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Abstract: As a result of Earth observation (EO) entering the era of big data, a significant challenge
relating to by the storage, analysis, and visualization of a massive amount of remote sensing (RS)
data must be addressed. In this paper, we proposed a novel scalable computing resources system to
achieve high-speed processing of RS big data in a parallel distributed architecture. To reduce data
movement among computing nodes, the Hadoop Distributed File System (HDFS) is established on
nodes of K8s, which are also used for computing. In the process of RS data analysis, we innovatively
use the tile-oriented programming model instead of the traditional strip-oriented or pixel-oriented
approach to better implement parallel computing in a Spark on Kubernetes (K8s) cluster. A large RS
raster layer can be abstracted as a user-defined tile format of any size, so that a whole computing task
can be divided into multiple distributed parallel tasks. The computing resources applied by users
would be immediately assigned in the Spark on K8s cluster by simply configuring and initializing
SparkContext through a web-based Jupyter notebook console. Users can easily query, write, or
visualize data in any box size from the catalog module in GeoPySpark. In summary, the system
proposed in this study can provide a distributed scalable resources system for assembling big data
storage, parallel computing, and real-time visualization.

Keywords: big data; parallel computing; remote sensing; HDFS on K8s; GeoPySpark; Spark on K8s

1. Introduction

As a result of the development of Earth observation (EO) and sensor technologies,
humans’ ability to undertake comprehensive observation of the Earth has entered an
unprecedented period, and Earth system sciences have entered the era of big data [1,2].
The increasing availability of sensor technology has drastically promoted our ability to
collect time-varying geospatial and climate data. The data collection volumes and rates
easily overwhelm those of the past. At present, the observation data streaming rate of
NASA’s current missions is approximately 1.73 GB gigabytes per seconds, and the scale of
NASA’s climate change data repository is expected to increase to 230 petabytes by the end
of 2030 [3]. In fact, remote sensing (RS) observation data, as a typical type of geospatial
data, and even those gathered by a single satellite data center, is increasing dramatically
at the speed of several terabytes per day [4]. To take advantage of these huge datasets,
users face several limitations, such as the limited resources and processing capacities of
personal computers [5–7]. Therefore, it is difficult to deal with the huge volume of RS data
in a traditional computing paradigm.

In summary, the extraction and interpretation of the information from these large RS
datasets is the greatest challenge currently faced by Earth system science. Data must be
transformed into knowledge, thus breaking the paradox of “big data but little knowledge”,
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and overcoming the bottleneck of predictive ability that does not improve with the im-
provement of data availability [1]. The novel technologies based on cloud computing and
distributed systems can meet the demands of handling hundreds (or thousands) of EO
datasets with different spectral, temporal, and spatial resolutions by using or developing
software scripts to extract the information of interest [8]. To this end, many efforts to speed
up RS big data processing systems have been proposed in geoscience research. A cloud
computing model has shown great potential for ubiquitous, convenient, and on-demand
network access to dynamic computing resources [9]. As a typical cloud computing plat-
form, Google Earth Engine (GEE) is widely used in many applications, such as mining,
agriculture, and ecosystem services, and drought monitoring [10]. In the early years of RS
big data processing, Apache Hadoop [11] proved to be a mature and very popular platform
for big data analysis for various applications, and its core-computing framework, MapRe-
duce, is used in several platforms for RS big data processing [12–16]. The InterCloud Data
Mining Architecture is built in the cloud-computing environment based on HDFS, allowing
users to elastically allocate processing power and storage space, so as to effectively handle
very large datasets in the order of petabytes [17]. The study discussed the performance of
using Apache Spark to process large amounts of remotely sensed data in three different
running environments, namely, local, standalone, and Yet Another Resource Negotiator
(YARN) [18]. PipsCloud is a cloud platform based on High-Performance Computing (HPC)
and Hilbert R+-tree indexing, and is used to deal with RS data in real time on-demand [19].
A Spark-based tool, using the Geospatial Data Abstraction Library (GDAL) [20] as a tool
to extract information from different bands of RS images, was designed for large-scale RS
imagery-processing on a real commercial cloud [21]. In the existing works based on Spark,
adjusting the memory size of Spark executors and visualizing the results on a user-friendly
interface is not convenient.

The Spark engine can be utilized in cloud computing as a big data processing frame-
work. By allowing a user program to repeatedly load data into the memory of the cluster
and query it, Spark has become the core technology of big data and cloud computing [22].
The Spark project integrates SparkSQL and Spark streaming technology to address batch
processing, streaming processing, ad-hoc querying, and three other core issues of big
data [23,24], and is widely employed in geoscience to classify and detect the changes in a
large volume of multispectral RS images and synthetic aperture radar images [25,26]. Some
practical studies have found that Spark-based algorithms using Docker [27] containers
have performance advantages over the algorithms using Virtual Machines (VMs) [28,29].
Containerization is a novel lightweight virtualization technology. Traditional hypervisor-
based virtualization systems such as Xen, VMware, and KVM provide multi-tenancy and
hardware independence for a client operating system (OS) in the form of VMs. Container-
ized systems such as the Docker engine, OpenVZ, and Linux Container (LXC), provide
similar independence in containers because the application containers managed by the
Docker engine share the same OS kernel, and the number of containers on a computing
device is much higher than that of VMs [28,30].

Currently, the Spark engine supports these widely used cluster managers, including
Apache Mesos, Hadoop YARN, and Kubernetes (K8s). K8s is an open-source system for
automated deployment, scaling, and management of container applications, and provides
an ideal platform for hosting various workloads, including dynamic workloads based on
Artificial Intelligence (AI) applications supporting ubiquitous computing devices based
on parallel and distributed architectures [31]. K8s is commonly known as the standard
for container orchestration based on its widespread adoption in a hybrid cloud environ-
ment [32]. A parallel cloud-computing platform was implemented using the open-source
toolkit OpenDroneMap for unmanned aerial vehicle (UAV) imagery processing in an on-
premises cluster on K8s [33]. A computing framework based on free and open-source
technology for accessing data and processing facilities was provided by the Eurac Research
Sentinel Alpine Obseratory, which carries out cloud computing on an open-source platform
of OpenNebula and K8s, big data analytics on a Rasdaman server, and web-based Python
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development on Jupyter [34]. A Free and Open-Source Software (FOSS) solution was
proposed for automatically scaling K8s worker nodes within a cluster to support dynamic
workloads [32]. An elastic parallel spatial and temporal adaptive reflection fusion model
was implemented in an OpenStack cloud computing environment using Spark user-defined
aggregation functions to reduce the number of joining operations based on the K8s operator
model [35].

In addition, we also reviewed the existing computational solutions for big EO data
management, storage, and access. PipsCloud, which is based on an HPC technology, is
a widely used cloud platform in mainland China [19]. Traditionally, the storage nodes
of HPC systems are independent from the computing nodes. Therefore, it is necessary
to establish a high-speed Gigabit fiber network between computing and storage nodes.
However, the capacity of these high-speed links is still less than the aggregate bandwidth
of all compute nodes [36]. The processing abstractions, such as Xarray [37], pixel-wise,
strip-oriented [18], or DataFrame-oriented [35], adopted by Open Data Cube (ODC), GEE,
and other existing platforms, separate the array data from the metadata of the RS data.
Regarding the replicability of infrastructure, the majority of the widely used platforms, such
as GEE, pipsCloud, Joint Research Center (JRC) Earth Observation Data and Processing
Platform (JEODPP) [38], and Sentinel Hub (SH) [39], have little documentation on deploying
available applications on the users’ own infrastructures. Most of these platforms are closed
or proprietary solutions, such as pipsCloud, JEODPP, ODC, SH, and System for Earth
Observation Data Access, Processing and Analysis for Land Monitoring (SEPAL), and the
datasets included in these platforms satisfy the individual demands. The widely used
platform GEE suffers from costly limitations of the maximum duration of each request,
the maximum number of simultaneous requests per user, and the maximum execution
of operations, and the changes in algorithm implementations also impact the results by
running the same script on the same dataset at different dates [8]. Additionally, it cannot be
accessed in mainland China. Regarding the computing framework selection, the majority
of platforms choose MapReduce, such as GEE, Hadoop-GIS [16], and spatialhadoop [40].
However, MapReduce relies on the Hadoop Distributed File System (HDFS) as the data
exchange intermediary, and increases the I/O burden through frequently reading from and
writing to the storage. Accordingly, we adopt Spark as a Distributed Parallel Computing
(DPC) framework due to its excellent performance based on memory, and propose the
tile-oriented programming model to deal with the huge RS layer as small tiles. This
enables the limited memories of the cluster to load and process the long time-series RS
data in any defined tile area without breaking the spatial relative characteristics of the RS
data. We utilize containerization technology to achieve infrastructure replicability and
version control of the software environment and algorithms implemented by most of the
existing platforms. The system is built on the basis of the tile-oriented programming model,
containerization, and a Jupyter notebook as a web portal, and possesses significant potential
for processing RS big data in a less costly manner. In addition, our solution reduces the
entry barriers for the EO community in cloud computing technologies and RS big data
analysis platforms, and provides a simple and easy technical solution and theoretical basis
for EO researchers to build their own scalable RS big data platform.

Thus, in this study, we comprehensively investigated the storage, analysis, and vi-
sualization process of spatio-temporal RS big data based on Spark on K8s [41] with a
Jupyter notebook as a web portal. The main objective of this study was to facilitate RS big
data processing through a scalable computing resources system. Specifically, we aimed
to: (1) provide an option for researchers to deal with the huge volume of RS big data in
a less costly and flexible cloud computing system based on existing hardware resources;
(2) compile and assemble Docker images with free, open-access software and packages for
public users to easily deploy a RS big data processing platform; (3) improve the efficiency
of data loading by reducing the frequency of data movements between computing and
storage nodes based on HDFS on K8s; (4) focus on the spatial structure characteristics of
RS images to implement the innovative tile-oriented programming model based on the
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GeoPySpark [42] package; and (5) realize the auto migration of containers without missing
data based on CephFS as a storage-class of the K8s cluster.

Section 2 of this paper describes the methodology and data sources used in this
study. Section 3 describes the detailed hardware and software environment of the system.
Section 4 shows the time cost results for several aspects of the system and visualization in
multiple scales. Section 5 discusses the main factors affecting the computing efficiency of
the system. Section 6 presents the conclusion of the study.

2. Methodology and Data Sources

In this study, we developed an on-premises scalable computing resources system for
RS big data storage, processing, and visualization. Specially, a platform using GeoPySpark
based on Spark with a Jupyter notebook on K8s is introduced, which can be deployed on
this distributed framework.

2.1. The Tile-Oriented Programing Model

Large RS data volumes create significant challenges in data partitioning policy and
parallel programming difficulties in scalable computing containers. To address this issue,
we incorporated the tile-oriented programming model and Resilient Distributed Datasets
(RDDs) [43] to facilitate the design of generic parallel RS algorithms. The tiling of large
maps is an long-standing practice. Large paper maps have always been divided into a
series of map sheets at various scales [44]. The existing studies have not yet focused on the
tile-oriented programming in the parallel computing platform. In our system, the raster
layers are abstracted as user-defined tiles of a given size. Tile class contains a NumPy array
that represents the cells of the raster in addition to other information regarding the data.
Similarly, we can perform any map algebra operations, such as local or focal operations,
as a normal NumPy array along with the tile class. As a technique for rendering textures
in images, texture tiles meet the subjective criterion of visual acceptability [45]. To better
support the visualization of multi-scale RS data, we can retrieve information and queries
from the TiledRasterLayer catalog in different tile sizes, such as point, rectangle, and any
user-defined box.

2.2. The Ditributed Parallel Architecture of System

The architecture of the proposed scalable computing resources system is illustrated
in Figure 1. The system consists of three parts, namely, K8s cluster management (Part I),
RS data distributed storage (Part II), and scalable computing resources of the containers
(Part III). All nodes contained in this big data framework act as both computing nodes and
storage nodes to avoid data movement between computing nodes.

The K8s cluster management (Part I) is mainly responsible for resource management,
user authentication, service accounting, and configuration management. K8s was selected
as the container orchestration platform based on its widespread adoption in the market
and the fact that it has become a recognized container orchestration standard [16]. As the
foundation of the K8s cluster, CephFS [46] was implemented on low-level nodes to provide
a storage-class [47] for the PersistentVolume [48] of K8s. This improves the robustness
of the K8s cluster by enabling other running nodes to take over the services provided by
nodes that are down. Using Kuboard, a free-use management tool of K8s, users can easily
control and monitor the use of hardware, such as CPU, storage, and RAM.

The RS data distributed storage (Part III) is the infrastructure for storing huge RS
datasets. In this part, we implemented HDFS on the K8s cluster. To ensure the high
availability of the storage system, we deployed two NameNodes (NNs)—one in active
status, and the other in standby status—to ensure the high availability of HDFS. The
NameNode (NN) is the centerpiece of an HDFS file system. It keeps the directory tree of
all files in the file system and tracks where the file data is kept across the cluster. It does
not store the data of these files itself. The DataNode (DN) is responsible for storing the
actual data in HDFS. In our platform, DataNodes (DNs) are distributed in all VMNs to
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reduce data movement between nodes. HDFS [49] is a popular cloud storage platform and
streaming data access pattern, which can store huge, distributed file datasets, and write
once and read many times. It is especially suitable for deployment on lower-cost computers
consisting of a cluster because of its high reliability and high-performance characteristics.
Therefore, we choose HDFS for data storage due to its outstanding capacity and high-speed
read throughput of RS big data [50].
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Figure 1. The architecture of the proposed scalable computing resources big data framework. Kubectl
provides users with a command-line interface to interact with K8s clusters. Kubelet is the primary
“node agent” that runs on each node. A node is a virtual machine. A pod is the smallest deployable
computing unit that users can create and manage in K8s. ZooKeeper maintains highly reliable
distributed coordination of HDFS. NN and DN represent NameNode and DataNode of HDFS,
respectively.

The scalable computing resources of containers (Part III) consists of a Spark driver
container with a Jupyter notebook and Spark executor containers. At the core, K8s with con-
tainerized Spark is integrated in the system to realize the assignment of scalable computing
resources. In our system, we initialize a Spark application by only providing hints about
the memory allocation to Spark Driver (SD). The parameters of Spark Executor Container
(SEC), such as the number of instances, vcores, and memory, can be dynamically adjusted
in each Spark application due to the fast initialization of containerized Spark by the Jupyter
notebook console.

All of these containers are created by Docker images, which contain a series of Python
libraries for raster data processing. The Jupyter notebook extends the console-based
approach to interactive computing, which is a qualitatively new direction. It provides a
web-based application suitable for capturing the whole computation process, including
developing, documenting, and executing code, in addition to communicating the results.
GeoPySpark [42] is a Python language binding library of GeoTrellis. GeoTrellis [51] is a
geographic data processing engine for high performance applications, which provides data
types for working with raster in the Scala language, in addition to a number of operations
to manipulate raster data. GeoPySpark utilizes GeoTrellis to allow reading, writing, and
operating of raster data. In GeoPySpark, raster images are represented by the tile class,
which contains a NumPy array to represent the raster cells and other information regarding
the data.
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The computing containers are implemented based on Python-3.7.3 and integrated
with a Jupyter notebook as the access interface between the system and user-clients. As an
indispensable part of the system, we integrated the mainstream Matplotlib [52] package
of the Python library for data visualization, which is a comprehensive library for creating
static, animated, and interactive visualization in Python. This enables publication-quality
figures to be generated in a variety of hardcopy formats and interactive environments
across platforms. When installing the Jupyter notebook application using Helm tools [53] in
the K8s cluster, three services for running notebook container need to be deployed, namely,
the web browser service, Spark driver service, and Spark UI service. The web browser
service is exposed through haproxy-ingress [54] to provide a highly available and accessible
service to client-side users.

The SparkContext is the entry point to any Spark functionality. When a Spark ap-
plication is run, a driver program is hosted, which has the main function and imitates
the SparkContext. The driver program then runs operations inside the executors on the
worker nodes. Only two steps are needed to initialize a new SparkContext: (1) import the
Python core libraries of GeoPySpark; (2) configure the parameters and create SparkContext.
After creating a new SparkContext, computing jobs can easily be submitted to the cluster
through the console cell. In our hundreds of executions, we used the Jupyter notebook
as the user interface, which can provide a convenient way to adjust the parameters of
Spark executors in the K8s cluster. In the parameter configuration section, we can con-
figure the numbers of executors by defining the parameters of spark.executor.instances,
the CPU cores of executors by spark.executor.cores, and each memory size of executors by
spark.executor.memory. It is worth noting that the number of tasks is determined by the
numbers of executors and vcores, which is equal to the product of the executors and vcores
count. The Spark driver service is used to create scalable computing resources for the Spark
executors by configuring the three above-mentioned parameters of SparkContext in the
K8s cluster. Spark UI is exploited to monitor the running status of multiple tasks submitted
by client users.

2.3. The Design of Experiments

In order to scientifically evaluate the factors that affect the performance of the system,
we utilized one of the most widely used RS vegetation indices—Normalized Difference
Vegetation Index (NDVI)—as a testbed to evaluate the feasibility and performance of our
system. NDVI is one of the main vegetation indexes reflecting the spectral characteristics
of vegetation [55]. It has been widely applied in various fields, such as environment
monitoring systems on global or regional scales, analyzing vegetation and land cover
dynamics, and extracting information of vegetation phenology [56]. In this work, to avoid
more data movement in cluster nodes, we built HDFS storage on the heterogenous nodes,
which are also Spark computing workers. In this study, we further explored how the
less powerful nodes affect the efficiency of the whole cluster, which is crucial to build a
data-intensive parallel computing system. In addition, when using GeoPySpark as the
data processing library, it is necessary to carefully study the effect of tile size on tiling,
computing, and writing. For raster data with the same computational complexity and
size, a good question to guide the allocation of scientific resources is whether extending
the computing resources can accelerate the computing progress. Finally, as the system is
mainly used to analyze RS data, visualization provides an intuitive presentation for users
to quickly understand the information in multiple scales.

2.4. The Data Sources of Experiments

To prove the feasibility and robust of the system, three experiments were performed.
Moderate Resolution Imaging Spectroradiometer (MODIS) daily series images were an-
alyzed and processed using the proposed system. MODIS is a key instrument onboard
Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites.
Terra MODIS and Aqua MODIS view the entire Earth’s surface every 1 to 2 days. Thus, the
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MODIS sensor is suitable for some daily surface monitoring applications such as monitor-
ing vegetation change. Nevertheless, the reflectance bands receive radiation from the cloud
layer rather than the land surface due to the cloud effect. Therefore, it is also necessary to
solve the problem of discontinuities in temporal and spatial data caused by cloud pollution
in the vegetation change application.

In our experiments, we utilized two products of MODIS, MOD09GQ, and MOD35.
MOD09GQ [57] provides MODIS band 1–2 daily surface reflectance at 250 m resolution.
The MODIS cloud mask (MOD35) [58] is a science data product. It is regularly produced as
a standard product of the Earth Observing System (EOS). Its main purpose is to identify
scenes where land, ocean, and atmosphere products should be retrieved based upon the
amount of obstruction of the surface due to clouds and thick aerosol.

The MODIS NDVI [59] can be calculated by using the surface reflectance of MODIS
red and near infrared bands according to:

NDVI =
NIR − RED
NIR + RED

(1)

where NIR is the near-infrared band and RED is the red band of MOD09GQ products. The
production process of MODIS NDVI is illustrated in Figure 2, and mainly includes Cloud
Mask (CM), image preprocessing, Quality Control (QC), and vegetation index calculation.
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The whole of mainland China was selected as the study area, and the daily NDVI
dataset with 250 m spatial resolution and long time series (from 2002 to 2020) was produced
by utilizing the proposed scalable computing resources big data system. The production
process of the daily NDVI dataset produces almost 2GB of raster data per day, in which the
data volume of the MOD35 cloud mask is approximately 332 MB; each quality assessment,
for red and near-infrared bands, is almost 665 MB. The whole of mainland China has
24,642 × 14,157 pixels in a spatial resolution of 250 m (approximately 0.0025◦). The daily
NDVI is stored in HDFS format as an individual catalog, with metadata of the TiledRaster-
Layer stored separately as a json file. The file stored as a catalog can be easily used to
explore data of different scales, such as a point, a square, or any defined box. Map algebra
operations are provided by GeoPySpark. Local and focal operations are performed only on
the TiledRasterLayer. Therefore, we need transform the RasterLayer to the TiledRasterLayer
before any operations can be loaded in raster data. As the tiled format is stored in a catalog,
we can explore time-series data information at a point or a local regional area.
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2.5. Time Cost of Compurting Mechanism

In this distributed parallel system, the time cost for the complete process for calculation
contains three parts, namely, data load time (denoted as TL), computing time (denoted as
TC), and collecting and writing time (denoted as TW). The total processing time Ttotal of
the band-oriented RS algorithm can be formulated as following:

Ttotal = TL + TC + TW (2)

Not only does TL depend on the I/O rates of the hard disk, but it also relates to the
volume of data moving among the nodes. TC is determined by the tile size (STILE), the tiling
numbers of the raster layer (denoted as NTILE), the number of SECs (denoted as NSEC), and
the vcores of each SEC (denoted as VSEC). Hence, the TC can be represented as Equation (3).
Equation (3) clearly shows that the larger NSEC and VSEC, the lower the value of TC.

TC =
NTILE × STILE
NSEC × VSEC

(3)

If a raster layer’s columns and rows are represented by Ncols and Nrows, respectively,
NTILE can be expressed as Equation (4). Thus, the smaller STILE, the more tiles will
be generated.

NTILE = (Ncols/STILE + 1)× (Nrows/STILE + 1) (4)

TW is mainly decided by the tiling numbers of the raster layer (NTILE), the number
of SECs (NSEC), and the vcores of each SEC (VSEC). The bigger the value of NTILE, the
greater the cost of the collecting time. The greater the values of NSEC and VSEC, the more
resources needed by SD to maintain the status of all SECs, which affects the writing time of
the calculation result.

The above explanation indicates that TC and TW contradict each other. Therefore,
when designing an algorithm for RS datasets, the complexity of the algorithm should be
considered. If the computing is intensive, such as in time series data construction, more
SEC instances and bigger vcores should be initialized. Otherwise, fewer resources should
be applied, thus allowing more resources to be provided to other data processes.

3. System Environment

The experimental environment consists of six virtual machine nodes. We used the
HUAWEI FusionCompute virtualization cloud platform to create these VMNs; four of these
were hosted on the FusionComputeV100R006 platform (R006), and two on the V100R005
platform (R005). The physical servers in R006 have Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20
GHz, Intel Corporation 82599EB 10 Gigabit Dual Port Backplane Connection (network),
and 128GB memory on the V100R006 platform. The R005 servers have Intel(R) Xeon(R)
CPU E5-2620 v2 @ 2.10 GHz, Intel Corporation I350 Gigabit Network Connection(network),
and 64GB memory. Thus, the physical servers in R005 possess a less powerful CPU and
slower network rate than those in R006. The hardware configurations of the VMNs in the
K8s cluster are listed in Table 1. In total, there were 48 vcores and 144GB memory available
in the system.

To monitor cluster performance, the Kuboard and Spark job monitor were used. The
operating system (OS) of all nodes was Centos-7.4-x86_64. Docker was selected to provide
the container execution environment due to its tight integration with K8s and wide industry
adoption [60]. The software of the VMN and Docker images used in the platform is listed
in Table 2. To manage the container-based workloads, our container-based orchestration
platform consists of six nodes, namely, one master node and five worker nodes in the
K8s cluster. It can be seen that our system is heterogeneous with different hardware and
different networks.
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Table 1. Specification of each cluster node of the experiment environment.

Nodes Machines Specification Actor

Node 1 VMN (Hosed on FusionServer R006) 8 vcores CPUs, 32GB memory, and
500G disk

Node of K8s; NameNode (NN) of
HDFS; Kuboard

Node 2 VMN (Hosted on FusionServer R006) 8 vcores CPUs, 32GB memory, and
500G disk

Master of K8s, DataNode (DN) of
HDFS

Node 3 VMN (Hosed on FusionServer R006) 8 vcores CPUs, 16GB memory, and
1074G disk

Node of K8s; NN of HDFS; OSD of
CephFS

Node 4 VMN (Hosed on FusionServer R006) 8 vcores CPUs, 16GB memory, and
1074G disk

Node of K8s; DN of HDFS;
OSD of CephFS

Node 5 VMN (Hosted on FusionServer R005) 8 vcores CPUs, 16GB memory, and
1050G disk

Node of K8s; DN of HDFS;
OSD of CephFS

Node 6 VMN (Hosted on FusionServer R005) 8 vcores CPUs, 32GB memory, and
2.9T disk

Node of K8s; DN of HDFS;
OSD of CephFS

Table 2. The software used in the platform.

Object Software Version

Virtual machine node

Docker 19.03.13
Ceph 15.2.6
K8s 1.19.2

Kuboard 2.0.5.5

Docker image

Hadoop 2.7.3
Python 3.7.3

spark-bin-hadoop 2.4.6
GDAL 3.1.4

Proj 6.3.2

We built spark-notebook and spark-py Docker images from the openjdk:8-jdk-slim
base layer for processing RS data; the packages integrated in each of images are listed in
Table 3. The spark-notebook image and the spark-py image was used to create the Spark
driver container and Spark executor containers, respectively. These images were pushed
to registry.cn-hangzhou.aliyuncs.com [61] (accessed on 28 November 2021) as a public
repository. These images can be accessed by any users who wish to analyze RS images
using container-oriented programming.

Table 3. The main packages of Python integrated in Docker images.

Docker Image Package Version

spark-notebook

Jupyter Notebook 6.2.0
pyspark 2.4.5

geopyspark 0.4.3
shapely 1.7.1

py4j 0.10.7
matplotlib 3.3.4

pandas 0.25.3
numpy 1.19.5
snuggs 1.4.7

spark-py

pyspark 2.4.5
geopyspark 0.4.3

shapely 1.7.1
numpy 1.19.5

py4j 0.10.9.1
pyproj 2.2.2

six 1.15.0
snuggs 1.4.7

registry.cn-hangzhou.aliyuncs.com
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4. Results

We evaluated the performance of the system through a case study in which the
daily distribution of 250 m NDVI within the mainland area of China was estimated using
MODIS surface reflectance and cloud product data. Below, we first discuss the efficiency
of heterogeneous nodes, and analyze the impact of the tile size. We then evaluate the
efficiency of submitting computing jobs with different computing resources, and finally
explore how to mine time-series information more effectively from massive amounts of RS
data with a given tile size.

4.1. Time Cost of Heterogeneous Nodes

In order to evaluate the impact of the less powerful nodes on the performance of the
cluster, we tracked the detailed time cost of the multi-task stages of the tiling job through
the Spark UI service. We initialized a SparkContext and parameterized six executors with
8 GB memory and 2 vcores in this experiment. We executed the containerized Spark
application twenty times and recorded each tiling execution time. All computing nodes
were used in the first ten executions, and less powerful nodes were disabled in the final ten
executions. As shown in Figure 3, when scheduling all nodes in the K8s cluster, some jobs
were inevitably submitted to the less powerful nodes (node5 and node6), and the time cost
of tiling varied (Figure 3a). When the less powerful nodes were disabled from scheduling,
all executors were initialized in the efficient nodes, and the time cost of tiling was more
stable. Taking the execution time of CM data processing process as an example, the highest
time cost was over 35 s when the less powerful nodes were included in the computing
stages. However, the time cost reduced to 22 s when the less powerful noes were disabled.
It should be noted that the time costs of some executions were close to 25 s. The reason for
this is that the datasets were stored and computed in different VMNs by tracking the details
of the Spark UI service and the HDFS management system. The maximum performance
gain was up to 37.1% ((35–22)/35).
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MODIS09GQ products, respectively.

4.2. Time Cost in Different Tile Sizes

Because all map algebra operations only work on the TiledRasterLayer, each raster
band file needs to be tiled as a TiledRasterLayer after it is loaded as a RasterLayer. Therefore,
it is necessary to study the effect of tile size on the efficiency of raster layers’ processing. We
produced the NDVI in the SparkContext, using six executors, two cores, and 8GB memory.
Each given tile size experiment was executed 10 times, and the average execution time
of the tiling stages and computing-writing stages were recorded separately. As shown in
Figure 4, the average tiling time for different tile sizes was almost the same. Each smaller
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raster file (i.e., CM data) took 25 s, whereas each larger file (i.e., QC, RED, and NIR data)
took almost 30 s under different tile sizes. Therefore, the tile size is not a prominent factor
related to the time cost of the tiling stage, when each procedure is in the same SparkContext
configuration.
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Spark has lazy loading behavior for transformations, which means that it does not
trigger the computation of the transformation. Rather, it only tracks the requested trans-
formation. When a user writes a transformation to obtain another dataset from an input
dataset, it can be written in a way that makes the code readable. Therefore, we further
explored the time cost of the computing-writing stage.

We tracked the detailed time cost in the Spark UI monitor service and found that the
size of the tile is the main factor affecting the computing-writing efficiency of the cluster, as
shown in Figure 5. The time cost of computing-writing increases almost with the size of
tile. The minimum time cost occurred in the second execution when the tile size was 256
pixels, and the maximum time cost appeared in the fourth execution then the tile size was
2048 pixels. The minimum time cost occurred in the case of a smaller tile size, but this does
not mean that a smaller tile size is better in computing-writing stages, and the tile size of
512 pixels had a more stable time cost than other tile sizes.
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4.3. Time Cost of Scalable Computing Resources

As mentioned in Section 3, the system we implemented possesses 48 vcores and 144GB
memory. All data required for processing were concentrated in one place and closely
coupled with the processing resources to guarantee efficient development and convenient
access. All nodes were used not only for distributed storage of data, but also for data
processing. All these resources were used for the OS, K8s management, HDFS on K8s, and
computing. Thus, the computing resources that we can lease must not include the resources
occupied by the OS, K8s cluster management, and HDFS. Hence, nearly 42 vcores and
100GB memory resources monitored by Kuboard can be leased for computing. According to
official documents relating to Spark performance tuning [62], the numbers of executors and
cores, and the executor memory, are the three main factors that may affect the performance
of Spark-based applications.

In this study, four different configuration sets were designed as follows: (1) 42 execu-
tors with 2GB memory and one vcore each as set 1 (42E1C2G); (2) 20 executors with 4GB
memory and two vcores each as set 2 (20E2C4G); (3) 10 executors with 6GB memory and
three vcores as set 3 (10E3C6G); and (4) six executors with 12GB memory and seven vcores
as set 4 (6E7C12G). These four configuration sets can use almost all the computing vcores
and free memory of the cluster, but are unable to fully use all of the computing vcores and
free memory. For example, we can theoretically assign 10 executors with 8GB memory and
four vcores in set 3. This is because nodes 3, 5, and 6 only have a total of eight vcores and
16 GB memory. As mentioned above, some resources must be kept for the basic running
of the cluster, such as OS, cluster manager, and HDFS. Therefore, if two executors with
8GB memory and four vcores use resources on one node, nodes 3, 4, or 5, for example, will
not have enough resources to lease. Thus, it is worth noting that when designing a Spark
on K8s cluster with HDFS, the computing vcores and memory should be as large as the
physical machine resources to avoid the waste of resources.

In computing-writing jobs of the daily NDVI calculation, four flatMap stages, three
RDD collect stages, and one RDDWriter stage are included. RDD collect and RDDWriter
stages result in slow progress, which increases the time cost of the Spark computing
framework. The time cost of computing-writing jobs under four different configuration
sets (512-pixel tile size) are shown in Figure 6. We found that the time cost increases with
the increase in the number of executors under the same algorithm complexity.
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To investigate the performance of the system in spatial computation for RS big data, the
Sliding Window Algorithm (SWA) was selected for this study. Focal operations, including



Remote Sens. 2022, 14, 521 13 of 19

MEAN, MEDIAN, MODE, SUM, STANDARD_DEVIATION, MIN, MAX, SLOPE, and
ASPECT, were performed in GeoPySpark by executing a given operation on a neighborhood
throughout each tile in the layer. We chose the MEAN operation and an int16 data type
of the TiledRasterLayer in the 3 × 3, 5 × 5, 7 × 7, and 9 × 9 sliding windows (SWs)
under the three different computing resources, namely, 20 executors with 4GB memory
and two vcores (20E2C4G), 10 executors with 4GB memory and two vcores (10E2C4G), and
five executors with 4GB memory and two vcores (5E2C4G). Each given SW experiment
was executed five times, and the execution time of processing was recorded, as shown in
Figure 7(a1–a3). We also repeated all the tests in a float32 data type of the TiledRasterLayer
in different SWs, as illustrated in Figure 7(b1–b3). The int16 and float32 data type of the
raster layer had the same grid size and resolution. The results illustrate that the average
time costs of the float32 data type are higher than those of the int16 data type by about 9.2 s
(58.625–49.42), 4.35 s (59.27–54.92), and 4.25 s (59.74–55.49) in all sliding window executions
under the configurations of 20E2C4G, 10E2C4G, and 5E2C4G, respectively. The efficiency
of computing-writing is little affected by the size of the SW in the parallel computing
paradigm under the same computing resources.

Remote Sens. 2022, 14, 521 14 of 20 
 

 

 
Figure 7. Time cost of computing-writing of different data type under different configuration of 
SparkContext: (a1–a3) show the time costs of the int16 data type in 3 × 3, 5 × 5, 7 × 7, and 9 × 9 sliding 
windows; (b1–b3) show the time costs of the float32 data type in 3 × 3, 5 × 5, 7 × 7, and 9 × 9 sliding 
windows. The 20E2C4G represents 20 SEC, 2 vcores, and 4GB memory of SparkContext, and 
10E2C4G, 5E2C4G also represent different configurations of SparkContext.  

4.5. Multi-Scale Visualization 
In this work, we used the GeoPySpark raster data processing package, which can 

easily obtain information from the TiledRasterLayer catalog at a point or for any defined 
box scale. We took the visualization of the NDVI calculation results on 14 June 2020 as an 
example. The NDVI distribution in the whole study area and the specified tile scale (e.g., 
a tile having a size of 1024 × 1024 pixels) can be easily visualized in the system, as shown 
in Figures 8 and 9. Therefore, our system can be used to easily view and visualize the 
multi-scale information relevant to users through the user interface of the web browser. 

Figure 7. Time cost of computing-writing of different data type under different configuration of
SparkContext: (a1–a3) show the time costs of the int16 data type in 3 × 3, 5 × 5, 7 × 7, and 9 × 9
sliding windows; (b1–b3) show the time costs of the float32 data type in 3 × 3, 5 × 5, 7 × 7, and 9 × 9
sliding windows. The 20E2C4G represents 20 SEC, 2 vcores, and 4GB memory of SparkContext, and
10E2C4G, 5E2C4G also represent different configurations of SparkContext.

4.5. Multi-Scale Visualization

In this work, we used the GeoPySpark raster data processing package, which can
easily obtain information from the TiledRasterLayer catalog at a point or for any defined
box scale. We took the visualization of the NDVI calculation results on 14 June 2020 as
an example. The NDVI distribution in the whole study area and the specified tile scale
(e.g., a tile having a size of 1024 × 1024 pixels) can be easily visualized in the system, as
shown in Figures 8 and 9. Therefore, our system can be used to easily view and visualize
the multi-scale information relevant to users through the user interface of the web browser.
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5. Discussion

The results of this study indicate that the tile-oriented programming model can easily
implement parallel computing of RS big data without destroying the spatial structure of the
raster data. The raster layers can be abstracted as many small-size tiles, and a computing
task can be divided into many small tile computing tasks, which can be assigned scalable
computing resources (SEC). To investigate the factors that affect the efficiency of the
system, we carried out several experiments after considering the hardware and computing
paradigm. As a result, we found that the tile size plays an important role in parallel
computing. When the tile size became smaller, the time cost was shorter. This is because
the greater number of tiles generated can completely utilize the distributed computing
resources. However, this does not mean the smaller tile size is better, and the stable time
costs appear at a tile size of 512 pixels. The reason for this is that more time is spent on the
counting of the HadoopRDDWriter (Resilient Distributed Dataset, RDD) stage for smaller
size tiles, and on the flatMap operation of CutTiles stages for larger size tiles. Therefore, the
size of the tile portion should not be too small or too big. Our experiments obtained results
that were similar to those of previous studies [18,21], but there were still some divergences.

The computing resources is another vital factor that influences the computing efficiency.
The number of computing tasks is decided by the number of vcores of SECs. For a simple
computing complexity, the greater the number of containers that are leased, the more the
driver manager will maintain the computing status of all executors and the greater the
data movement in the shuffle progress. Therefore, a larger number of vcores of executors
does not provide better results. Due to the implementation of the HDFS storage in the
K8s computing nodes, the time costs are slightly inconsistent under the same computing
resources, complexity of algorithm, and tile size because of the RS images stored in the
same computing nodes.

The complexity of RS data processing algorithms also affects the performance of the
computing-writing stage. The average time cost of a band-wise algorithm such as the NDVI
algorithm was 187 s under 20E2C4G computing resources, and the average time cost of
SW was nearly 50 s under the same computing resources. Because the NDVI algorithm
contains four raster bands, the time cost of each band was almost 47 s. Thus, we found that
the complex algorithm of spatial computing needs more time than the simple band-wise
algorithm, but the difference was not as obvious in the parallel computing paradigm.

The data type is also a factor that can have a considerable effect on the computational
time cost and storage space. The storage space of the RS layer having the same grid will
double in float32 and quadruple in float64 compared with the int16 data type. Similarly,
the computing time will increase when the NDVI value is converted from int16 into the
float32 data type by expanding 10,000 times and rounding as an integer. Therefore, the data
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type may be transformed from float to integer to improve the computing performance and
to save storage space when the accuracy of processing result is not (or is slightly) affected
within an acceptable range.

The hardware of the physical servers may have an effect on the system. A server
with stronger CPU rate will speed up a computing task, and a weaker CPU will slow the
task. Therefore, we built the system on several nodes virtualized in heterogeneous physical
servers. In this case, the less powerful nodes reduce the efficiency of the cluster, as in the
case of the “Cask Effect”, and any shortage affects the efficiency of the whole cluster. This
also indicates that all computing tasks are balance loaded in distributed SECs according to
the task scheduling mechanism of Spark on K8s.

6. Conclusions

In this study, we explored the state-of-the-art technologies for analysis and processing
of RS big data, such as the storage, computing, and visualization of massive raster datasets
generated from EOS. To improve the overall efficiency of the system, we adopted several
novelty technological strategies. At the stage of loading data, we used HDFS on K8s
architecture to avoid a huge volume of RS data movement in computing nodes. Hence,
the time cost during the RS data storage is lower in the same node with computing
nodes. Although the homogeneous physical server in a whole cluster is very effective, the
distributed parallel platforms are usually built on several existing heterogenous servers.
At the stage of computing, when the tasks were scheduled in the clusters excluding less
powerful nodes, the time cost of the computing-writing stage was more stable. In our
system, as mentioned in Section 3, the less powerful nodes hosted by the R005 platform are
connected in the platform through a less powerful network. Therefore, the performance of
the cluster is lower in the collecting and shuffling operations with huge data transmission
among the nodes. Moreover, the tile-oriented programing model is quite efficient for large
scales of the RS raster layer. The tile size is a crucial factor that affects the time cost in
the computing-writing stages, and tiles cannot be too big or too small. Tiles that are too
big cannot completely utilize the parallel computing resources, whereas tiles that are too
small need more time to collect the results. The number and vcores of SECs are another
key factor that has an impact on the capability in the computing-writing stages. For the
band-oriented RS algorithm, such as the NDVI calculation, the complexity of computing is
not highly intensive; therefore, increasing the computing resources does not improve the
performance. Additionally, we assembled flexible packages of Python in Docker images,
such as GDAL, GeoPySpark, and Matplotlib, which provided a convenient environment for
RS data analysis and visualization at multiple scales. Therefore, we believe that the system
proposed in this study can be easily transplanted to other big data platforms, such as AWS,
Azure, Google GCP, Aliyun, and Tencent Cloud, based on open-access Docker images
pushed to a public repository. In summary, the system we explored is clearly suitable for
RS big data processing.

This work also has some shortcomings that will need to be addressed in the future.
Our future work will investigate these issues, such as developing a multi-user analysis
system for RS big data, upscaling or downscaling RS data pre-processing based on the
pyramid class in GeoPySpark, and providing a cloud Tile Map Service (TMS) directly from
both GeoPySpark RDDs and the tile catalog.
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FOSS Free and Open-Source Software
GDAL Geospatial Data Abstraction Library
GEE Google Earth Engine
HDFS Hadoop Distributed File System
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JEODPP JRC Earth Observation Data and Processing Platform
JRC Joint Research Center
LXC Linux Container
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RDD Resilient Distributed Datasets
SD Spark Driver
SEC Spark Executor Containers
SEPAL System for Earth Observation Data Access, Processing and Analysis for Land Monitoring
SH Sentinel Hub
VMN Virtual Machine Node
VMs Virtual Machines
YARN Yet Another Resource Negotiator
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