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Abstract: Pansharpening is an important yet challenging remote sensing image processing task, which
aims to reconstruct a high-resolution (HR) multispectral (MS) image by fusing a HR panchromatic
(PAN) image and a low-resolution (LR) MS image. Though deep learning (DL)-based pansharpening
methods have achieved encouraging performance, they are infeasible to fully utilize the deep semantic
features and shallow contextual features in the process of feature fusion for a HR-PAN image and
LR-MS image. In this paper, we propose an efficient full-depth feature fusion network (FDFNet)
for remote sensing pansharpening. Specifically, we design three distinctive branches called PAN-
branch, MS-branch, and fusion-branch, respectively. The features extracted from the PAN and MS
branches will be progressively injected into the fusion branch at every different depth to make the
information fusion more broad and comprehensive. With this structure, the low-level contextual
features and high-level semantic features can be characterized and integrated adequately. Extensive
experiments on reduced- and full-resolution datasets acquired from WorldView-3, QuickBird, and
GaoFen-2 sensors demonstrate that the proposed FDFNet only with less than 100,000 parameters
performs better than other detail injection-based proposals and several state-of-the-art approaches,
both visually and quantitatively.

Keywords: pansharpening; convolutional neural networks; full-depth feature fusion

1. Introduction

Due to the limited light energy and the sensitivity of remote sensing imaging sensors
such as WorldView-3, QuickBird, and GaoFen-2, only multispectral (MS) images with
low spatial-resolution (LR-MS) and panchromatic (PAN) gray-scaled image with high
spatial-resolution (HR-PAN) can be obtained directly from optical devices. However,
what is highly desirable in a wide range of applications, including change detection,
classification, and object recognition, are images with rich spectral information and spatial
details. The task of pansharpening is namely to obtain such high-resolution multispectral
(HR-MS) images by fusing the known HR-PAN and LR-MS images, improving the spatial
resolution of MS images while maintaining the high resolution in the spectral domain.
Recently, pansharpening has been an active field of research, getting more and more
attention in remote sensing image processing. The competition [1] initiated by the Data
Fusion Committee of the IEEE Geoscience and Remote Sensing Society in 2006, and many
recently published review papers proved the rapid development trend of pansharpening.
In scientific research, pansharpening has also received extensive attention in the industry
of some companies, e.g., Google Earth, DigitalGlobe, etc.
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Over the past few decades, a large variety of pansharpening methods have been
proposed. Most of them can be divided into the following four categories: Component sub-
stitution (CS) [2–5] approaches, multi-resolution analysis (MRA) [1,6–11] approaches, vari-
ational optimization (VO) [12–33] approaches, and deep learning (DL) approaches [34–42].

The main idea of the CS-based method can be summarized as replacing specific
components of the LR-MS images with the HR-PAN image. To be more specific, the spatial
component separated by a spectral transformation of the LR-MS image is first substituted
with the PAN image, and then the sharpened image is transformed into the original domain
through back projection. Among CS-based methods, most of them can produce results
with satisfying spatial fidelity yet usually lead to severe spectral distortion. Some typical
examples of methods that fall into this category are spatial details with local parameter
estimation (BDSD) [2], spatial details with a strong dependency (BDSD-PC) method [3],
and partial replacement of adaptive component substitution (PRACS) [4].

The MRA-based methods work to inject the spatial details extracted from the HR-PAN
image into the LR-MS images through a multi-resolution analysis framework. Products
obtained by MRA-based techniques usually retain spectral information well, but suffer
from spatial distortion. Typical instances of such a class are smoothing filter-based intensity
modulation (SFIM) [6], additive wavelet intensity ratio (AWLP) [7], generalized Laplacian
pyramid (GLP) [1,43], with GLP with robust regression [44] and GLP with comprehensive
regression (GLP-Reg) [11].

VO-based methods regard pansharpening as an inverse problem that is usually ill-
posed. These methods need to describe the potential relationship among HR-PAN images,
LR-MS images, and unknown HR-MS images by establishing equations, which could be
solved by the designed optimization algorithms. Compared with CS and MRA methods,
they can achieve a better balance between spectral fidelity and spatial fidelity, but at
the cost of the increased computational burden. Technologies in this category include:
Bayesian methods [14–16], variational methods [17–19,21–29], and compressed sensing
technology [30–32]. Typical instances of this class are TV [20], LGC(CVPR19) [12], and
DGS [13].

Recently, with the rapid development of deep learning and accessibility of high-
performance computing hardware equipment, convolutional neural networks (CNNs)
have shown outstanding performance in image processing fields, e.g., image resolution
reconstruction [45–49], image segmentation [50–52], image fusion [53–57], image classifica-
tion [58], image denoising [59], etc. Therefore, many methods [34–38,41,42,58–75] based
on deep learning have also been applied to solve the pansharpening problem. Benefiting
from the powerful nonlinear fitting and feature extraction capabilities of CNNs and the
availability of big data, these DL-based methods could perform better than the above three
methods to a certain degree, i.e., CS-, MRA-, and VO-based methods. Researchers have de-
signed various CNNs with different structures and characteristics. Specifically, the general
paradigm uses LR-MS images and HR-PAN images as input to the network. The desired
HR-MS images can have output through the trained network. For example, Wei et al. [61]
proposed the concept of residual learning to make full use of the high nonlinearity of deep
learning models. Moreover, Yuan et al. [60] introduced multi-scale feature extraction into
the basic convolutional neural network (CNN) architecture and proposed the multi-scale
and multi-depth CNN for pansharpening. In 2018, Scarpa et al. [72] proposed a target-
adaptive usage modality to achieve good performance in the presence of a mismatch with
respect to the training set and across different sensors. In [61], the concept of residual
learning was introduced by Wei et al. to form a very deep convolutional neural network to
make full use of the high nonlinearity of deep learning models.

However, most of the existing CNN frameworks directly concatenate the HR-PAN
image and LR-MS image together in the spectral channel dimension as the network’s
input, neglecting the unique characteristics of the HR-PAN image and LR-MS images. This
operation would result in the distinctive features in HR-PAN and LR-MS images that cannot
be perceived and extracted effectively. Besides, there are essential differences between
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HR-PAN images and LR-MS images both in spatial and spectral dimensions, making the
fusion procedure more difficult. In [41], Zhang et al. designed two independent branches
for HR-PAN and LR-MS images to explore their features separately and finally performed
feature fusion operations on their respective deep features. In this case, BDPN will fail to
fuse the feature map in shallow depth and medium depth of the network, attenuating the
fusion ability.

To address the above problem, we propose an efficient full-depth feature fusion
network (FDFNet) for remote sensing pansharpening. The main contributions of this paper
can be summarized as follows.

1. A novel FDFNet is designed to learn the continuous features for the PAN image,
MS images, and the fusion images through three branches, separately. These three
branches are arranged in parallel. The transfer of feature maps and information
interaction among the three branches are carried out at different depths of the net-
work, enabling the network to generate specific representations for images of various
properties and the relationships between them.

2. The features extracted from the MS branch and PAN branch will be injected into the
fusion branch at every different depth, promoting the network to characterize better
and integrate the detailed low-level features and high-level semantic features.

Extensive experiments on reduced- and full-resolution datasets captured by WorldView-
3, QuickBird, and GaoFen-2 satellites prove that the proposed FDFNet with less than
100,000 parameters could exceed the other competitive methods. And the comparisons
with the LR-MS and high performance DMDNet [34] are shown in Figure 1 for a WorldView-
3 dataset.

𝑭𝒖𝒔𝒊𝒐𝒏

𝑴𝑺 ∈ 𝑹𝒎×𝒏×𝑩

𝑷𝑨𝑵 ∈ 𝑹𝑴×𝑵 𝑮𝑻 ∈ 𝑹𝑴×𝑵×𝑩

𝑳𝑹𝑴𝑺 𝑫𝑴𝑫𝑵𝒆𝒕 𝑭𝑫𝑭𝑵𝒆𝒕LR-MS DMDNet FDFNet
Figure 1. First row: Schematic diagram of pansharpening. Pansharpening aims to fuse a low spatial
resolution multispectral (MS) image and the panchromatic (PAN) image, and the ground-truth image
are presented. Second row: Results presentation. The fusion images and the corresponding absolute
error maps of DMDNet [34] and the proposed FDFNet.
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2. Related Works

In this section, a brief review of several DL-based methods [34–37] for pansharpening
will be presented.

The successful use of deep CNNs in a wide range of computer vision tasks has more re-
cently led researchers to exploit their nonlinear fitting capabilities for image fusion problems
such as pansharpening. In 2016, Masi et al. [37] firstly attempted to apply CNNs to solve
the pansharpening problem, particularly by replicating three convolution layers. The pan-
sharpening neural network (PNN) was designed and trained on big data. Though with
such a simple network structure, its performance surpasses almost all traditional meth-
ods, indicating the great potential of CNNs for pansharpening, and it motivates many
researchers to carry out further research based on deep learning. In 2017, Yang et al. [35]
proposed a neural network with residual learning modules called PanNet, which are easier
for retrieving training results and could reach convergence more quickly than PNN. An-
other important innovation of their work is that the known HR-PAN image and LR-MS
image are high-pass filtered before being input into PanNet so that the network can focus
more on the feature extraction of edge details of the images. Thanks to its high-frequency
operation and simple network structure, PanNet has good generalization ability, making it
competent for different datasets.

In 2019, a lightweight network named detail injection-based convolutional neural
networks (DiCNN1) was designed by He et al. [36], which discards the residual structure
used in PanNet. It injects the LR-MS image into the HR-PAN image and then inputs it to
the network that contains only three convolution layers and two ReLU activation layers.
Though the number of parameters of DiCNN is small, its performance is superior to PanNet,
and it also surpasses PanNet in terms of processing speed, making it more efficient in real
application scenarios.

Most recently, Hu et al. [71] proposed multi-scale dynamic convolutions that extract
detailed features of PAN images at different scales to obtain effective detail features. In [70],
a simple multibranched feature extraction architecture was introduced by Lei et al. They
used a gradient calculator to extract spatial structure information of panchromatic maps
and designed structural and spectral compensation to fully extract and preserve the spa-
tial structural and spectral information of images. Jin et al. [42] proposed a Laplacian
pyramid pansharpening network architecture which is designed according to the sensors’
modulation transfer functions.

In addition, Fu et al. [34] proposed a deep multi-scale detail network (DMDNet), which
adopts grouped multi-scale dilated convolutions to sharpen MS images. By grouping a
common convolution kernel, the computational burden can be reduced with almost no
reduction in feature extraction and characterization capabilities. In addition, the use of
multi-scale dilated convolution can not only expand the receptive field of the network but
also perceive spatial features on different scales. Innovative use of dilated convolution
and multi-scale convolution to replace the general convolution for feature characterization
make DMDNet achieve state-of-the-art performance.

The above four DL-based methods can be uniformly expressed as follows:

HRMS = Nθ([ PAN; LRMS ]) , (1)

where Nθ(·) represents the process in DL-based methods with the parameters θ, and [ ; ]
represents the concatenation of PAN and LRMS.

3. Proposed Methods

In this section, we will state the motivation of our work, and then introduce the details
of the proposed FDFNet. Figure 2 shows the architecture of our proposed network.
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PAN BranchMS Branch Fusion Branch

Figure 2. The overall architecture of the proposed full-depth feature Fusion Network (FDFNet).
Please note that the kernel size of the convolution in FDFNet is 3 × 3, the channels of the PAN
branch and MS branch is 16, and the channels of fusion branch is 32. For more details, please refer to
Section 3.2.

3.1. Motivation

Although the methods mentioned above provided various empirical approaches to
depict the relationships between images, three main limitations have not been addressed.
First, they neglected the difference between the LR-MS image and HR-PAN images in
terms of the spectral and spatial information, and were just fused through concatenation or
summation at first, and then the fused image directly inputted into the network, leading to
the features being separately contained in the HR-PAN image and LR-MS image, which
cannot be effectively extracted. Second, the existing methods only perform feature fusion at
the first or last layers in the network. Thus the resulting fusion image may be inadequate for
discriminative representation and integration reasonably. Third, separate feature extraction
and fusion operations will make the network structure complex and computationally
expensive, resulting in a cumbersome model.

In response to the above concerns, we managed to extract the rich textures and details
contained in the spatial domain of the PAN image and the spectral features contained in
the MS image through two independent branches to maintain the integrity of the spectral
information of the multispectral image and reduce the distortion of the spatial information.
In order to reduce the computational burden of feature fusion, the features obtained from
the PAN branch and MS branch at the same depth are injected into the fusion branch
parallel to the other two branches. While performing feature extraction, the full-depth
feature fusion of the network is realized. In this way, the network can maximize the use of
features at different depths and branches, that is, low-level detailed texture features and
high-level semantic features to restore distortion-free fusion images.

3.2. Parallel Full-Depth Feature Fusion Network

Consider a PAN image PAN ∈ RH×W×1 and a MS image MS ∈ RH
4 ×

W
4 ×b, where b

represents the number of band in the MS image. Firstly, MS will be upsampled to the
same size as PAN by a polynomial kernel with 23 coefficients [76], and let M̃S ∈ RH×W×b

represent the upsampled image. Next, PAN and M̃S will be concatenated together as an
original fusion product M ∈ RH×W×(b+1). Then, PAN, M̃S, and M will be sent to three
parallel convolutional layers respectively to increase the number of channels for later
feature extraction.

The three feature maps, Ipan, Ims, and Ifuse, obtained by the above operation will be fed
into the head structure of three parallel branches. The three branches developed accordingly
are called the PAN branch, MS branch, and fusion branch. Moreover, the features exacted
from the PAN branch and MS branch will be injected into the fusion branch through
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the constructed parallel feature fusion block (PFFB). The details about PFFB can refer to
Section 3.3 and Figure 3. In particular, there are 4 PFFBs contained in the proposed FDFNet.

Figure 3. Detailed illustration of the parallel feature fusion block (PFFB).

The underlying detailed information and deep semantic information are fused through
the distribution of PFFB in each depth of the network characteristics. We believe that such
a full-depth fusion is beneficial to improving the network’s feature representation ability.
After 4 PFFBs, the feature map from the fusion branch will be selected out and sent to a
convolutional layer with beforehand ReLU activation to reduce its channels to the same
as that of M̃S. The output feature is denoted as S ∈ RH×W×b. Finally, we add S and M̃S
that transferred by a long skip to yield the final super-resolution image SR ∈ RH×W×b.
The whole process can be expressed as follows:

SR = Fθ([M̃S; PAN]; M̃S; PAN) + M̃S , (2)

where Fθ(·) represents the FDFNet with its parameters θ. For more details about FDFNet,
refer to Figure 2.

3.3. Parallel Feature Fusion Block

In order to realize the transfer and fusion of feature maps among the three branches, i.e.,
PAN branch, MS branch, and the fusion branch, we designed a parallel feature fusion block
(PFFB). To facilitate the description, let Ipan ∈ RH×W×Cpan , Ims ∈ RH×W×Cms , and Ifuse ∈
RH×W×Cfuse , respectively, represent the input feature of PAN branch, the MS branch, and
the fusion branch, while Opan ∈ RH×W×Cpan , Oms ∈ RH×W×Cms , and Ofuse ∈ RH×W×Cfuse

represent output feature of PAN branch, the MS branch, and the fusion branch respectively,
where H and W are the size in spatial dimension, and Cpan, Cms, and C f use denote the
channels of the feature maps.

Firstly, Ipan and Ims will be subjected to feature extraction operations and get their
output features Opan and Oms. After that, Opan, Oms, and Ifuse will be concatenated together
as Î f use ∈ RH×W×(Cpan+Cms+C f use). The process can be expressed as follows:

Opan = Cs(A(Ipan)) ; (3)

Oms = Cs(A(Ims)) ; (4)
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Î f use = [Opan ; Oms ; Ifuse] , (5)

where Cs(·) and A(·) represents the convolutional layer in which the input channel is the
same as the output channel, and A(·) represents ReLU activation. Finally, Î f use will be
subjected to feature extraction operation and added with Ifuse by a short connection as the
output feature Ofuse. The final process in PFFB can be expressed as follows:

Ofuse = Cr(A(̂Ifuse)) + Ifuse , (6)

where Cr(·) represents the convolutional layer which will reduce the channels of the exacted
feature to the same as Ifuse. For more details about PFFB, refer to Figure 3.

We show the output of 4 PFFBs, i.e., Ofusei , i = 1, . . . , 4 in Figure 4. It can be seen that as
the depth becomes deeper, more and more details are perceived. The contours of buildings
and streets are also more clearly portrayed, ultimately in the form of high-frequency
information. Compared with the previous three images, the last feature map Ofuse4 shows a
greater difference between its maximum and minimum values. More sporadic red portions
imply more chromatic aberration, sharper edge outlines, and high-frequency information,
all of which are in line with our expectations.

The closer to the bottom layer, the more blurred our information and the smaller the
targets that can be detected, as the Ofuse1 shows in Figure 4, which is also indispensable.
To get in-depth high-frequency information while retaining shallow information simultane-
ously, we try to skip connections between neighboring PFFB modules. By leveraging on
the skip connection, the product of the previous block can be transferred to the deep layers,
which retains the shallow features and enriches the deep semantics.

Ofuse1 Ofuse2 Ofuse3 Ofuse4

Figure 4. Schematic diagram of the average value of all bands in the feature map after normalization.
The placement order is from left to right in accordance with the output order.

3.4. Loss Function

To depict the difference between SR and the ground-truth (GT) image, we adopt the
mean square error (MSE) to optimize the proposed framework in the training process.
The loss function can be expressed as follows:

L(θ) = 1
N

N

∑
i=1

∥∥∥∥Fθ([M̃S
(i)

; PAN(i)]; M̃S
(i)

; PAN(i)) + M̃S
(i) −GT(i)

∥∥∥∥2

F
, (7)

where N represents the number of training samples, and ‖·‖F is the Frobenius Norm.

4. Experiments

This section is for experimental evaluation. The proposed FDFNet is compared with
some recent competitive approaches on various datasets obtained by WorldView-3 (WV3),
QuickBird (QB), and GaoFen-2 (GF2) satellites. First, the preprocessing of the dataset and
the training details will be described. Then, the quantitative metrics and visual results on
reduced-resolution and full-resolution will be presented to illustrate the effectiveness of
the full-depth feature fusion scheme. Finally, extensive ablation studies analyze how the
proposed full-depth fusion scheme benefits the fusion process. Moreover, once our paper is
accepted, the source code of training and testing will be open-sourced.
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4.1. Dataset

To benchmark the effectiveness of FDFNet for pansharpening, we adopted a wide
range of datasets, including 4-band datasets captured by QuickBird (QB) and GaoFen-2
(GF2) satellites and 8-band datasets captured by WorldView-3 (WV3). The former 4-band
dataset contains four standard colors (red, green, blue, and near-infrared). Based on these,
the 8-band dataset adds four new bands (coastal, yellow, red edge, and near-infrared).
The spatial resolution ratio between PAN and MS is equal to 4. As the ground truth
(GT) images are not available, Wald’s protocol [77] is performed to ensure the baseline
image generation. In particular, the steps for generating the training and testing data for
performance assessment are as follows: (1) Downsample the original HR-PAN and LR-MS
image by a downsampling factor 4 through satellite corresponding modulation transfer
function (MTF) based filters; (2) take the downsampled HR-PAN image as the simulated
PAN image and the downsampled LR-MS image as the simulated LR-MS image; and (3)
take the original MS image as the simulated GT image. The specific information of different
simulated dataset are listed as follows:

• For WV3 data, we downloaded the datasets from the public website (http://www.
digitalglobe.com/samples?search=Imagery, accessed on 6 April 2021 ) and obtained
12,580 PAN/ MS/GT image pairs (70%/20%/10% as training/validation/testing
dataset) with a size of 64 × 64 × 1, 16 × 16 × 8, and 64 × 64 × 8, respectively,
the resolution of PAN and MS are 0.5 m and 2 m per pixel. For testing, we used not
only the 1258 small patches mentioned above, but also the large patches of a new
WorldView-3 dataset that captured Rio’s scenarios (size: 256× 256× 4);

• For QB data, we downloaded a large dataset (4906× 4906× 4) acquired over the city
of Indianapolis and cut it into two parts. The left part (4906× 2906× 4) is used to
simulate 20,685 training PAN/MS/GT image pairs with the size 64 × 64 × 1, 16 × 16
× 4, and 64 × 64 × 4, respectively, the resolution of PAN and MS are 0.61 m and 2.4 m
per pixel, and the right part (4906× 1000× 4) is used to simulate 48 testing data (size:
256× 256× 4);

• For GF2 data, we downloaded a large dataset (6907× 7300× 4) over the city of Beijing
from the website (http://www.rscloudmart.com/dataProduct/sample, accessed on
6 April 2021 ) to simulate 21,607 training PAN/MS/GT image pairs with the size
64 × 64 × 1, 16 × 16 × 4, and 64 × 64 × 4, the resolution of PAN and MS are 0.8 m
and 3.2 m per pixel. Besides, a huge image acquired over the cit of Guangzhou was
downloaded to simulate 81 testing data (size: 256× 256× 4).

It is worth mentioning that our patches all come from a single acquisition and there is
no network generalization problem.

4.2. Training Details and Parameters

Due to the different number of bands, we make separate training and test datasets
on WV3, QB, and GF2, as described in Section 4.1, train the network, and test separately
on each dataset. All DL-based methods are fairly trained on the same dataset on NVIDIA
GeForce GTX 2080Ti with 11 GB. Besides, we set 1000 epochs for the FDFNet training under
the Pytorch framework, while the learning rate is set to 3× 10−4 for the first 500 epochs
and 1× 10−4 for the last 500 epochs, which is set and adjusted empirically according to
the loss curve during training. Cpan and Cms are set as 16, C f use is set as 32, and four
PFFBs are included in the network. We employed Adam [78] as the optimizer to optimize
the parameters, with batch size 32 while β1 and β2 are set as 0.9 and 0.999, respectively.
The batch size has little effect on the final result. As for betta1 and 2, both are the default
settings for the optimizer Adam, and we achieved satisfactory results without adjusting
them. We use the source codes provided by the authors or re-implement the code with the
default parameters in the corresponding papers for the compared approaches.

http://www.digitalglobe.com/samples?search=Imagery
http://www.digitalglobe.com/samples?search=Imagery
http://www.rscloudmart.com/dataProduct/sample
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4.3. Comparison Methods and Quantitative Metrics

For comparison, we select 10 state-of-the-art traditional fusion mathods based on
CS/MRA, including EXP [76], GS [5], CNMF [79], HPM [10], GLP-CBD [1], GLP-Reg [36],
BDSD-PC [3], BDSD [2], PRACS [4], and SFIM [6]. Two VO-based methods are also
added to the list of competitors, including DGS [13] and LGC(CVPR19) [12]. In addition,
six recently widely-accepted proposed deep convolutional networks for pan-sharpening are
used to compare the performance of the trained model, including PNN [37], PanNet [35],
DiCNN1 [36], LPPN [42], BDPN [41], and DMDNet [34].

Quality evaluation is carried out at reduced and full resolutions. For the reduced-
resolution test, the relative dimensionless global error in synthesis (ERGAS) [80], the spec-
tral angle mapper (SAM) [81], the spatial correlation coefficient (SCC) [82], and quality
index for 4-band images (Q4) or 8-band images (Q8) [83] are used to assess the quality of the
results. In addition, to evaluate the performance of all involved methods on full-resolution,
the QNR, Dλ, and Ds [84,85] indexes are applied.

4.4. Performance Comparison with Reduced-Resolution WV3 Data

We compare the performance of all the introduced benchmarks on the 1258 testing
samples. For each testing example, the sizes of PAN, MS, and GT images are the same as
that of the training examples, i.e., 64 × 64 for the PAN image, 16× 16× 8 for the original
low spatial resolution MS image, and 64× 64× 8 for the GT image.

Table 1 reports the average and standard deviation metrics of all compared methods.
It is clear that the proposed FDFNet outperforms other advanced methods in terms of all
the assessment metrics. Specifically, the result obtained by our network exceeds the average
value of DMDNet in SAM and ERGAS by almost 0.3, which is a noticeable improvement.
Since SAM and ERGAS are the measures for spectral and spatial fidelity, respectively, it
is easy to know that FDFNet can strike a satisfying balance between spectral and spatial
information.

Table 1. Average quantitative with the related standard deviations (std) comparisons on 1258 reduced-
resolution WV3 examples. The best performance is shown in bold and second place is underlined.

Method SAM ERGAS SCC Q8

EXP [76] 5.8531 ± 1.9931 7.0446 ± 2.9339 0.6604 ± 0.1062 0.6267 ± 0.1418
GS [5] 5.6982 ± 2.0077 5.2817 ± 2.1867 0.8725 ± 0.0705 0.7655 ± 0.1394
CNMF [79] 5.5310 ± 1.8756 4.6183 ± 1.9297 0.8877 ± 0.0680 0.8216 ± 0.1229
MTF-GLP-HPM [10] 5.6035 ± 1.9739 4.7638 ± 1.9345 0.8729 ± 0.0650 0.8171 ± 0.1279
MTF-GLP-CBD [1] 5.2861 ± 1.9582 4.1627 ± 1.7748 0.8904 ± 0.0698 0.8540 ± 0.1144
MTF-GLP-Reg [11] 5.2602 ± 1.9426 4.1571 ± 1.7748 0.8914 ± 0.0690 0.8536 ± 0.1148
BDSD-PC [3] 5.4251 ± 1.9716 4.2460 ± 1.8602 0.8913 ± 0.0704 0.8528 ± 0.1164
BDSD [2] 6.9997 ± 2.8530 5.1670 ± 2.2475 0.8712 ± 0.0798 0.8126 ± 0.1234
PRACS [4] 5.5885 ± 1.9811 4.6896 ± 1.8535 0.8657 ± 0.0808 0.8132 ± 0.1295
SFIM [6] 5.4519 ± 1.9025 5.1995 ± 6.5738 0.8663 ± 0.0670 0.7979 ± 0.1220
DGS [13] 6.5096 ± 1.7344 5.3098 ± 1.5556 0.8647 ± 0.0656 0.8035 ± 0.1333
LGC [12] 5.2102 ± 1.8703 5.1402 ± 2.1209 0.8670 ± 0.6040 0.7930 ± 0.1232
PNN [37] 4.0015 ± 1.3292 2.7283 ± 1.0042 0.9515 ± 0.0465 0.9083 ± 0.1122
PanNet [35] 4.0921 ± 1.2733 2.9524 ± 0.9778 0.9495 ± 0.0461 0.8942 ± 0.1170
DiCNN1 [36] 3.9805 ± 1.3181 2.7367 ± 1.0156 0.9517 ± 0.0472 0.9097 ± 0.1117
LPPN [42] 3.9021 ± 1.2901 2.6404 ± 0.9600 0.9552 ± 0.0450 0.9130 ± 0.1110
BDPN [41] 3.9952 ± 1.3869 2.7234 ± 1.0394 0.9515 ± 0.0457 0.9123 ± 0.1128
DMDNet [34] 3.9714 ± 1.2482 2.8572 ± 0.9663 0.9527 ± 0.0447 0.9000 ± 0.1142
FDFNet 3.6584 ± 1.2252 2.5109 ± 0.9423 0.9597 ± 0.0445 0.9171 ± 0.1107

Ideal value 0 0 1 1
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In addition, it can be seen that DL-based methods outperform traditional CS/MRA
methods, but on the other hand, this superiority is based on large-scale training data.
Therefore, we also introduce a new WorldView-3 dataset that captured Rio’s scenarios,
which never fed into the networks in their training phase. The Rio dataset holds 30-cm
resolution, and the size of the GT, HR-PAN, and LR-MS image is 256 × 256 × 8, 256 × 256,
and 64 × 64 × 8, respectively. Then, we test all the methods on the Rio dataset, and the
results are shown in Table 2. Consistent with previous results, our method performs best
on all indicators.

Moreover, we compare the testing time of all methods on the Rio dataset to prove its
efficiency. The recording is reported in the last column of Table 2. It is obvious that FDFNet
takes the shortest time compared to other DL-based methods, reflecting the high efficiency
of full-depth integration and parallel working.

Table 2. Average quantitative comparisons on the Rio dataset. The best performance is shown in
bold and second place is underlined.

Method SAM ERGAS SCC Q8 Time

EXP [76] 7.0033 6.5368 0.6927 0.6156 0.0312
GS [5] 8.9481 6.3662 0.6775 0.8666 0.0440
CNMF [79] 7.1099 4.9868 0.7617 0.7576 0.0328
MTF-GLP-HPM [10] 7.2994 5.1185 0.7369 0.7849 0.2037
MTF-GLP-CBD [1] 7.4053 5.0372 0.6738 0.7880 0.1069
MTF-GLP-Reg [11] 7.3275 5.0154 0.6822 0.7889 0.1476
BDSD-PC [3] 7.0721 4.9515 0.7164 0.7853 0.1701
BDSD [2] 7.1218 4.9413 0.7186 0.7787 0.0796
PRACS [4] 7.1176 5.5392 0.6370 0.7380 0.1765
SFIM [6] 6.8501 4.9571 0.7558 0.7882 0.0251
DGS [13] 7.8368 5.6175 0.6861 0.6542 0.9723
LGC [12] 6.3115 5.1177 0.7715 0.7356 1.3278
PNN [37] 4.0659 2.7144 0.9487 0.8888 0.5475
PanNet [35] 3.9062 2.6583 0.9522 0.8814 0.5880
DiCNN1 [36] 3.8289 2.5819 0.9544 0.8895 0.5527
LPPN [42] 3.7118 2.4882 0.9591 0.8976 0.4987
BDPN [41] 4.0788 2.6897 0.9439 0.8969 0.8796
DMDNet [34] 3.6917 2.4968 0.9594 0.8990 0.6198
FDFNet 3.3801 2.3522 0.9649 0.9155 0.5019

Ideal value 0 0 1 1

We also display a visual comparison of our FDFNet with other state-of-the-art methods,
as shown in Figure 5. To facilitate the distinction between the quality of the results, we also
show the corresponding residual map in Figure 6, which takes the GT image as a reference.
The FDFNet yields more details with less blurring, especially in areas with dense buildings.
These results verify that FDFNet indeed exploits the rich texture from the source images.
Compared with other methods, FDFNet performs feature fusion at all depths, which covers
the detailed features of the shallow layer and the semantic features of the deep layer. It is
worth noting that in this case, LPPN and DMDNet are not so far from the proposal.
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PAN EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD MTF-GLP-Reg

BDSD-PC BDSD PRACS SFIM DGS LGC PNN

PanNet DiCNN1 LPPN BDPN DMDNet FDFNet GT

Figure 5. The visual comparisons of fusion results obtained by different methods on a reduced-
resolution Rio dataset obtained by WorldView-3 (shown by bands: 1, 3, and 5).

EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD MTF-GLP-Reg

BDSD-PC BDSD PRACS SFIM DGS LGC PNN

PanNet DiCNN1 LPPN BDPN DMDNet FDFNet GT

Figure 6. The visual comparisons of the corresponding residual maps using the GT image as reference
(shown by bands: 1, 3, and 5).

4.5. Performance Comparison with Reduced-Resolution 4-Band Data

We also assess the proposed method on 4-band datasets, including QB and GF2 data.
The quantitative results in terms of all indicators are reported in Tables 3 and 4. As can be
seen, the proposed method outperforms other competing methods with lower SAM and
ERGAS and higher Q8 and SCC, which proves that the proposed framework can tackle
with 4-band data effectively. We can see visual results from Figures 7 and 8. Whether the
images are recorded on sea or land, the fusion results of DFDNet are the closest to those of
GT images, without noticeable artifacts or spectral distortions. This is more evident from
the residual maps showed in Figures 9 and 10, where the FDFNet produces more visually
appealing results with less residual.
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Table 3. Average quantitative with the related standard deviations (std) comparisons on 48 reduced-
resolution QB examples. The best performance is shown in bold and second place is underlined.

Method SAM ERGAS SCC Q4

EXP [76] 8.1569 ± 1.9571 11.5679 ± 2.1892 0.5242 ± 0.0223 0.5728 ± 0.1064
GS [5] 8.1899 ± 1.9738 9.2075 ± 1.5195 0.8409 ± 0.0632 0.7192 ± 0.1093
CNMF [79] 7.3469 ± 2.3535 7.8355 ± 1.1998 0.8233 ± 0.2183 0.7438 ± 0.2117
MTF-GLP-HPM [10] 7.8945 ± 1.9769 8.0556 ± 1.1504 0.8389 ± 0.0605 0.7847 ± 0.1207
MTF-GLP-CBD [1] 7.3983 ± 1.7826 7.2965 ± 0.9316 0.8543 ± 0.0643 0.8191 ± 0.1283
MTF-GLP-Reg [11] 7.3848 ± 1.7796 7.3005 ± 0.9352 0.8549 ± 0.0640 0.8184 ± 0.1282
BDSD-PC [3] 7.6593 ± 1.9012 7.4584 ± 0.9910 0.8512 ± 0.0622 0.8139 ± 0.1365
BDSD [2] 7.6708 ± 1.9110 7.4661 ± 0.9912 0.8512 ± 0.0622 0.8132 ± 0.1361
PRACS [4] 7.8343 ± 1.9136 8.2135 ± 1.0862 0.8315 ± 0.0921 0.7730 ± 0.1416
SFIM [6] 7.7175 ± 1.8718 8.7782 ± 2.3796 0.8321 ± 0.1054 0.7670 ± 0.1362
DGS [13] 8.2770 ± 1.8213 8.4872 ± 1.2444 0.8264 ± 0.0534 0.7725 ± 0.1199
LGC [12] 7.6957 ± 1.8428 9.1597 ± 1.5275 0.8215 ± 0.0459 0.7234 ± 0.1292
PNN [37] 5.1993 ± 0.9474 4.8712 ± 0.4584 0.9324 ± 0.0489 0.8872 ± 0.1481
PanNet [35] 5.3144 ± 1.0175 5.1623 ± 0.6815 0.9296 ± 0.0586 0.8834 ± 0.1399
DiCNN1 [36] 5.3071 ± 0.9958 5.2310 ± 0.5412 0.9224 ± 0.0507 0.8821 ± 0.1432
LPPN [42] 5.0133 ± 0.9753 5.1500 ± 1.0914 0.9410 ± 0.0483 0.8851 ± 0.1379
BDPN [41] 5.7145 ± 1.1475 5.0497 ± 0.5370 0.9242 ± 0.0477 0.8854 ±0.1411
DMDNet [34] 5.1197 ± 0.9399 4.7377 ± 0.6487 0.9350 ± 0.0653 0.8908 ± 0.1464
FDFNet 4.7924 ± 0.8397 4.3020 ± 0.2797 0.9463 ± 0.0469 0.9032 ± 0.1392

Ideal value 0 0 1 1

PAN EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD MTF-GLP-Reg

BDSD-PC BDSD PRACS SFIM DGS LGC PNN

PanNet DiCNN1 LPPN BDPN DMDNet FDFNet GT

Figure 7. The visual comparisons of fusion results obtained by different methods on a reduced-
resolution QB case (shown by bands: 1, 3, and 5).
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PAN EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD MTF-GLP-Reg

BDSD-PC BDSD PRACS SFIM DGS LGC PNN

PanNet DiCNN1 LPPN BDPN DMDNet FDFNet GT

Figure 8. The visual comparisons of fusion results obtained by different methods on a reduced-
resolution GF case (shown by bands: 1, 3, and 5).

Table 4. Average quantitative with the related standard deviations (std) comparisons on 81 reduced-
resolution GF2 examples. The best performance is shown in bold and second place is underlined.

Method SAM ERGAS SCC Q4

EXP [76] 2.4687 ± 0.5213 2.8812 ± 0.8481 0.7305 ± 0.0742 0.7793 ± 0.0466
GS [5] 2.9751 ± 1.1114 2.9661 ± 1.0105 0.8523 ± 0.0618 0.7865 ± 0.0759
CNMF [79] 2.4961 ± 0.7159 2.2094 ± 0.6601 0.8787 ± 0.0522 0.8426 ± 0.0478
MTF-GLP-HPM [10] 2.5522 ± 0.7773 2.2994 ± 0.7128 0.8670 ± 0.0537 0.8522 ± 0.0451
MTF-GLP-CBD [1] 2.2744 ± 0.7335 2.0461 ± 0.6198 0.8728 ± 0.0527 0.8773 ± 0.0406
MTF-GLP-Reg [11] 2.2528 ± 0.7124 2.0251 ± 0.6050 0.8745 ± 0.0516 0.8786 ± 0.0394
BDSD-PC [3] 2.3042 ± 0.6432 2.0752 ± 0.6040 0.8776 ± 0.0511 0.8780 ± 0.0404
BDSD [2] 2.3074 ± 0.6693 2.0704 ± 0.6097 0.8769 ± 0.0516 0.8763 ± 0.0417
PRACS [4] 2.3113 ± 0.5970 2.1685 ± 0.5992 0.8666 ± 0.0497 0.8719 ± 0.0347
SFIM [6] 2.2970 ± 0.6378 2.1887 ± 0.6950 0.8608 ± 0.0541 0.8651 ± 0.0403
DGS [13] 2.5133 ± 0.4293 2.5719 ± 0.4791 0.8159 ± 0.0440 0.7795 ± 0.0840
LGC [12] 2.1582 ± 0.5011 2.2495 ± 0.6433 0.8708 ± 0.0411 0.8661 ± 0.0278
PNN [37] 1.4599 ± 0.3607 1.2707 ± 0.3243 0.9481 ± 0.0207 0.9474 ± 0.0203
PanNet [35] 1.3954 ± 0.3262 1.2239 ± 0.2828 0.9558 ± 0.0123 0.9469 ± 0.0222
DiCNN1 [36] 1.4948 ± 0.3814 1.3203 ± 0.3544 0.9459 ± 0.0223 0.9445 ± 0.0212
LPPN [42] 1.3408 ± 0.2559 1.1236 ± 0.2236 0.9609 ± 0.0085 0.9515 ± 0.0219
BDPN [41] 1.4876 ± 0.3861 1.2988 ± 0.3464 0.9301 ± 0.0207 0.9267 ±0.0212
DMDNet [34] 1.2968 ± 0.3156 1.1281 ± 0.2670 0.9645 ± 0.0101 0.9530 ± 0.0219
FDFNet 1.2772 ± 0.3035 1.0963 ± 0.2681 0.9638 ± 0.0104 0.9593 ± 0.0170

Ideal value 0 0 1 1
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EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD MTF-GLP-Reg

BDSD-PC BDSD PRACS SFIM DGS LGC PNN

PanNet DiCNN1 LPPN BDPN DMDNet FDFNet GT

Figure 9. The visual comparisons of the corresponding residual maps using the GT image as reference
(shown by bands: 1, 3, and 5).

EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD MTF-GLP-Reg

BDSD-PC BDSD PRACS SFIM DGS LGC PNN

PanNet DiCNN1 LPPN BDPN DMDNet FDFNet GT

Figure 10. The visual comparisons of the corresponding residual maps using the GT image as
reference (shown by bands: 1, 3, and 5).

4.6. Performance Comparison with Full-Resolution WV3 Data

In this section, we assess the proposed framework on full-resolution data to test its
performance on real data, since the various methods of pansharpening are ultimately
applied in the actual scene without the reference images. Similarly to the experiments on
reduced-resolution, both the quantitative and visual comparison are operated.

The results of quantitative experiments can refer to Table 5. The proposed FDFNet
has achieved optimal or suboptimal results on several indicators. It is worth noting that
although some DL-based methods perform well in reduced-resolution, some indicators
are even inferior to some traditional techniques in full-resolution, which also verifies the
importance of network generalization. Furthermore, through the visual experiment of
Figures 11 and 12, the pros and cons of various methods can be more intuitively reflected.
Obviously, the super-resolution MS image texture obtained by our method is clearer,
and there are no artifacts as DMDNet and PANNet yield. This also demonstrates that
FDFNet has good generalization capabilities and can deal with pansharpening problems in
actual application scenarios more effectively.
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Table 5. The average quantification compared to the relative standard deviation (std) of 50 full-
resolution WV3 samples. The best performance is shown in bold and second place is underlined.

Method QNR Dλ Ds

EXP [76] 0.2383 ± 0.3993 -/- 0.0259 ± 0.0486
GS [5] 0.8883 ± 0.0754 0.0231 ± 0.0325 0.0922 ± 0.0531
CNMF [79] 0.8682 ± 0.1093 0.0561 ± 0.0557 0.0841 ± 0.0732
MTF-GLP-HPM [1] 0.8902 ± 0.3892 0.0154 ± 0.0358 0.0198 ± 0.0444
MTF-GLP-CBD [1] 0.9001 ± 0.0813 0.0370 ± 0.0397 0.0672 ± 0.0522
MTF-GLP-Reg [11] 0.9014 ± 0.0783 0.0362 ± 0.0383 0.0664 ± 0.0499
BDSD-PC [3] 0.8991 ± 0.0802 0.0275 ± 0.0310 0.0770 ± 0.0578
BDSD [2] 0.9193 ± 0.0645 0.0220 ± 0.0195 0.0608 ± 0.0510
PRACS [4] 0.8959 ± 0.0736 0.0249 ± 0.0279 0.0825 ± 0.0542
SFIM [6] 0.9210 ± 0.0626 0.0296 ± 0.0341 0.0520 ± 0.0037
DGS [13] 0.9195 ± 0.0734 0.0446 ± 0.0470 0.0392 ± 0.0377
LGC [12] 0.9231 ± 0.0334 0.0188 ± 0.0171 0.0629 ± 0.0281
PNN [37] 0.9532 ± 0.0405 0.0216 ± 0.0223 0.0260 ± 0.0219
PanNet [35] 0.9516 ± 0.0298 0.0270 ± 0.0149 0.0221 ± 0.0171
DiCNN1 [36] 0.9383 ± 0.0562 0.0217 ± 0.0263 0.0416 ± 0.0355
LPPN [42] 0.9536 ± 0.0322 0.0241 ± 0.0174 0.0226 ± 0.0224
BDPN [41] 0.9532 ± 0.0405 0.0216 ± 0.0223 0.0260 ± 0.0219
DMDNet [34] 0.9539 ± 0.0268 0.0226 ± 0.0121 0.0241 ± 0.0174
FDFNet 0.9542 ± 0.0366 0.0150 ± 0.0080 0.0282 ± 0.0180

Ideal value 1 0 0

PAN EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD

MTF-GLP-Reg BDSD-PC BDSD PRACS SFIM DGS LGC

PNN PanNet DiCNN1 LPPN BDPN DMDNet FDFNet

Figure 11. The visual comparisons on a full-resolution WorldView-3 case (shown by bands: 1, 3,
and 5).
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PAN EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD

MTF-GLP-Reg BDSD-PC BDSD PRACS SFIM DGS LGC

PNN PanNet DiCNN1 LPPN BDPN DMDNet FDFNet

Figure 12. The visual comparisons on a full-resolution WorldView-3 case (shown by bands: 1, 3,
and 5).

4.7. Performance Comparison with Full-Resolution 4-Band Data

We also compare the proposed method on 4-band full-resolution datasets, including
QB and GF2 data. The quantitative results in terms of all indicators are reported in Tables 6
and 7. Furthermore, through the visual experiment of Figures 13 and 14, the advantages
and disadvantages of alternative strategies can be represented more naturally. It can be
seen that our proposed FDFNet can achieve better results at the full resolution of different
sensors, which also shows the effectiveness of our proposed method. But at the same time,
it should be noted that traditional ones, such as BDSD have better generalization in some
indicators.

PAN EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD

MTF-GLP-Reg BDSD-PC BDSD PRACS SFIM DGS LGC

PNN PanNet DiCNN1 LPPN BDPN DMDNet FDFNet

Figure 13. The visual comparisons on a full-resolution QB case (shown by bands: 1, 3, and 4).
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Table 6. The average quantification compared to the relative standard deviation (std) of 100 full-
resolution QB samples. The best performance is shown in bold and second place is underlined.

Method QNR Dλ Ds

EXP [76] 0.8317 ± 0.0248 -/- 0.1682 ± 0.0248
GS [5] 0.8250 ± 0.0339 0.0342 ± 0.0095 0.1458 ± 0.0312
CNMF [79] 0.7244 ± 0.1281 0.1050 ± 0.0634 0.1956 ± 0.1060
MTF-GLP-HPM [1] 0.8179 ± 0.0380 0.0701 ± 0.0224 0.1244 ± 0.0251
MTF-GLP-CBD [1] 0.8429 ± 0.0226 0.0491 ± 0.0109 0.1135 ± 0.0175
MTF-GLP-Reg [11] 0.8456 ± 0.0222 0.0480 ± 0.0108 0.1118 ± 0.0171
BDSD-PC [3] 0.8573 ± 0.0326 0.0194 ± 0.0081 0.1256 ± 0.0334
BDSD [2] 0.8632 ± 0.0318 0.0190 ± 0.0090 0.1200 ± 0.0332
PRACS [4] 0.8355 ± 0.0299 0.0325 ± 0.0068 0.1364 ± 0.0288
SFIM [6] 0.9065 ± 0.0149 0.0334 ± 0.0069 0.0621 ± 0.0107
DGS [13] 0.8571 ± 0.0524 0.0702± 0.0247 0.0788 ± 0.0345
LGC [12] 0.9272 ± 0.0195 0.0068 ± 0.0033 0.0663 ± 0.0197
PNN [37] 0.9254 ± 0.0124 0.0401 ± 0.0083 0.0359 ± 0.0085
PanNet [35] 0.9476 ± 0.0173 0.0254 ± 0.0064 0.0276 ± 0.0138
DiCNN1 [36] 0.9101 ± 0.0274 0.0250 ± 0.0072 0.0665 ± 0.0262
LPPN [42] 0.9189 ± 0.0157 0.0365 ± 0.0180 0.0460 ± 0.0150
BDPN [41] 0.8781 ± 0.0252 0.0503 ± 0.0120 0.0753 ± 0.0202
DMDNet [34] 0.9269 ± 0.0309 0.0219 ± 0.0057 0.0346 ± 0.0172
FDFNet 0.9518 ± 0.0073 0.0287 ± 0.0075 0.0200 ± 0.0086

Ideal value 1 0 0

Table 7. The average quantification compared to the relative standard deviation (std) of 36 full-
resolution GF2 samples. The best performance is shown in bold and second place is underlined.

Method QNR Dλ Ds

EXP [76] 0.8465 ± 0.0332 -/- 0.1535 ± 0.0332
GS [5] 0.8002 ± 0.0837 0.0499 ± 0.0379 0.1599 ± 0.0608
CNMF [79] 0.7380 ± 0.1180 0.1111 ± 0.0771 0.1751 ± 0.0732
MTF-GLP-HPM [1] 0.8252 ± 0.0833 0.0597 ± 0.0409 0.1246 ± 0.0565
MTF-GLP-CBD [1] 0.8955 ± 0.0517 0.0427 ± 0.0249 0.0653 ± 0.0330
MTF-GLP-Reg [11] 0.9058 ± 0.0494 0.0400 ± 0.0232 0.0571 ± 0.0319
BDSD-PC [3] 0.8220 ± 0.0503 0.0356 ± 0.0245 0.1483 ± 0.0346
BDSD [2] 0.8328 ± 0.0479 0.0315 ± 0.0226 0.1407 ± 0.0341
PRACS [4] 0.8352 ± 0.0489 0.0504 ± 0.0223 0.1211 ± 0.0344
SFIM [6] 0.9337 ± 0.0558 0.0348 ± 0.0283 0.0335 ± 0.0327
DGS [13] -/- -/- 0.0952 ± 0.0239
LGC [12] 0.8106 ± 0.0358 0.0063 ± 0.0085 0.1840 ± 0.0197
PNN [37] 0.8790 ± 0.0376 0.0547 ± 0.0204 0.0705 ± 0.0242
PanNet [35] 0.9571 ± 0.0153 0.0148 ± 0.0095 0.0286 ± 0.0087
DiCNN1 [36] 0.8719 ± 0.0557 0.0261 ± 0.0272 0.1056 ± 0.0352
LPPN [42] 0.9392 ± 0.0263 0.0267 ± 0.0066 0.0351 ± 0.0238
BDPN [41] 0.7446 ± 0.0319 0.0231 ± 0.0233 0.2368 ± 0.0496
DMDNet [34] 0.9417 ± 0.0186 0.0208 ± 0.0108 0.0384 ± 0.0120
FDFNet 0.9538 ± 0.0177 0.0187 ± 0.0147 0.0280 ± 0.0077

Ideal value 1 0 0
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PAN EXP GS CNMF MTF-GLP-HPM MTF-GLP-CBD

MTF-GLP-Reg BDSD-PC BDSD PRACS SFIM DGS LGC

PNN PanNet DiCNN1 LPPN BDPN DMDNet FDFNet

Figure 14. The visual comparisons on a full-resolution GaoFen-2 case (shown by bands: 1, 3, and 4).

4.8. Ablation Study

Ablation experiments were done to further verify the efficiency of PFFB. In this
subsection, the importance of each branch, the number of PFFB modules, and the number
of channels will be discussed.

4.8.1. Functions of Each Branch

In particular, we utilize the FDFNet as the baseline module. For different compositions,
their abbreviations are as follows:

• FDFNet-v1: The FDFNet as a baseline without the PAN branch and MS branch;
• FDFNet-v2: The FDFNet as a baseline without the PAN branch;
• FDFNet-v3: The FDFNet as a baseline without the MS branch.

All three variants are uniformly trained on the WV3 dataset introduced in Section 4.1,
the training details are consistent with FDFNet. Then, we perform the test on the Rio
dataset. The results of the ablation experiments are shown in Table 8. We can see that
the performance of FDFNet surpassed the other three ablation variants in all indicators.
Besides, both FDFNet-v2 and FDFNet-v3 performed better than the FDFNet-v1, which
demonstrates that the MS branch and PAN branch can promote the fidelity of spectral
and spatial features and boost the fusion outcomes for pansharpening. In addition, this
also shows that it is a good choice for the MS image and PAN image to separately design
branches for feature extraction and distinct representation.

Table 8. Ablation study on the Rio dataset. The best performance is shown in bold and second place
is underlined.

Method PAN Branch MS Branch SAM ERGAS SCC Q8

FDFNet-v1 2.9793 1.8437 0.9658 0.9709
FDFNet-v2 X 2.8744 1.7966 0.9693 0.9717
FDFNet-v3 X 2.8335 1.7662 0.9706 0.9725
FDFNet X X 2.8193 1.7318 0.9721 0.9735

Ideal value 0 0 1 1

4.8.2. Number of PFFB Modules

Given that the dominant point of this paper is the introduction of the PFFB, what we
need to discuss first is to compare the effect of the depth of the network by testing the
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baseline framework containing different numbers of PFFB. In this case, we set the number of
PFFB from 2 to 6 and 10, respectively. As the number of modules increases and the network
deepens, the amount of training parameters also increases correspondingly. Figures 15
and 16 present quantitative and parameter comparisons among the different numbers of
the PFFB structure on the Rio dataset. The results show that a better performance can
be obtained when the number of PFFB is larger. It is worth noting that, obviously, when
the number of modules is within the range of 2 to 6, more PFFBs can better achieve the
full-depth feature fusion of the network, but the memory burden is increased due to the
corresponding increase in the number of parameters, leading to a slight decrease in the
test results. However, when the number of PFFB is 10, the fusion performance of PFFB
has greater advantages, so the training effect rises again. Therefore, in order to balance
performance and efficiency, we chose a PFFB number of 4 as the default setting.

ERGAS vs. NoPs SAM vs. NoPs

SCC vs. NoPs Q8 vs. NoPs

Figure 15. Number of parameters (NoPs) report and quantitative comparison of the number of PFFBs
on the Rio dataset.
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Figure 16. Convergence of different numbers of the PFFB structure: Training loss and validating loss.

4.8.3. Number of Channels

We also test the effect of the number of channels on the MS and PAN branch. Based
on the previous discussion on the number of PFFB, we set the number of blocks to 4 and
the number of channels as 8, 16, 32, and 64, respectively, and carried out experiments on
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the Rio dataset. We also plotted the performance in each indicator with their parameters
in Figure 17. Obviously, with the increase in the number of channels, the number of
parameters gradually increased. Thus more spectral information could be explored. It
worked best when the number of channels was 64. However, considering the pressure
of a large number of parameters on the memory load, in order to balance the network
performance and memory load and maximize the advantages of both, we chose 16 as the
default setting of the number of channels.

ERGAS vs. NoPs
SAM vs. NoPs

SCC vs. NoPs Q8 vs. NoPs

Figure 17. Number of parameters (NoPs) report and quantitative comparison of the number of
channels on the Rio dataset.

4.9. Parameter Numbers

The number of parameters (NoPs) of all the compared DL-based methods are pre-
sented in Table 9. It can be seen that the amount of parameters of FDFNet has not increased
much than the other compared DL-based methods, but the best results are achieved. This is
because our network can perform more efficient fusion at full-depth, which leads to promis-
ing results that achieve a reasonable balance between spectral and spatial information,
and also proves the efficiency of extracting features from parallel branches.

Table 9. The number of parameters (NoPs) of DL-based methods.

Method PNN PanNet DiCNN1 DMDNet FDFNet

NoPs 1.04× 105 8.30× 104 4.68× 104 1.0× 105 9.9× 104

5. Conclusions

In this work, we introduced an effective full-depth feature fusion network (FDFNet)
for remote sensing that contains three distinctive branches called the PAN-branch, MS-
branch, and fusion-branch, respectively. The fusion of these three branches is operated at
every different depth to make the information fusion more comprehensive. Furthermore,
the parallel feature fusion block (PFFB) that composes FDFNet can also be treated as a basic
module, which can be applied to other CNN-based structures used to solve remote sensing
image fusion problems. Extensive experiments validate the superiority of our FDFNet
on reduced- and full-resolution images in comparison to state-of-the-art pansharpening
methods with relatively few parameters.
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