
����������
�������

Citation: Jeoung, H.; Shi, S.; Liu, G. A

Novel Approach to Validate Satellite

Snowfall Retrievals by Ground-Based

Point Measurements. Remote Sens.

2022, 14, 434. https://doi.org/

10.3390/rs14030434

Academic Editor: Christopher Kidd

Received: 18 November 2021

Accepted: 14 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Novel Approach to Validate Satellite Snowfall Retrievals by
Ground-Based Point Measurements
Hwayoung Jeoung , Shangyong Shi and Guosheng Liu *

Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA;
hjeoung@fsu.edu (H.J.); sshi2@fsu.edu (S.S.)
* Correspondence: gliu@fsu.edu; Tel.: +1-850-644-6298

Abstract: A novel method has been proposed for validating satellite radar snowfall retrievals using
surface station observations over the western United States mountainous region, where the mean
snowfall rate at a station depends on its elevation. First, all station data within a 1◦ × 1◦ grid are used
to develop a snowfall rate versus elevation relation. This relation is then used to compute snowfall
rate in other locations within the 1◦ × 1◦ grid, as if surface observations were available everywhere
in the grid. Grid mean snowfall rates are then derived, which should be more representative to
the mean snowfall rate of the grid than using data at any one station or from a simple mean of all
stations in the grid. Comparison of the so-derived grid mean snowfall rates with CloudSat retrievals
shows that the CloudSat product underestimates snowfall by about 65% when averaged over all the
768 grids in the western United States mountainous regions. The bias does not seem to have clear
dependency on elevation but strongly depends on snowfall rate. As an application of the method,
we further estimated the snowfall to precipitation ratio using both ground and satellite measured
data. It is found that the rates of increase with elevation of the snowfall to precipitation ratio are quite
similar when calculating from ground and satellite data, being about 25% per kilometer elevation up
or approximately 4% per every degree Cuisses of temperature drop.

Keywords: snowfall; satellite radar; validation; CloudSat

1. Introduction

Glacier and snowpack over high mountains are critical water resources to populations
living in the lowland regions. For example, upland areas (above 2000 m elevation) in the
high mountains of Asia supply the five basins of the Indus, Ganges, Yellow, Brahmaputra,
and Yangtze rivers, providing water to 1.4 billion people in the downstream region [1,2].
In the western United States (U.S.), the bulk of surface water resources, as represented
by the flow of the Colorado and Columbia River systems, is derived from melted winter
snowpack [3]. In a warming climate, glacier is depleting over a global scale [4,5]. In
the western U.S., it is observed that mountain snowpack is declining accompanied with
rising surface temperature and early start of snow melting in the recent decades [6], which
threatens the water resources in the western states [7]. The long-term variation of snowfall
is an important indicator of climate change in both regional and global scales [8,9] and a
key component of the hydrological cycle in the mid- and high latitudes [10–13].

For estimation of snowfall over a large-scale, satellite remote sensing becomes in-
evitable, particularly over remote mountainous regions. There are currently several satellite
precipitation products available, for example, radar products [14,15], microwave radiome-
ter products [16], radar-radiometer combined products [17], and multisensor merged
products [18–20]. Since passive sensors measure the combined contribution from the at-
mosphere and surface to the upwelling radiation, the quality of their snowfall retrieval
suffers greatly from the complexity of snow-covered surfaces, particularly over moun-
tainous terrains [10,21]. Satellite radars are considered to be the most suitable sensors for
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snowfall observations, among which the Cloud Profiling Radar (CPR) aboard the CloudSat
satellite [22] is clearly the most reliable one because of its high sensitivity [23–25]. The
Global Precipitation Measurement (GPM) mission Dual-Frequency Precipitation Radar
(DPR) lacks the ability to detect most of snowfall events although it is suitable to measure
rainfall and heavy snowfall [25]. For this reason, we will focus on the validation of snowfall
retrievals from CloudSat observations.

To assure the quality of satellite radar snowfall estimation as well as for fine-tuning of
retrieval algorithms, validations by ground-based in situ measurements, such as by snow
gauges, pillows, boards, etc., are required [26,27], although uncertainties exist in these
validation data as well [28–30]. However, problems arise when we try to validate satellite
measured areal precipitation using a ground-based point measurement. Even if the gauge
and satellite estimates are individually correct at their own scale, the two sets may not
equal because the point measurement by gauges lacks the areal representativeness [31,32].
This problem is particularly serious over mountainous regions where orographic effect
makes the distribution of precipitation spatially quite variable and sometimes preferentially
skewed to mountain peaks or valleys [33–35].

Moreover, there is an additional difficulty for the validation of snowfall retrievals from
CloudSat CPR using ground-based point measurements. Because of the CPR’s narrow
coverage of its ground path (~1.5 km), it is impossible to obtain a statistically meaningful
number of coincident data points for instantaneous comparison between CPR retrieval
and ground measurements at a station. To conduct the validation, we have to examine
the consistency between the climatological mean of snowfall observed over time at a
ground station with the CPR retrievals averaged over an area surrounding that station.
The surrounding area must be large enough to include a sufficiently large number of CPR
observations so that the “climatological mean” is stable. As shown in the next section, the
climatological mean of snowfall measured at a station is often not representative of the
areal mean in the surrounding region because snowfall is systematically low in the valleys
and high over the mountain peaks. To mitigate this problem, we develop a novel method to
derive a more meaningful areal mean of snowfall climatology surrounding ground stations
by introducing a dynamically varying relation between mean snowfall rate and elevation.

In choosing ground truth datasets for the validation, we intentionally excluded
datasets that have already embedded in model analysis or remote sensing retrievals, such
as SNODAS (Snow Data Assimilation System, [36]), Stage IV [37], or MRMS (Multi-Radar
Multi-Sensor System, [38]). Instead, we chose datasets that are collected from ground
stations. We have identified two such datasets, which are used for validation in this study,
i.e., the Snow Telemetry (SNOTEL, [39]) and Global Historical Climatology Network Daily,
(GHCND, [40]). SNOTEL provides snow water equivalent data via a pressure-sensing
snow pillow over mountainous regions in the western U.S. and Alaska. Using SNOTEL
data, Wen et al. [41] evaluated the ground radar based MRMS snowfall and the Integrated
Multi-satellitE Retrievals for GPM (IMERG) products. Severe underestimation against
SNOTEL is found in both the radar and satellite products. In addition, Song et al. [42] used
SNOTEL data to assess the performance of various precipitation products from satellites,
reanalysis, and rain gauges in Alaska. They unraveled that most of the products can capture
snowfall events; however, the reanalysis products tend to overestimate while the IMERG
underestimates snowfall accumulation. GHCND is created by international collaboration
and contains variables such as precipitation and temperature measured at weather stations.
While this dataset has been used for climatological studies, from the authors’ knowledge
there have been no published works for snowfall validation.

The goal of this study is to validate space radar precipitation using SNOTEL and
GHCND data, with special focus on CloudSat snowfall product over the western U.S.
mountainous regions. We first point out the pitfalls resulting from using either SNOTEL or
GHCND data alone for the validation, then propose a new method by combining SNOTEL
and GHCND data together with accounting for their stations’ elevation information. Finally,
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as an application of the new method, we compare the snowfall to total precipitation ratios
derived from surface station data and satellite radar data.

2. Data

In this section, we describe the datasets used in this study, which include surface
station data from SNOTEL and GHCND and satellite radar retrievals from CloudSat CPR
and GPM DPR.

2.1. Surface Station Data

The SNOTEL network is designed by the United States Department of Agriculture to
collect snowpack and related climate data in the western U.S. and Alaska. It provides fully
automated data for high snow accumulation regions including many remote areas. Snow
water equivalent measurements are made using snow pillows filled with an antifreeze
solution. As snow accumulates, a pressure transducer monitors the pressure of the fluid
and converts the pressure to snow water equivalent [3]. In addition, snow depth, all-season
precipitation accumulation, and air temperature with daily maximums, minimums, and
averages are available. Although the snow pillow provides hourly data, we only use
daily snow measurements in this study. The daily snow accumulation is calculated by
the difference in cumulative values between two consecutive days, and a negative snow
accumulation value is screened out [41]. In this study, data from 768 SNOTEL stations in
the western U.S. were used to compute annual mean snowfall rate covering the period of
2006 through 2017. In addition, total precipitation measured by gauges is also reported at
each station. We computed rainfall using daily total precipitation minus snowfall for the
purpose of deriving snowfall to precipitation ratio.

The GHCND dataset has provided daily climate data including maximum and mini-
mum temperature, total daily precipitation, snowfall, and snow depth etc. over global land
areas [40], although we only use data over the western U.S. in this study. The U.S. collection
contains the most complete daily data including some of the 19th century observations [43]
as well as the 21st century measurements from the U.S. Climate Reference Network. We
converted the variable “snowfall” (daily snowfall depth) to snow water equivalent to make
it comparable to snowfall quantity in other datasets by assuming snowpack density of
0.1 g cm−3 [44]. Only data that passed all quality assurance check as indicated in the
dataset are included in the data analysis. The period covered in this study for annual
mean snowfall rate calculation is from 2006 through 2017. In addition to snowfall, total
precipitation reported at the GHCND stations was used for the computation of snowfall
to precipitation ratio.

2.2. Satellite Data

The satellite retrievals to be validated are snowfall from CloudSat CPR. The CPR
operates at W band with the minimum detectability of around −30 dBZ. Its high sensitivity
to light snow and broad global coverage makes it a good candidate for snowfall retrievals.
The radar reflectivity is sampled in the vertical with a bin size of 240 m. The footprint size
of radar reflectivity profiles is 1.4 km cross track by 2.5 km along track. The standard snow-
fall product, 2C-SNOW-PROFILE (Version R05), was created from CPR radar reflectivity
profiles based on [15].

To estimate the snowfall to total precipitation ratio, GPM DPR retrievals are also used
for the estimation of rainfall. The DPR operates at Ku and Ka bands. The Ku radar swath
has a width of 245 km and consists of 49 beams with a vertical resolution of 250 m in
the normal scan mode. In this study, the normal scan mode data from the DPR level 2A
precipitation retrievals at version 6 [45] are used. Since the minimum detectability of DPR
is around 13 dBZ, it misses a large portion of light precipitation events [24]. Therefore, we
used DPR only for rainfall estimates.

Though both CPR and DPR products have their intrinsic flag for precipitation type,
the classification method they use is different. To conduct consistent phase determination
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across the CPR and DPR datasets, we applied the phase classification scheme developed
by [46]. Meteorological variables collocated from the fifth generation European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5, [47]) hourly reanalysis data
at a resolution of 0.25◦ (latitude) × 0.25◦ (longitude) were used as inputs, including the
2-m temperature and dew point, surface pressure, and low-level lapse rate.

The key input variable into the phase classification scheme is the 2-m temperature.
According to [48], the 30-km spatial resolution of ERA5 is inadequate to provide accurate
2-m temperature at the radar pixel scale of a few kilometers over the complex terrains. To
mitigate this problem, we followed the topography correction method proposed by [48] to
derive the 2-m temperature at the radar footprint. The Shuttle Radar Topography Mission
dataset with 15 arcseconds (~417 m) resolution, SRTM15 [49], was used as topography
reference. We first calculated the average elevation from SRTM15 at each ERA5 grid, and
then computed the difference between the elevation at the radar pixels and corresponding
ERA5 grids. Using the low-level lapse rate, we interpolated the 2-m temperature at surface
level. The temperature difference before and after correction ranges from −10 to 10 K,
which would substantially impact the precipitation phase determination. We used the 2-m
temperature, relative humidity, and low-level lapse rate as inputs to the phase classifica-
tion scheme of [46], which provides the conditional probability of solid precipitation. A
probability of 50% was regarded as the threshold to separate rain and snow. Once the
precipitation is classified, the snowfall rate in CPR and the rainfall rate in DPR products
were selected for analysis.

The CloudSat snow product ranging from 2006 to 2017 was used for annual mean
snowfall estimates. The snowfall near the surface cannot be reliably measured due to
contamination by the ground clutters. So, after we decided the precipitation phase at surface
to be solid, we used the lowest available snow retrieval as the surface snowfall rate. For
surface rainfall estimates, we used the level-2A product, 2ADPR, “DPR precipitation” for
the surface rainfall retrievals [45] covering 2015 to 2019 to compute the annual mean rainfall
rate. Similar to CPR snowfall estimation, we first decided on the surface precipitation
type at the time and location of the DPR radar pixel based on the phase classification
algorithm [46]. Once rain was recognized, we used the precipitation retrieval at the lowest
uncontaminated level as the surface rainfall estimate.

The precipitation observations were then sorted into 1◦ × 1◦ grids. The annual mean
value is the total snowfall or rainfall divided by the total number of observations within
each grid. To avoid uneven sampling among seasons, we averaged the rainfall or snowfall
rates in every 5-day window for all available years, then computed the annual mean. The
annual mean snowfall to total precipitation ratio is calculated as the annual mean snowfall
rate divided by the annual mean precipitation rate, which is snowfall plus rainfall rates.

3. Results
3.1. A Novel Approach for Satellite Snowfall Validation

As mentioned earlier, to obtain a statistically meaningful comparison between satellite
radar and surface station measurements, we need to average data over a sufficiently long
time and over a large enough area surrounding the surface station. In several tests of
try and error, we found that we need to average the CloudSat data over an area of 1◦

(latitude) by 1◦ (longitude) for the entire observation record from mid-2006 to mid-2017 for
the comparison statistics to be stable. Therefore, in the following discussions in this section
we will use CloudSat data averaged over 1◦ × 1◦ for 2006 through 2017 to compare station
mean data averaged during 2006–2017.

We first demonstrate the problem arising from using either SNOTEL or GHCND
data alone to validate CloudSat snowfall retrievals. Figure 1 shows the annual means of
(a) SNOTEL and (b) GHCND snowfall rates and the CloudSat minus (c) SNOTEL and
(d) GHCND annual mean snowfall rates. The mean snowfall rates are generally larger
at SNOTEL than at GHCND stations. As a result, CloudSat CPR mostly underestimates
snowfall against SNOTEL while having a mixture of over- and underestimation against
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GHCND observations. One may suspect that this systematic difference is due to the
inaccuracy of either SNOTEL or GHCND or both snowfall estimates. However, we argue
in the following that it is largely caused by the elevation difference of these two types
of stations.
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(c) CloudSat minus SNOTEL and (d) CloudSat minus GHCND over the western U.S. region. CloudSat
data are averaged over 1◦ × 1◦ grid.

Since SNOTEL collects data automatically, the stations can be placed in remote areas
where frequent human access is not needed. However, GHCND stations are mostly con-
ventional stations where routine manual measurements are required, and they are mostly
located in the valleys for easy human access. This systematic difference of station elevations
is shown in Figure 2. If snowfall intensity depends on station elevation, a systematic
difference in annual mean snowfall between the two types of stations will occur. To test this
hypothesis, we plot annual mean snowfall rates versus station elevation in Figure 3 using
both SNOTEL and GHCND data. A clear trend of snowfall rate increasing with elevation
can be observed, and the SNOTEL and GHCND data seem to follow the same increasing
trend. Therefore, we argue that the systematic difference between SNOTEL and GHCND
mean snowfall rates is not a result of observation error at the stations but rather caused
by the systematic difference of station elevations. To further verify this hypothesis, we
calculated the difference of mean snowfall rates for all SNOTEL-GHCND station pairs that
are within 25 km horizontal distance and plotted the results in Figure 4 as a function of
the elevation difference between the pair and SNOTEL station elevation. It is shown that
the snowfall rate difference is near zero when the pair of stations are at the same elevation.
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The value of SNOTEL minus GHCND snowfall rates even becomes negative when the
SNOTEL station is at a lower elevation than the GHCND station; the large positive values
occur when the SNOTEL station is higher than the GHCND station.
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To account for this snowfall dependency on elevation, a new validation dataset that
combines the SNOTEL and GHCND data is created using the method as schematically
shown in Figure 5. This is one of the 768 1◦ × 1◦ grids centered at SNOTEL stations
examined in this study. First, we divide each 1◦ × 1◦ grid centered at a SNOTEL station
into 240 × 240 sub-grids (Note that the number of sub-grids shown in Figure 5a is much
less than 240 × 240 for figure clarity); the mean elevation of each sub-grid is determined by
SRTM15 topography data. The relation between annual mean snowfall rate and elevation
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is derived from combined SNOTEL and GHCND data as shown in Figure 5b. This relation
is used to fill the values at those sub-grids where there is neither SNOTEL nor GHCND
stations. The 1◦ × 1◦ grid mean snowfall rate is then computed by averaging over values
of all the sub-grids. This areal mean value will be used to compare with CloudSat snowfall
observations within the 1◦ × 1◦ area centered at the SNOTEL location.
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than 240 × 240 for figure clarity. The derived snowfall rate versus elevation relation will be used to
compute snowfall rate at sub-grid without a SNOTEL or GHCND station, shown as black empty
circles in (a).
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A key procedure in this method is to determine the mean snowfall rate versus elevation
relation, which varies depending on locations. We carefully examined this relation for all
the grids corresponding to the 768 SNOTEL stations; each grid was assigned a unique
relation although some of them are quite similar. For most of the grids, we found that an
exponential function fits the relation well. In Figure 6 we show several examples illustrating
the typical shapes of the snowfall-elevation relation. A fitting curve (sometimes stepwised
for a better fitting) is also shown in each figure, which is used to compute the snowfall
rate in the sub-grids that are not occupied by either SNOTEL or GHCND stations. In the
examples, (b) and (d) are from high mountain areas in Wyoming and Colorado. Snowfall
rate increases with elevation in a relatively slow rate. There are about 1/3 of the 768 grids
with a similar pattern. The two examples (e) and (f) in the Pacific West have much sharp
increases of snowfall rates with elevations although the topography there merely reaches
2 km above sea level. There are also about 1/3 of the 768 grids with a similar pattern. The
rest of the 1/3 grids have a pattern somewhere in between the previous two, similar to the
ones shown in (a) and (c).
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Essentially, this method is to mimic the grid mean as if ground stations are densely
positioned in every sub-grid. It is noted that the gap-filling operation is not archived by
spatial interpolation but rather by relying on the elevation dependence of climatological
mean of snowfall. This elevation dependence seems to be a characteristic of snowfall
precipitation as it is also reported over the Tibetan Plateau [48]. The mean snowfall rate
so derived for a 1◦ × 1◦ grid should be more representative of that for the area measured
by CloudSat, thus validation against this value is more meaningful. In the following
discussions, this new value is referred to as “grid mean” snowfall rate.

In Figure 7 we show how much difference the above method makes in annual mean
snowfall rates against original SNOTEL values. Overall, the grid mean snowfall rate is
lowered by 0.43 mm day−1 (or 25%), averaged over all stations in the region. However, the
sign of the changes is not uniformly distributed as it generally adjusts the value downward
where the SNOTEL’s elevation is higher than its surrounding areas and vice versa.
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CloudSat CPR retrievals are then compared with the grid mean snowfall rates, and
the results are shown in Figures 8 and 9. Recall that the CloudSat annual mean values are
derived by averaging data from 2006 through 2017 over a 1◦ × 1◦ area centered at SNOTEL
stations. In Figure 8, the comparison indicates that CloudSat underestimates snowfall for
most of the grids in the west U.S. mountainous region. In Figure 9, the scatterplots show
the difference and ratio between CloudSat retrieval and grid mean snowfall rate over a
1◦ × 1◦ area centered at SNOTEL station as a function of grid mean elevation or snowfall
rates. It is seen that the bias or ratio does not seem to have a dependency on elevation.
However, they strongly depend on snowfall rate–the higher the snowfall rate is, the larger
the underestimation by CloudSat will be. When averaged over the grids around all the
768 SNOTEL stations, the bias of CloudSat estimates is about −0.85 mm day−1, which is
−65% with respect to the grid mean snowfall rate estimated by the ground measurements.
While further studies are needed, we suspect that this underestimation is largely a result of
the space radar’s inability to obtain valid measurements close to the surface. The lowest
level without ground contamination is often 1 km or higher above the ground, and snowfall
rate often decreases with height in this region.

3.2. Investigation of the Snowfall to Precipitation Ratio

The change in snowfall to total precipitation ratio can serve as a useful indicator
on how global warming impacts on hydrological cycle. In a recent study using present
weather reports, Shi and Liu found that the ratio of snowfall to precipitation occurrence has
been decreasing globally in the past 40 years while at high latitudes shows an increasing
trend [50]. The ratio of snowfall to precipitation amount cannot be examined in their study
because of the lack of snowfall data. Over the contiguous United States, Feng and Hu
studied the ratio of snowfall to precipitation amount using the U.S. Historical Climatology
Network (USHCN) data and found a decreasing trend over the past five decades in most
of the regions [51]. However, similar to the GHCND data, the USHCN data used in their
study are skewed toward the lowland areas where snowfall amounts are generally lower
than those over high mountains. As an application of the new validation dataset created in
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this study, in this section we study the snowfall to precipitation ratio (hereafter, referred to
as S/P ratio) over the west U.S. mountainous region and examine how well this ratio can
be estimated from satellite radar observations.
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To calculate S/P ratio, we first examine whether rainfall rates also have elevation
dependence in this region. Similar to Figures 3 and 4, in Figure 10a,b we show the scatterplot
of annual mean rainfall rate observed at SNOTEL and GHCND stations versus elevation
and the difference of snowfall rates between SNOTEL and GHCND station pairs that
are within 25 km as a function of their station’s elevation difference. Unlike the case of
snowfall, the annual mean rainfall rate does not show a clear dependency on elevation.
We also examined SNOTEL and GHCND rainfall data in the 1◦ × 1◦ area surrounding the
768 SNOTEL stations. No clear elevation dependency is found either. Based on the above
findings, we calculated the ground truth 1◦ × 1◦ grid mean rainfall simply by averaging
all ground observations within the grid. The S/P ratio based on ground data was then
computed by the grid mean snowfall rate and the average rainfall rate over a 1◦ × 1◦ area
surrounding SNOTEL stations.
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Figure 10. (a) Scatterplot of annual mean rainfall rate observed at SNOTEL and GHCND stations
versus station elevation and (b) the 2-dimensional histogram of the difference of snowfall rates
between SNOTEL and GHCND station pairs that are within 25 km as a function of station elevation
difference (ZSNOTEL−ZGHCND) and SNOTEL station elevation (ZSNOTEL).

The regional distribution and elevation dependency of S/P ratio estimated by ground
data are shown in Figure 11. S/P ratio is larger than 20% for most of the grids and there is
a clear positive correlation between elevation and S/P ratio. Roughly, S/P ratio increases
25% with an increase of 1 km elevation. If the mean temperature lapse rate is 6.5 ◦C km−1,
it translates to a roughly 4% S/P ratio change per every degree Celsius temperature change.
Albeit rather crudely, this may be considered to be an observation-based estimate of the
sensitivity of precipitation phase change to a warming environment.

Similar to the approach proposed by [48], we may estimate the S/P ratio based on
the satellite radar data using CloudSat snowfall averaged from 2006 to 2017 and DPR
rainfall averaged from 2014 to 2020. The S/P ratio maps estimated by satellite data and
its dependency on elevation are shown in Figure 12. Compared to the results shown in
Figure 11, although the satellite radar data derived elevation dependency of the S/P ratio
is noisier in the scatterplot, the relation seems to follow a similar trend, i.e., about 20~25%
increase in S/P ratio per every kilometer increase in elevation. The noisy relation may
be improved by averaging data over a large area, for example, 1◦ × 2◦ as done by [48],
which is beyond the scope of this study and will be examined in the future. The S/P ratio
estimated from the satellite is somewhat lower (by 20% on average) than that estimated
by ground data. Recall that CloudSat underestimates snowfall in this region by about
65% against ground measured grid mean values. The lower S/P ratio by satellite data
is partially caused by the CloudSat snowfall underestimation. However, based on our
evaluation, the GPM DPR retrievals also underestimate rainfall in this region by about 50%,
possibly because the GPM rainfall, too, is derived from DPR reflectivity at levels of 1 km or
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above over actual surface. As a result, the S/P ratio underestimation becomes less severe
than either the CloudSat snowfall or the GPM DPR rainfall underestimation.
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4. Discussions

In this study, we proposed a new approach to validate satellite measured areal mean
quantity by point station measurements. The novelty of this approach is that it utilizes the
characteristic of climatological mean snowfall rate increasing with elevation, so that we
can downscale the snowfall distribution with measurements at very sparsely distributed
stations. Although the rate of increase of snowfall with elevation is different from location
to location as shown in Figure 6, the general trend seems to be universal; it is true for the
768 SNOTEL locations we examined in this study and for the areal mean results in Tibetan
Plateau as reported by [48]. It is noted that this trend is generally not true for rainfall,
as shown in Figure 10. Therefore, the approach is not applicable to rainfall validations.
It is also noted that the approach proposed here is conceptually different from spatial
interpolation in filling measurement gaps, which uses the horizontal spatial pattern of
measured quantities and needs the stations with known observables to be distributed
relatively uniformly in the horizontal plane for a better interpolation. Our approach,
however, uses the unique property of mean snowfall rate varying with elevation regardless
of the horizontal distribution of existing stations. To the authors’ best knowledge, we are
the first ones proposing this approach.

One other issue may be raised related to the time mismatch for snowfall and rainfall
estimations in the computation of satellite derived S/P ratio in Section 3.2. CloudSat
snowfall retrievals are available only from 2006 to 2017 and GPM DPR rainfall retrievals
are available from March 2014 onward. To compute S/P ratio, we assumed that the mean
of each retrieval in a 1◦ × 1◦ box represents the climatological mean of snowfall or rainfall,



Remote Sens. 2022, 14, 434 13 of 17

implying that the roughly 10-year mean of snowfall or the 6-year mean of rainfall is much
greater than the difference of them between the two time periods. To test this assumption,
we analyzed the relative difference of mean snowfall rates between the two time periods.
The results are shown in Figure 13. The differences are generally less than 20% with both
positive and negative values, resulting in the difference averaged for all stations almost
canceling out (3% for SNOTEL and 0.4% for GHCND stations). Considering that we
use 1◦ × 1◦ averaged satellite estimates to compute S/P ratio, the uncertainty of mean
snowfall rate caused by the time difference should most likely be only a few percent, a
value significantly smaller than the uncertainty of the retrievals. Song and Liu performed
a similar analysis using ERA5 reanalysis data [48] for the Tibetan Plateau and reached a
similar conclusion, i.e., the variation of multi-year mean of precipitation being far less than
either the mean values themselves or the observational uncertainties. Therefore, the S/P
ratio derived from the satellite data is still physically meaningful.
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There are a few studies in the literature on comparing CloudSat snowfall product with
surface station measurements [52–54], ground-based radar measurements [55–58], and
model reanalysis [59–61]. Most of these studies are conducted over high latitudes. Among
them, King [53] evaluated CloudSat snowfall product against four station measurements
and three gridded snow water equivalent products throughout the Canadian Arctic and
found that CloudSat has better performance north of 70◦N, with underestimation compared
to measurements at most of the stations and the reanalysis. Ryan et al. [61] derived a 15-km
resolution snowfall climatology from CloudSat snowfall retrievals over Greenland ice
sheet and concluded that CloudSat accumulation climatology has an uncertainty of ± 28%
with respect to accumulation rates derived from ice cores. Edel et al. [60] compared
CloudSat snowfall climatology with several reanalysis datasets and found that similar
general geographical patterns are observed in all datasets, although there are significant
mean snowfall rate differences over the Arctic between 58◦ and 82◦N. Using conventional
surface weather station data over Canada, Hiley et al. [52] found that CloudSat snowfall
retrieval does not correlate well with surface station measurements, except for at some
high latitude stations where CloudSat has more frequent sampling and mixed phase
precipitation is less of an issue. While these studies indicate that CloudSat snowfall product
is of great value in climate research, its accuracy is still unclear, and thus a quantitative
assessment is still needed even in the high latitudes.

Validation of CloudSat snowfall over the midlatitudes, which is more relevant to
this study, has been conducted using ground-based weather radar observations over the
U.S. Of particular interest is the work done by Cao et al. [55], in which it is found that
CloudSat underestimates heavier snowfall and the underestimation is well correlated to
the snowfall intensity, a result that is consistent with the conclusion of this study. In a
subsequent study, Chen et al. [56] found that there is a large discrepancy between CloudSat
and surface radar snowfall estimates with a low correlation coefficient of only about 0.41,
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and the discrepancy seems to be related to snowfall intensity and the bin height where
CloudSat surface snowfall is determined. On the other hand, Matrosov [57] compared the
same surface weather measurements with CloudSat retrievals but resampled the surface
radar data to match the bin height at which CloudSat snowfall is derived and found that
the above correlation coefficient is much higher, being around 0.8 to 0.85 depending on
the method used for the reflectivity to snowfall rate conversion. Therefore, it is argued
that the discrepancy between CloudSat and surface radar retrievals is largely due to the
CloudSat CPR’s inability to measure near surface snowfall because of the contamination of
ground clutter. We argued the same point in this study and pointed out that this problem
is particularly severe in the mountainous regions with the combination of orographic
precipitation enhancement and the existence of satellite radar blind zone. Clearly, future
verification of this speculation is needed with joint analysis of surface radar, weather station,
SNOTEL, and CloudSat data.

5. Conclusions

This study aims at assessing the accuracy of CloudSat snowfall retrievals in the
mountainous regions in the western U.S. using ground-based snowfall measurements.
When validating the satellite radar snowfall retrievals, we found that the two sets of ground
truth data have systematic differences with each other: the SNOTEL has significantly higher
values of annual mean snowfall rate than the GHCND does. Further investigation indicates
that this systematic difference is a result of SNOTEL stations being mostly placed at higher
elevations than the GHCND stations, and snowfall is generally heavier at high than low
elevations in the mountainous regions. Therefore, we conclude that neither SNOTEL nor
GHCND dataset alone can correctly represent an areal mean of snowfall rate, thus it cannot
be used to compare with the areal mean values of CloudSat retrieved snowfall.

To solve this problem, a novel approach is proposed in this study, in which all SNOTEL
and GHCND station data within a 1◦ × 1◦ area are used to develop a snowfall rate versus
elevation relation. This relation is then used to compute snowfall rate in other locations
within the 1◦ × 1◦ area, mimicking that surface observations are available everywhere in
the grid. Grid mean snowfall rates surrounding all SNOTEL stations are then derived,
which should be more representative of the mean snowfall rate than those derived by either
SNOTEL or GHCND dataset alone. The so-derived grid mean snowfall rates are compared
with CloudSat retrieved mean snowfall rates in corresponding grids. The results show that
the CloudSat product underestimates snowfall by about 65% when averaged over all the
768 grids in the west U.S. mountainous region. The bias occurs regardless of elevation but
strongly depends on mean snowfall rates in the grid. That is, the heavier the mean snowfall
is in a grid, the more severe the underestimation will be.

As an application of the so-derived grid mean snowfall, we further estimated the
snowfall to precipitation ratio from both ground and satellite measured data. The satellite
estimation is based on an approach proposed by [48] using CloudSat to estimate snowfall
and GPM DPR to estimate rainfall. The general distributions of the surface and the
satellite-based estimation of S/P ratio have similar horizontal pattern, although the satellite
estimated S/P ratio is somewhat lower than the ground-based estimation. The increasing
rates of S/P ratio with elevation derived from ground and satellite-based data are quite
similar, being about 20–25% per kilometer up, which translates to approximately 4% per
degree Celsius of temperature drop.

This study introduced a new approach to validate satellite precipitation retrievals by
surface point measurements where the surface precipitation intensity around the stations is
not randomly distributed but depends on some topographic features, such as elevation as
shown in this study. Although we only demonstrated the usage of the method for snowfall
validation in the western U.S., the same strategy can be applied elsewhere, should the
precipitation pattern there show a clear dependency on a topographic feature.
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