurred. We
obtained 122 records for Larus saundersi occurrence. After omitting duplicate records that
were too close to each other or out of the extent of our study area, 63 out of the 122 records
for Larus saundersi occurrence were utilized to predict its habitat suitability.
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Figure 1. Geographic location of the study area. The study area consists of two nature reserves—the
National Wetland Nature Reserve and the Provincial Wetland Nature Reserve of the Liaohe Estuary.
The background is the RGB composite image of Landsat 8 OLI, taking band 5 as red, band 4 as green,
and band 3 as blue band.

2.3. Environmental Variable Selection and Processing

Many factors may affect the spatial distribution of waterbird species, such as food
and water availability, shelter conditions, and anthropogenic disturbances [33]. We chose
normalized difference vegetation index (NDVI) as shelter conditions due to its indication of
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vegetation cover; land use and distance to roads and artificial facilities serve as indicators
of human disturbances; distance to rivers and water bodies may indicate water availability;
and digital elevation model (DEM) and distance to the shoreline influence vegetation
distribution and food availability.

Land-use types: We downloaded Landsat images of our study area from the USGS
(https://glovis.usgs.gov/, accessed on 13 October 2017) for 1988, 2000, 2009, and 2017 to
derive land-use change information. These images have a spatial resolution of 30 m. We
first categorized land-use types into 9 classes—namely, non-irrigated farmland, paddy
field, reed marsh, seepweed marsh, artificial facility, water body, mudflat, shrimp and crab
pond, and shallow sea, according to the Chinese standard of land-use classification [34]. We
projected the boundary map of the Wetland Nature Reserve of the Liaohe Estuary into the
same projection as the Landsat images, and these images were cut by the boundary map to
generate images within the extent of the reserve. Supervised classification was performed
on the images for 1988, 2000, 2009, and 2017, and then, the classified land-use maps were
corrected by visual checking. We validated the land-use classification map of 2017 by using
Google Earth images according to 200 random points, resulting in an accuracy of 80.5%,
which could meet our modeling requirements.

Normalized difference vegetation index (NDVI): We calculated the NDVI value in each
year based on the Landsat near-infrared band and red band by using the following formula:

NDVI =
NIR− R
NIR + R

(1)

where NIR and R are the reflectance values of the near-infrared band and red band, respec-
tively.

Digital elevation model (DEM): We downloaded DEM at the Resource and Environ-
ment Science and Data Center (https://www.resdc.cn, accessed on 5 December 2017). It is
derived from ALOS PALSAR and has a spatial resolution of 12.5 m. We projected the DEM
spatial data of the Wetland Nature Reserve of the Liaohe Estuary into the same projection
as the Landsat images and resampled them to a 30 m spatial resolution.

Distance to the shoreline: We obtained a shoreline distribution map for 2017 from
the Environment Science Research Institute of Liaoning Province. We first interpreted
the shoreline based on Landsat images to generate shoreline distribution maps for 1988,
2000, and 2009, calculated the distances to the shoreline for 1988, 2000, 2009, and 2017,
setting a cell size of 30 m, and masked these distance maps by the boundary map in the
ArcGIS10.3 environment.

Distance to rivers and water bodies: We extracted water bodies from land-use maps for
1988, 2000, 2009, and 2017 and visually interpreted linear rivers based on Landsat images
of the Wetland Nature Reserve of the Liaohe Estuary in 1988, 2000, 2009, and 2017. We
projected the river and water body distribution maps into the same projection as Landsat
images, calculated the distances to rivers and water bodies, set the resolution to 30 m, and
masked the distance maps by the boundary map in the ArcGIS10.3 environment.

Distance to roads: We visually interpreted roads based on the Landsat images of the
Wetland Nature Reserve of the Liaohe Estuary in 1988, 2000, 2009, and 2017 and projected
the road maps into the same projection as Landsat images, calculated the distances to
roads, set the cell size to 30 m, and masked the distance maps by the boundary map in the
ArcGIS10.3 environment.

Distance to artificial facilities: We extracted artificial facilities from land-use maps
for 1988, 2000, 2009, and 2017, calculated the distance to artificial facilities each year,
set the cell size to 30 m, and masked the distance maps by the boundary map in the
ArcGIS10.3 environment.

Given that many variables were spatially correlated and could cause overfitting of the
prediction [35], we extracted the values of the abovementioned environmental variables for
each location where Larus saundersi occurred. The Pearson correlation coefficient (r) was
calculated in SPSS 22.0, and highly correlated environmental variables with |r| ≥ 0.8 were

https://glovis.usgs.gov/
https://www.resdc.cn
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excluded [36–38]. The distance to water bodies was removed (r = 0.86), and the remaining
7 variables were used to model the occurrence probability for Larus saundersi.

2.4. MaxEnt Model Parameter Settings

Species distribution models (SDMs) have been important tools to assess habitat suit-
ability in recent years [39,40]. SDMs use species records and spatial environmental factors
to predict the occurrence probability of species [41]. Many SDMs have been developed
using either species presence–absence data or presence-only data. For example, generalized
additive models (GAMs) and general linear models (GLMs) are used for presence–absence
data [42], and the genetic algorithm for ruleset production (GARP) and maximum entropy
method (MaxEnt) [43] are used for presence-only data. As most species absence data are
generally unavailable, SDMs for presence-only data are often used to estimate the occur-
rence probability of species, which is utilized to map the potential geographical distribution
of the species, especially by using the MaxEnt model [44]. The MaxEnt model minimizes
the relative entropy between two probability densities (environment/background and
the presence data) to obtain better prediction results [45]. Since in many cases, there
are a limited number of presence data available, MaxEnt model can be used, as it has
been shown to perform well with a small number size [46]. Hence, the MaxEnt model is
widely used to evaluate habitat suitability and predict the potential distribution of various
species [43], such as Paeonia ostii in China [47], Oriental white stork (Ciconia boyciana) in
central Japan [48], Athyrium brevifrons in northeastern China [49], and Caucasian grouse
(Lyrurus mlokosiewiczi) in the Greater and Lesser Caucasus regions [50]. MaxEnt3.4.1 [45]
was chosen in our research to predict habitat suitability for Larus saundersi.

In parameter setting, the number of replicate runs was set to 10, and the maximum
iteration time was 500. The jackknife test and cross-validation (56 records for the training
set and 7 for the testing set) were chosen, and other parameters were arranged with their
default settings. Variable importance was evaluated by percent contribution. Finally,
the average predicted occurrence probability of Larus saundersi of the 10 replicates was
reclassified into 4 classes according to arbitrarily defined probability classes. We are aware
of the other studies on threshold-based classifications [51–53]. These thresholds are justified
depending on the goal of the study. In this study, the suitability classes were determined by
the occurrence probability thresholds according to [51], with most suitable (0.6–1), suitable
(0.4–0.6), less suitable (0.1–0.4), and unsuitable (0–0.1) to generate a habitat suitability map
for Larus saundersi.

2.5. Evaluation of Model Performance

We used the area under the curve (AUC), which is the receiver operating characteristic
(ROC) curve, to evaluate MaxEnt model performance [54]. AUC ranges from 0.0 to 1.0,
with an AUC value ≤ 0.5 demonstrating the prediction is no better or worse than random;
0.5–0.7 indicating poor performance; 0.7–0.9 representing good performance; >0.9 showing
exceptionally excellent performance [55,56].

2.6. Redundancy Analysis

We utilized the ordination method to explore the relationships among the changes in
the suitable habitat of Larus saundersi and the dynamics of land uses. Ordination is often
used to explore relationships between species distributions and environmental variables.
It requires a species and an environmental matrix. We calculated the change rate of each
habitat suitability class of Larus saundersi for every combination of change periods (C2

4 = 6)
from 1988 to 2017. The change rate of each land-use type was also calculated for the same
period accordingly. We regarded the change rate of different habitat suitability classes of
Larus saundersi as “species”, the change rate of various land-use types as “environmental”,
and each change period as a sample. Hence, a 6 × 4 “species matrix” was established
(Table S1), and a 6 × 9 environmental matrix was constructed (Table S2). To eliminate
collinearity, the Pearson correlation coefficients (r) among the 9 environmental variables
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were calculated in SPSS 22.0, and the highly correlated environmental variables with
|r| ≥ 0.8 were excluded [36]. Thus, AF, WB, SS, and NIF were removed, and the remaining
5 variables were used for redundancy analysis (Table 1). The analysis was performed
with Canoco for Windows (Version 4.5), with variables entered by the forward selection
method. Permutation tests with 499 permutations using the Monte Carlo test were utilized
to evaluate the significance of variables at the 95% confidence level.

Table 1. Redundancy analysis (RDA) with the forward variable selection method. Permutation tests
with 499 permutations using the Monte Carlo test were utilized to test the significance of variables at
the 95% confidence level.

Variables Variance Explained by
the Variables Selected F-Value p-Value

PD 0.72 10.4 0.0020
MF 0.92 7.06 0.0700
RD 0.99 15.86 0.0580
SCP 1.00 4.79 0.1800
SW 1.00 0.00 1.0000

Notes: PD—paddy field; RD—reed marsh; SW—seepweed marsh; MF—mudflat; SCP—shrimp and crab pond.

3. Results
3.1. Land-Use Change

The supervised classification results (Figure 2) showed that reed marsh dominated
the Wetland Nature Reserve of the Liaohe Estuary, ranging from 40.02% in 1988 to 38.17%
in 2017. Non-irrigated farmland increased steadily, although it accounted for less than
1%. Paddy fields increased from 0.97% in 1988 to 6.40% in 2017. Shrimp and crab ponds
increased steadily from 0.77% in 1988 to 6.08% in 2017. Artificial facilities increased from
0.20% in 1988 to 0.42% in 2009 and then decreased to 0.36% in 2017 (Table 2). Seepweed
marsh decreased from 6.5% in 1988 to 1.07% in 2000 and then increased to 6.60% in 2017.
Mudflats fluctuated between 12.71% and 21.79%.

3.2. Evaluation of MaxEnt Model Performance

The average training AUCs with 10-fold cross-validation were 0.896± 0.053, 0.908± 0.047,
0.907 ± 0.044, and 0.901 ± 0.066 for 1988, 2000, 2009, and 2017, respectively (Figure S1),
showing the model’s relatively good performance in predicting suitable habitat for
Larus saundersi.

3.3. Changes in the Habitat Suitability of Larus saundersi

The predicted results of the occurrence probability of Larus saundersi by MaxEnt
(Figure 3) were categorized into four classes in the ArcGIS 10.3 environment according to
the arbitrarily defined probability classes. The most suitable and suitable habitats were
mainly distributed in the southwestern part of the study area, while the less suitable
habitats were on both sides of the Liaohe River (Figure 4). The area and percentage for
each class are shown in Table 3. We can see that the most suitable habitat decreased from
3.69% in 1988 to 2.40% in 2009 and then increased to 2.77% in 2017. The suitable habitat
decreased from 2.32% in 1988 to 1.74% in 2009 and then increased to 1.85% in 2017. The less
suitable habitat fluctuated from 11.55% to 13.52%, while the unsuitable habitat increased
from 80.42% in 1988 to 83.04% in 2017.
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Figure 2. Land-use map of the Wetland Nature Reserve of the Liaohe Estuary: (a) 1988, (b) 2000,
(c) 2009, and (d) 2017. These maps were generated by supervised classification on the Landsat images
for 1988, 2000, 2009, and 2017, respectively, and classification errors were corrected by visual checking,
resulting in overall accuracies greater than 80%.
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Table 2. Area (ha) and percentage (%) of each land-use type in 1988, 2000, 2009, and 2017.

Land-Use Type 1988 2000 2009 2017

Area
(ha)

Percent
(%)

Area
(ha)

Percent
(%)

Area
(ha)

Percent
(%)

Area
(ha)

Percent
(%)

Non-irrigated farmland 98.66 0.10 148.66 0.15 200.07 0.20 399.50 0.40
Paddy field 964.55 0.97 6794.52 6.75 6358.55 6.37 6399.99 6.40
Reed marsh 43,948.33 40.02 41,716.19 41.42 40,753.22 40.82 38,153.68 38.17

Seepweed marsh 6490.27 6.50 1081.05 1.07 1537.82 1.54 6600.79 6.60
Artificial facility 195.09 0.20 347.72 0.35 420.32 0.42 359.43 0.36

Water body 2068.55 2.07 2636.09 2.62 2915.49 2.92 3323.22 3.32
Mudflat 16,577.82 16.60 14,777.34 14.67 21,754.75 21.79 12,704.79 12.71

Shrimp and crab pond 773.47 0.77 2982.01 2.96 5289.31 5.30 6078.73 6.08

Shallow sea 28,708.90 28.76 30,226.96 30.01 20,598.39 20.63 25,941.58 25.95
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Figure 3. Occurrence probability of Larus saundersi predicted by the MaxEnt model in the Wetland
Nature Reserve of the Liaohe Estuary: (a) 1988, (b) 2000, (c) 2009, and (d) 2017. The black dots are the
occurrence locations of Larus saundersi.
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Figure 4. Habitat suitability distribution maps of Larus saundersi in the Wetland Nature Reserve of
the Liaohe Estuary: (a) 1988, (b) 2000, (c) 2009, and (d) 2017. Several methods have been suggested
to categorize the results based on the thresholds [51–53]. These thresholds are justified depending
on the goal of the study. In this study, the suitability classes were determined by the occurrence
probability thresholds according to [51], with most suitable (0.6–1), suitable (0.4–0.6), less suitable
(0.1–0.4), and unsuitable (0–0.1).

Table 3. Area and percentage of each suitable class for Larus saundersi distribution in 1988, 2000, 2009,
and 2017.

Suitable Class 1988 2000 2009 2017

Area (ha) Percent (%) Area (ha) Percent (%) Area (ha) Percent (%) Area (ha) Percent (%)

Unsuitable 80,280.09 80.42 83,799.09 83.94 83,073.96 83.22 82,895.13 83.04
Less suitable 13,492.80 13.52 11,530.44 11.55 12,620.16 12.64 12,320.46 12.34

Suitable 2316.42 2.32 2033.46 2.04 1733.94 1.74 1848.96 1.85
Most suitable 3686.94 3.69 2465.55 2.47 2400.48 2.40 2763.99 2.77

Total 99,828.54 100.00 99,828.54 100.00 99,828.54 100.00 99,828.54 100.00

3.4. Factors Influencing the Habitat Suitability of Larus saundersi

The jackknife tests showed the relative contribution of each environmental variable
to the Larus saundersi distribution predicted by the MaxEnt model (Figure S2, Table S4).
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We found that land use, distance to the coastline, distance to artificial facilities, distance to
rivers, distance to roads, and the NDVI had certain degrees of impact on the Larus saundersi
distribution. The contributions of land use ranged from 16.4% to 40.3%, distance to the
coastline from 34.7% to 48.0%, distance to artificial facilities from 5.9% to 11.1%, distance to
rivers from 5.5% to 11.0%, distance to roads from 3.9% to 12.5%, and the NDVI from 0.3%
to 6.3% (Table S4).

In addition, the response curves (Figure S3) showed that the breeding habitat of Larus
saundersi is mainly located in mudflats and seepweed marshes, where NDVI ranged from
−0.05 to 0.05. We also found a high occurrence probability of Saunders’s gulls where the
elevation was less than 0.95 m and the distance to the shoreline was within 10 m. The
occurrence probability of Saunders’s gulls reached the highest when the distance to roads
was 8674 m.

3.5. The Impact of Land-Use Change on the Habitat Suitability of Larus saundersi

The RDA results showed that the first canonical axis explained 78.9% of the variance
in the habitat suitability of Larus saundersi. The first and second canonical axes together
explained 99.2% of the habitat suitability of Larus saundersi. The most suitable habitat for
Larus saundersi had a positive relationship with the change in SW. The unsuitable habitat
for Larus saundersi had a positive relationship with changes in PD, SCP, and MF (Figure 5).

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

occurrence probability of Saunders’s gulls reached the highest when the distance to roads 

was 8674 m. 

3.5. The Impact of Land-Use Change on the Habitat Suitability of Larus saundersi 

The RDA results showed that the first canonical axis explained 78.9% of the variance 

in the habitat suitability of Larus saundersi. The first and second canonical axes together 

explained 99.2% of the habitat suitability of Larus saundersi. The most suitable habitat for 

Larus saundersi had a positive relationship with the change in SW. The unsuitable habitat 

for Larus saundersi had a positive relationship with changes in PD, SCP, and MF (Figure 

5). 

 

Figure 5. Ordination diagram of RDA with samples (change periods), species (the change rate of 

different habitat suitability classes of Larus saundersi), and environmental variables (the change rate 

of various land-use types), taking the first canonical factor as the x-axis and the second canonical 

factor as the y-axis. The habitat suitability classes were represented as US-unsuitable, LS-less suita-

ble, S-suitable, and MS-most suitable. Changes in land-use types such as PD-paddy field, RD-reed 

marsh, SW-seepweed marsh, MF-mudflat, and SCP-shrimp and crab pond.  

Figure 5. Ordination diagram of RDA with samples (change periods), species (the change rate of
different habitat suitability classes of Larus saundersi), and environmental variables (the change rate
of various land-use types), taking the first canonical factor as the x-axis and the second canonical
factor as the y-axis. The habitat suitability classes were represented as US-unsuitable, LS-less suitable,
S-suitable, and MS-most suitable. Changes in land-use types such as PD-paddy field, RD-reed marsh,
SW-seepweed marsh, MF-mudflat, and SCP-shrimp and crab pond.
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4. Discussion
4.1. Factors Influencing the Habitat Suitability of Larus saundersi

A previous report showed that factors that affect the breeding habitat of Saunders’s
gulls include vegetation cover, anthropogenic disturbance intensity, water availability,
and food abundance [33]. In our study, we chose land use/cover as an indicator for food
abundance, the NDVI for vegetation cover, the DEM and distance to the coastline as indi-
rect indicators for food abundance because they influence the distribution of vegetation,
distance to rivers and water bodies for water availability, and distance to roads and con-
structed facilities for human disturbance intensity. The simulation results from the MaxEnt
model indicated that the spatial distribution of the breeding habitat for Saunders’s gulls
could be well simulated using these spatial environmental variables. The jackknife test
(Figure S2, Table S4) suggested that land use, distance to the coastline, distance to artificial
facilities, distance to roads and rivers, and the NDVI are the major factors affecting the
breeding habitat for Saunders’s gulls.

Our results showed that the breeding habitat of Larus saundersi is mainly located in
mudflats and seepweed marshes (Figure 4 and Figure S3). Our results are in line with
field observations of previous researchers [31,57] and are comparable to the habitat of
slender-billed gulls [58] and black-headed gulls [59]. Saunders’s gulls often perch on near-
sea mudflats at night and find food on mudflats, current ditches, and seepweed marsh
wetlands because the favorite foods for Saunders’s gulls such as Bullacta exarate, Nereis
succinea, Synechogobius hasta, Macrophthalmus dilatatum, and Helice tientsinensis [60] are
largely distributed there [61].

We found that a high occurrence probability of Saunders’s gulls was observed where
the NDVI ranged from −0.05 to 0.05 (Figure S3). A low NDVI is consistent with the habitat
requirements of Saunders’s gulls [62]. They usually nest above the upper rim of the tidal
zone where short and sparse Suaeda salsa grow to protect their nests from seawater flushing
even when high tides occur [31]. The short and sparse Suaeda salsa vegetation generally has
a low NDVI. This kind of habitat type is also favored by other bird species, such as black
terns (Chlidonias niger) [63] and DuPont’s lark [64].

We also found a high occurrence probability of Saunders’s gulls where the elevation
was less than 0.95 m and the distance to the shoreline was within 10 m (Figure S3). This
is because the Suaeda salsa wetland, a nesting area for Saunders’s gulls, is distributed in a
near-sea mudflat. In areas with relatively higher DEMs, dense Phragmites australis grows,
which is unfavorable for Saunders’s gulls [57].

Anthropogenic disturbances, such as coastal development and recreational activ-
ities [65], have negative impacts on bird habitats [39]. Our results indicated that the
occurrence probability of Saunders’s gulls reaches the highest when the distance to roads is
8674 m (Figure S3). If using 0.4 as the threshold between suitable and unsuitable habitat ac-
cording to Remya et al. (2015), we could determine that the impacting distance from roads
and artificial facilities on the breeding habitat selection of Saunders’s gulls is approximately
2000 m and 2200 m, respectively. The influence of roads on breeding habitat selection of
Saunders’s gulls is comparable to that of less black-backed gulls, which select habitat 2 km
offshore, to avoid human disturbances [66].

4.2. Land-Use Change and Habitat Suitability Dynamics of Larus saundersi

Land-use change-induced loss of wetlands has seriously threatened the habitat of
waterfowl [8]. Our results indicated that paddy fields and aquacultural ponds have in-
creased steadily. Artificial facilities first increased and then decreased, while marshland
decreased steadily. The increase in artificial facilities was mainly attributed to ecotourism
development during 1988–2009. The increase in ponds was mainly due to the reclamation
of mudflat wetlands for aquacultural development. The increase in paddy fields from 1988
to 2000 was mainly due to the reclamation of wetlands for agricultural development. The
reclamation of wetlands is common in coastal areas of China. For example, in the Yellow
River Delta, one of the three breeding places of Larus saundersi in China, 1.34% of wetlands
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covered by Suaeda salsa were transformed into reservoirs and ponds, and 24.71% were
covered with Phragmites australis into dry farmland from 1976 to 2016 [67]. Marshes are the
most degraded wetlands in China [68].

The transformation of wetlands to other land-use types may have great impacts on
bird habitat. Previous studies have demonstrated that land-use/cover change is the main
driver of bird habitat loss [69], and long-term coastal reclamation has greatly undermined
coastal wetlands’ functions as waterbird habitats [32]. In our study, the favorable habitat
(most suitable plus suitable) of Saunders’s gulls decreased by 1868.94 ha during 1988-
2009 (Table 2). This is partly due to the conversion of wetlands to artificial facilities and
aquacultural ponds. The construction of roads, dams, and other facilities would have
changed the hydrokinetic conditions and increased the sediment accretion rate [70], which
would limit the establishment of Suaeda salsa, resulting in a massive shrinkage of Suaeda
salsa vegetation [71].

The reclamation of wetlands to aquacultural ponds directly destroyed the habitat
of Saunders’s gulls. Our results were consistent with recent studies in the Yancheng
National Nature Reserve, where the loss of Larus saundersi habitat is largely attributed to
the widespread expansion of aquaculture [28,62].

In addition, the “red beach (Suaeda salsa)” landscape has beautiful scenery that attracts
thousands of people to visit. Ecotourism significantly contributes to the local economy.
However, the frequent presence of tourists has reduced the density of waterbirds, which, in
turn, has increased the density of crabs, which are lethal herbivores, driving the further
degradation of coastal red beaches [72].

4.3. Implications for Effective Conservation of Larus saundersi

Most biosphere reserves currently face conflicts between biodiversity conservation
and economic development [73]. In wetland nature reserves, the conservation of wetland
bird habitats has become a global conservation priority [72]. The MaxEnt model can
better predict the spatial distribution of the breeding habitat suitability of Saunders’s gulls.
The dynamic change information for the habitat of Saunders’s gulls, both spatially and
temporally, in this study can be used to conduct future conservation planning in our study
area and other related regions. We found that the suitable breeding habitat of Saunders’s
gulls was largely located in the southwestern part of the reserve, suitability decreased
during 1988–2009 and had an increasing trend during 2009–2017 (Figure 4), and Saunders’s
gulls favored mudflats and seepweed marshes (Figure S3, Table S3). This part of the reserve
should be strictly conserved. However, the Wetland Nature Reserve of the Liaohe Estuary
is managed by two different reserves—the National Wetland Nature Reserve of the Liaohe
Estuary and the Provincial Wetland Nature Reserve of the Liaohe Estuary (Figure 1). The
national nature reserve has stricter regulations for nature conservation than the provincial
nature reserve. Hence, we suggest that the managers of the two reserves take equally strict
measures to conserve the habitat of Saunders’s gulls by employing efficient coordination
and cooperation, especially for seepweed marshes. Indeed, China has taken “beautiful
China” and “ecological civilization” as national strategies since 2012, and the Wetland
Nature Reserve of the Liaohe Estuary has been categorized as an “ecological red line”
area [74]. All these strategies will guarantee the effective conservation of the breeding
habitat of Saunders’s gulls.

In addition, habitat management is an important approach to maintaining bird habi-
tat [75,76]. Saunders’s gulls have special requirements for choosing their nesting sites that
include lower and sparse Suaeda salsa vegetation above the upper rim of the tidal zone. The
height and density of Suaeda salsa and the surface water level have a direct influence on the
successful breeding of Saunders’s gulls. Reserve managers have accumulated successful
practices for conserving the breeding habitat of Saunders’s gulls. They have cut higher
Suaeda salsa vegetation (>90 cm) to reduce the height of Suaeda salsa and have dug ditches
and built sluice gates to control the surface water level. Burning is also recommended to
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create suitable vegetation cover for Suaeda salsa. All these practices have maintained or
even enlarged the extent of the breeding habitat of Saunders’s gulls [30].

5. Limitations

In our study, we only explored the impacts of land-use changes and human distur-
bances on the breeding habitat suitability of Saunders’s gulls during 1988–2017. In fact,
other factors may also have certain degrees of impact, such as climate change. Previ-
ous results have indicated that climate change may affect the habitat distribution of bird
species [77]. The possible effect of climate change needs to be considered as well, but its
effect is unlikely to be as considerable as land-use change. Hence, the changing trend of
the suitable breeding habitat of Saunders’s gulls during 1988–2017 is robust in our study
and could be used to make conservation planning for Saunders’s gulls. Quantifying the
impact of climate change on the breeding habitat suitability of Saunders’s gulls is our future
research focus.

6. Conclusions

Knowledge of breeding habitat changes of Saunders’s gulls could aid in management
strategies for this “vulnerable” species. Our results demonstrated that human-induced
changes in seepweed marshes and coastline position are the main factors influencing the
potential breeding habitat of Saunders’s gulls. The potential breeding habitat of Saunders’s
gulls decreased steadily during 1988–2009 due to the development of aquaculture and
tourism and had an increasing trend during 2009–2017 with the implementation of “beau-
tiful China” and “ecological civilization” national strategies. Efficient coordination and
cooperation between the National Wetland Nature Reserve and the Provincial Wetland
Nature Reserve of the Liaohe Estuary could guarantee the effective conservation of the
breeding habitat of Saunders’s gulls, especially in the seepweed marshes. In addition, the
implementation of habitat management practices could enlarge the extent of the breeding
habitat of Saunders’s gulls.
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