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Abstract: The monitoring of permafrost is important for assessing the effects of global environmental
changes and maintaining and managing social infrastructure, and remote sensing is increasingly
being used for this wide-area monitoring. However, the accuracy of the conventional method in
terms of temperature factor and soil factor needs to be improved. To address these two issues,
in this study, we propose a new model to evaluate permafrost with a higher accuracy than the
conventional methods. In this model, the land surface temperature (LST) is used as the upper
temperature of the active layer of permafrost, and the temperature at the top of permafrost (TTOP)
is used as the lower temperature. The TTOP value is then calculated by a modified equation using
precipitation–evapotranspiration (PE) factors to account for the effect of soil moisture. This model,
referred to as the TTOP-LST zero-curtain (TLZ) model, allows us to analyze subsurface temperatures
for each layer of the active layer, and to evaluate the presence or absence of the zero-curtain effect
through a time series analysis of stratified subsurface temperatures. The model was applied to the
Qinghai–Tibetan Plateau and permafrost was classified into seven classes based on aspects such as
stability and seasonality. As a result, it was possible to map the recent deterioration of permafrost in
this region, which is thought to be caused by global warming. A comparison with the mean annual
ground temperature (MAGT) model using local subsurface temperature data showed that the average
root mean square error (RMSE) value of subsurface temperatures at different depths was 0.19 degrees
C, indicating the validity of the TLZ model. A similar analysis based on the TLZ model is expected to
enable detailed permafrost analysis in other areas.

Keywords: permafrost; zero-curtain; temperature at the top of the permafrost (TTOP); land surface
temperature; subsurface temperature; active layer; soil thermal conductivity; Qinghai–Tibetan Plateau

1. Introduction

Permafrost is generally defined as rocks and soils rich in ice with a temperature of
below zero degrees [1,2]. As an important component of the cryosphere, one of the five
global spheres, permafrost covers a large global land surface area [3], and approximately
50 × 106 km2 of the global land surface soil undergoes a freeze–thaw transition every
year [4]. Permafrost, seasonal permafrost, and ephemeral permafrost are classified accord-
ing to the time period during which the permafrost remains frozen. Permafrost is defined
when the freezing period lasts for more than two years [5]. The active layer is defined as
the layer of rock and soil above the permafrost layer that melts in the warm season and
freezes in the cold season. The deepening of the active layer is considered to be a sign
of permafrost degradation [6,7]. The active layer is also the main site of hydrothermal,
gaseous and energy exchange between permafrost and the outside world [8,9]. The energy
exchange in the active layer of permafrost is influenced by many factors such as vegetation
cover, snow cover, air temperature, geotechnical properties, soil moisture, unfrozen water
content, precipitation, evapotranspiration, and geomorphology [10–12].
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In recent years, global warming caused by the greenhouse effect has directly led to the
deepening of the active layer of permafrost over large areas, and warnings of permafrost
degradation have been issued [13–16]. The remarkable hydrothermal energy changes in
the active layer have led to the degradation of the permafrost [17,18], as well as to a series
of environmental problems, such as a significant reduction in the area of vegetation [19],
a decrease in the microbial diversity and stability of the soil, an increase in the emission
of organic matter containing carbon elements in the soil [20–23], an increase in precipita-
tion [24,25], and warmer winters [26]. Therefore, based on an accurate grasp of the variation
patterns in temperature and soil factors, it is important to carry out high-resolution spatial
mapping, long-period dynamic monitoring, and a high-frequency analysis of permafrost-
related changes in the thickness of the active permafrost layer.

In the early 1990s, permafrost research was mainly carried out by teams in the field [27],
using field surveys and boreholes to obtain local data based on the distribution and nature of
permafrost, but this approach is limited by geographical and economic factors, which hinder
long-period permafrost research across a wide area. Such small-scale and limited field data
restrict the study of permafrost to a crude planimetric stage during this period. To address
the limitations of fieldwork, scientists have proposed a variety of physical, empirical, semi-
empirical, and semi-physical models for permafrost research based on the principles of
physics and prior research experience. With the continued development and improvement
of remote sensing technology in the 21st century, the research method of combining semi-
empirical and semi-physical models with remote sensing data has become the most popular
approach to permafrost research. In particular, the following permafrost models and the
recent examples of permafrost research are most representative of this approach: the Stefan
model [28,29], the Nelson model [30–34], the Kudryavtsev model [35,36], the mean annual
ground temperature (MAGT) model [37,38], the temperature at the top of the permafrost
(TTOP)-MAAT model [39–47], the LST–zero-curtain model [48–51], etc. These models are
applicable to the study of permafrost at different temporal and spatial scales, and each has
its own advantages and limitations.

The Stefan model [28] was first proposed by Josef Stefan in 1891 to study the freezing
and thawing process of Arctic lake ice to calculate its thickness, and in 1943, Berggren [29]
studied soil ice instead of pure lake ice, using the parameters and properties of the soil to
calculate the thickness of the active layer in the permafrost region to derive the general
permafrost distribution. In 1983, Nelson et al. introduced a freeze–thaw index factor
based on Stefan’s permafrost model and proposed the Nelson model [30] or the Nelson
freeze–thaw index model. However, this model struggles to determine the unfrozen water
content of soils on a large spatial scale. In the following decades, Nelson et al. carried out a
series of factor improvements to the Nelson model [31–34], which made the Nelson model
more applicable at high latitudes without taking into account the influence of vegetation
and snow. Overall, the Stefan and Nelson models are large-scale permafrost distribution
prediction models that are mainly influenced by soil properties, elevation and latitude and
longitude. In practice, however, the distribution of permafrost is also influenced to a large
extent by climatic and geographic factors at small and medium scales, and the applicability
of these two models is not particularly high for studies of permafrost distribution that
require a high accuracy.

In 1974, Kudryavtsev proposed the Kudryavtsev model [35] based on the influence of
climate and temperature on permafrost to address the shortcomings of the Stefan model
in permafrost research. The Kudryavtsev model analyzes the permafrost system in layers
according to the thermal condition of the soil, taking into full consideration the influence
of temperature and soil water content on the permafrost. This model advantageously
takes into account the heat transfer processes between the soil and the atmosphere in the
permafrost region in a more comprehensive way. This model has been used in the Kuparuk
region of northern Alaska, USA [36], but it is less commonly used than other models for
permafrost research, mainly because the number of parameters required in the model can
easily lead to errors in the simulation between layers.
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The MAGT model [37] was proposed by Nan et al. in 2005 in a study on the prediction
of future permafrost distribution in the Tibetan Plateau region, where MAGT can be
generally understood as the ground temperature at the depth where the annual difference
in permafrost ground temperature is zero. This model is based on decades of borehole
measurements along the eastern part of the Qinghai–Tibetan Plateau, and was developed by
linearly regressing the temperature data at different depths with the latitude and elevation
information of the study area, as the threshold value to distinguish between permafrost
and non-permafrost. The MAGT model was successfully applied in subsequent studies on
permafrost distribution on the Tibetan Plateau by Qin et al. [15] in 2017 and Aalto et al. [38]
in 2018. The advantages of this model are that it is based on long-period ground temperature
data at different depths and takes into account the geographic information of the Tibetan
Plateau region. The model results are more reliable and can be used to compare the results
of other models for a permafrost analysis in the Tibetan Plateau region. The model is,
however, not applicable to areas where there are no actual measurement data.

The TTOP model, proposed by Smith and Riseborough in 1996, is a semi-empirical
and semi-physical analysis model for permafrost that analyzes the energy balance and
conversion relationship between permafrost and climate [39]. Using the temperature
difference between the ground temperature and air temperature and the different thermal
conductivity of the soil during freezing and thawing periods, the model analyzes the
relationship between temperature and air temperature at the top of the permafrost layer
in multi-year permafrost from the perspective of negative temperature displacement after
removing the effects of vegetation cover and snow cover. In 2002, Riseborough corrected the
TTOP model for the freezing period [40], and in the following two decades, the TTOP model
was successfully applied in Canada [41], Norway [42], the Daxinganling in northeastern
China [43], the Qinghai–Tibetan Plateau in China [44–46], and the Northern Hemisphere
as a whole [47]. The TTOP model, compared to the Stefan and Nelson models, fully takes
into account soil properties and the freeze–thaw state of the permafrost. Compared to the
Stefan and Nelson models, the TTOP model takes into account the influence of temperature,
vegetation and snow cover, and can be applied to small- and medium-scale permafrost
studies. Compared to the MAGT model, the TTOP model has a higher applicability
in the absence of measured data. However, in previous studies [41–47], satellite data
and measurements of the land surface temperature (LST), air temperature, vegetation
impact, snow impact, soil properties and other parameters used in the TTOP model were
mostly large-scale observations with a low resolution, rather than daily monitoring data or
high-resolution observations, and there is room for improvement in the processing of the
data. Moreover, the soil thermal conductivity used assumes that the soil water content is
saturated, but in fact, due to the annual freeze–thaw state of the active layer and differences
in precipitation and evapotranspiration, the soil water content is not constant even if the soil
composition does not change. Additionally, the TTOP model mostly combines the annual
average air temperature in the range of 2–10 m to determine the presence of permafrost,
and the wide spatial range of temperature is prone to observation errors. These are the
areas where the TTOP model needs to be improved.

In 2020, Gillespie et al. proposed to identify and map the geothermal isothermal
period during freeze–thaw of active permafrost, i.e., the zero-curtain period, using MODIS
LST images, and use it as a key interval for permafrost determination [48]. In this study,
this approach is referred to as the LST–zero-curtain model. In the science of permafrost, the
physical phenomenon that keeps the active layer of permafrost at or near 0 ◦C for a certain
period of time due to the latent heat of the soil during the freezing or thawing process
is called the zero-curtain effect [49]. When the zero-curtain effect occurs in the freezing
(autumn) or thawing (spring) period of the active permafrost layer, the energy that would
change the soil temperature does not directly change the temperature of the active soil, but
rather freezes the groundwater or melts the ground ice in the active layer [50]. Therefore, the
length of time that the zero-curtain phenomenon is maintained in the freezing or thawing
period of each year, where the freezing period is generally much longer than the thawing
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period in the same year, can be used to characterize the presence or stability of permafrost.
The use of the zero-curtain effect to characterize permafrost largely excludes the influence
of geographic properties, such as soil, ice, and water heat conductivity. For example,
Gillespie et al. demonstrated that the zero-curtain period was consistently identified in
MODIS LST data based on the principle of the zero-curtain effect by spatially transforming
the temperature of long-period LST with a 2–40 cm subsurface in the permafrost zone of
the Atacama Andes, Chile [48]. The LST–zero-curtain model pioneered a new approach
to identify and map permafrost using long-period MODIS LST images. However, the
average thickness of most active permafrost layers is about 3 m [52]. In Gillespie et al.’s
study, the zero-curtain effect was estimated by the LST–zero-curtain model at only about
40 cm below ground level without completely removing the influence of vegetation and
snow [48], which should be improved in accuracy, because the zero-curtain effect may
occur deeper below the ground, also often covered by vegetation or snow. In addition, the
determination of the zero-curtain from the LST alone may introduce errors because it does
not take into account the lower-limit temperature. This means that the LST–zero-curtain
model has some limitations, and there is room for improvement.

As mentioned above, both the TTOP model and the LST–zero-curtain model have been
successfully used to analyze permafrost distribution by characterizing soil energy changes
through temperature differences, but they have several problems that must be resolved.
Therefore, this study proposes a TTOP LST–zero-curtain (TLZ) model that changes the
upper-limit temperature from the ground air-temperature used in the conventional TTOP
models to LST and uses a modified TTOP as the lower-limit temperature. This model is
expected to be able to determine the zero-curtain effect with a higher accuracy than the
conventional LST–zero-curtain model. To validate the model, we applied it to the mid-east
part of the Qinghai–Tibetan Plateau and discuss the results.

2. Materials and Methods
2.1. Study Area and Data Sources

The Qinghai–Tibetan Plateau is the source of the Yangtze and Yellow Rivers, and
large amounts of snow and glaciers nurture these rivers. This plateau has an area of
1.05 × 106 to 1.5 × 106 km2 [53] and is the largest plateau-type permafrost distribution area
in Asia, as well as the largest and highest permafrost distribution area in the world [54].
This plateau has unique geographical and climatic attributes. From north to south, it can be
divided into a plateau cold climate zone, plateau cold zone, plateau temperate zone, and
subtropics and tropics. The vegetation distribution from northwest to southeast comprises
grassland, meadow, shrubland and forest, and most areas have a large daily difference
in temperature and precipitation gradually increases from north to south. Therefore, the
plateau is also known as an initiation zone of climate change [55], and the stability and
sustainability of permafrost in this region have immeasurable practical significance for
climate and environmental balance in Asia and through the world.

The Qinghai–Tibetan Plateau is a combination of plateau surface, swamp, water system
and many mountain ranges, including the world’s highest peak of Mount Everest. There
are dozens of large and small mountain ranges, which run in a north–south and east–west
direction. The overall terrain shows a trend of low southeast and high northwest, and the
average altitude of the northwest region exceeds 5000 m [56], which is not convenient for
long-period continuous geographic observation research. Compared with the northwest
part of the plateau, the mid-east part of the plateau is relatively dense in human activities,
with less forest distribution, more precipitation, relatively gentle topographic changes and a
concentration of China Meteorological Data Service Centre (CMDC) stations. These stations
provide a large amount of measured meteorological data that can be used for validation,
compared to the other areas of the plateau. We therefore selected the H25V05 tile of MODIS
products included in the mid-east area as the study area.

In Figure 1, the blue polygon indicates the study area, and the red asterisks indicate
the locations of the CMDC stations. The area spans from 73◦19′ to 104◦47′E longitude
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and 26◦00′ to 39◦47′N latitude (about 300–1500 km north–south and about 2800 km east–
west) [57] and has 54 CMDC stations. We also divided the study area into six subareas, A,
B, C, D, E and F, as shown in the figure.
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Plateau, China. Red asterisks indicate the locations of CMDC stations.

The main data that we used were a variety of MODIS products and various data
observed by CMDC stations. All of the MODIS products used were downloaded from the
National Aeronautics and Space Administration (NASA) website (https://ladsweb.modaps.
eosdis.nasa.gov/ (accessed on 7 July 2022)). The used CMDC data were meteorological and
subsurface data that were obtained from the site of the China Meteorological Administration
(http://data.cma.cn/en (accessed on 7 July 2022)).

2.2. Methodology
2.2.1. Modification of the TTOP Model

In the J model proposed by Johansen in 1975, soil thermal conductivity was obtained
by integrating the effects of saturation correlation coefficient, soil thermal conductivity at
saturation, and dry soil thermal conductivity [58], and many investigators used the value
of the J model in permafrost analysis using TTOP for the Tibetan Plateau. In the J model,
a saturated soil water content was assumed, and the effects of other organic matter and
the ice and water mixtures in the soil were considered in classified types of soil. There are
more than 30 improved models for the J model in recent years, which are mainly based on
the dry soil thermal conductivity, although the soil water content has a great influence on
the soil thermal conductivity.

There are three main destinations of precipitation in permafrost areas in general: the
first is absorbed by vegetation and snow cover, the second is absorbed by the residual soil
in the active layer, and the third is converted to groundwater seepage. The component that
really affects soil thermal conductivity is the net soil water content remaining in the active
layer soil [59]. Therefore, in the present study, we propose a modified TTOP model that
includes the relevant net water content effect of the active layer for each of the thawing
and freezing periods using the soil water content, precipitation, and evapotranspiration
measured by the China Meteorological Administration. We also consider the influence of
absorption by the vegetation and snow layers and the influence of groundwater seepage.
In this model, the precipitation-evapotranspiration (PE) factors pet and pef for each of the
freezing and thawing periods are added on the basis of the J model to dynamically reflect

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://data.cma.cn/en
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the water content factors; therefore, this model is expected to more accurately express the
year-to-year variation of the soil thermal conductivity. The modified TTOP is expressed as:

TTOP =
At · Ct · st · pet − A f · C f · s f · pe f

s f · pe f · Y
(1)

where subscripts t and f indicate thawing and freezing periods, respectively, Y is the
number of days per year (365 or 366), A is cumulative temperature factor, C is reciprocal
of vegetation or snow cover fraction, s is soil thermal conductivity [W/m/◦C], and pe is
the PE factor. The soil thermal conductivity corrected by the PE factors can be given by
St = ts × pet and Sf = tf × pef (referred to as corrected soil thermal conductivity).

The value of At is given by the sum of all daily mean temperatures above 0 ◦C, and
that of Af is given by the sum of all absolute daily mean temperatures below 0 ◦C, when
daily temperature data for the entire year of interest are available for the location of interest.

The PE factors are given by:

pet =
wt

pt − (et + ct + gt)
=

wt

swt
(2)

pe f =
w f

p f −
(

e f + c f + g f

) =
w f

sw f
(3)

where w is net soil water content, respectively, p is precipitation, e is potential soil evap-
otranspiration, c is vegetation or snow cover influence factor, g is groundwater seepage
factor, and sw is saturated soil water content.

The values of st and sf in the study area can be referred to as the reported values in the
J model as shown by Table 1 [58]. We employed the maximum (=2.92) and minimum (=1.15)
values, except for organic matter, in the table for st and sf in the analysis of this study.

Table 1. Thermal conductivities of typical soil types in Qinghai–Tibetan Plateau in thawing and
freezing periods reported by Johansen (1975) [58]. Numbers in bold are the maximum and minimum
values, except for organic matter, used in the analysis of this study.

Soil Type Dry Density
(kg·m−3) st (W·m−1·K−1) sf (W·m−1·K−1)

Sloping soils 1400 1.15–1.54 1.61–2.69
Lacustrine soil 1475 1.21–1.62 1.82–2.74

Wind-deposited soil 1500 1.39–1.60 1.63–2.47
Ice and water deposition 1550 1.26–1.66 1.65–2.50

Alluvial soils 1600 1.30–1.72 1.59–2.53
Moraine 1750 1.41–1.98 1.68–2.92

Organic matter 300 0.52 1.7

2.2.2. Permafrost Analysis Based on the TLZ Model

The TLZ model described in the following step 4 enables the location of pixels to be
mapped where the zero-curtain effect is present and the approximate depth at which this
effect occurs. Based on this model, the permafrost analysis in this study was conducted
as follows:

1. The annual TTOP for each pixel in the study area was calculated (all TTOP values
described in this section were determined by the modified formula presented in
Section 2.2.1). Pixels with an annual TTOP > 0 were assumed to be non-permafrost,
and only permafrost pixels that had an annual TTOP < 0 were processed thereafter.

2. Based on the annual temperature data for the study area, the thawing season was set
from May to September and the freezing season from October to April. Then, seasonal
TTOP (TTOPt, TTOPf) for each season was calculated for each permafrost pixel. Pixels
that satisfied “TTOPt < 0 < TTOPf” were assumed to melt in summer and freeze
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in winter during the course of a year, e.g., it can be assumed that the zero-curtain
phenomenon occurs. Therefore, only pixels that satisfy this condition were extracted,
and others were excluded. Note that among the excluded pixels, those that satisfy
TTOPf < 0 can be regarded as stable permafrost because they have not thawed during
the summer.

3. During the thawing period, the ice melts, so the LST has an overall positive value.
Conversely, during the freezing season, the ice freezes, and LST has a negative value
as a whole. Therefore, although it is affected by errors, coverage, and daily variations
in LST, the overall relationship can be assumed to be “TTOPt < 0 and LST > 0” for the
thawing period and “TTOPf > 0 and LST < 0” for the freezing period. Therefore, only
pixels satisfying these conditions were extracted, and others were excluded.

4. For the pixels extracted in (3), we assume that the subsurface temperature between the
ground surface and the lower surface of the active layer linearly varied between LST
and the seasonal TTOP, and calculated the depth at which the subsurface temperature
was within 0 ± 0.1 ◦C (since the signs of the seasonal TTOP and LST are opposite,
a solution must exist), where a uniform depth (3 m) was assumed for the depth
below the active layer in the study area, based on the study by Wang et al. [52].
The determined depth can be treated as the zero-curtain depth. In this study, this
approach is referred to as the TLZ model. Figure 2 shows a conceptual diagram of the
TLZ model.
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Details of the above procedure are described in the next section.

2.3. Data Used and Parameter Determination
2.3.1. Cumulative Temperature Factor (At and Af)

In order to determine the cumulative temperature factors At and Af in the thawing
and freezing periods in the TTOP model, Kukkonen et al. (2020) used a method involving
extreme monthly temperatures [60]. Although this method takes into account a certain
degree of temperature amplitude, there is still a large error due to the analysis of the annual
freeze–thaw temperature using only two months of data. Essentially, there is a difference
between the annual variation in extreme temperatures and the annual mean temperature,
which is more evident in the multi-year study cycle. In addition, temperature data given to
54 meteorological stations were obtained from the daily temperature data observed by the
China’s Fengyun meteorological satellite, and are inevitable small periods of missing data
and data anomalies.
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In the present paper, for a higher accuracy, we prepared the air temperature data
as follows. First, the 54 CMDC stations were divided into six groups corresponding to
subareas A, B, C, D, E, and F in Figure 1, and for each group, air temperature data within
2–10 m of the ground surface for 2012–2021 were collected. Missing temperature data
were supplemented using averages of 3 days for each group after the removal of outliers.
Next, these data were used for calculation of the mean annual air temperature value in the
study area for each year from 2012 to 2021. In this calculation, spatial interpolation was
performed by establishing buffers for the temperature at 54 stations, using the thin plate
spline method [61]. Finally, we performed a positive and negative cumulative temperature
calculations on the air temperature data with the error values removed and determined the
At and Af factors.

2.3.2. Reciprocal of Vegetation Cover Fraction (Ct)

In order to analyze the permafrost region in the Daxinganling Mountains, China,
Zhang et al. [43] used the TTOP model. However, since vegetation effects during freezing
and thawing were determined using the MODIS 500/1000 m annual land cover product
(MCD12Q1) with only 17 land cover types of the International Geosphere–Biosphere Pro-
gramme (IGBP), the monthly or daily changes in vegetation cover were not fully considered.
Moreover, the IGBP-based land cover types should be reclassified in order to adjust to
each study area. Thus, in the present study, we calculated the fraction of vegetation cover
(FVC) used for determination of Ct from the normalized difference vegetation index (NDVI)
and the enhanced vegetation index (EVI) for each month in the MODIS 250 m/16 day
vegetation indices products (MOD13Q1 and MYD13Q1) using the following equation [62]:

FVC =
(VI −VIs)

(VIv −VIs)
(4)

where VI is vegetation index (NDVI or EVI), and subscripts s and v indicate pure soil and
pure vegetation pixels, respectively. Since the confidence interval was set to 0.5% to 99.5%,
pixels with soil type accumulation less than 0.5% were dealt as pure soil, and those with
grass type accumulation greater than 99.5% were dealt as pure vegetation. The FVC values
obtained for NDVI and EVI were combined by the element dichotomous model [62], and
the obtained FVC value was used.

2.3.3. Reciprocal of Snow Cover Fraction (Cf)

In the aforementioned study by Zhang et al. [43], since the snow depth was assumed
to be a value less than 30 cm and the annual snow factor was set uniformly by a constant
value [43], temporal and spatial changes in snow cover were not considered. On the
other hand, Jiang et al. (2022) used MODIS surface reflectance daily L2G global 500 m
and 1 km products (MOD09GA and MYD09GA) to analyze snow cover in the water
tower region, resulting in the root mean square error (RMSE) of 0.14 [63]. Following
their study, we used the same products to calculate the fraction of snow cover (FSC)
used to determine Cf. In this calculation, we adopted the multiple endmember spectral
mixture analysis–automatic–selected endmembers (MESMA-ASE) method proposed by
Jiang et al. [63], which provides a reasonable unmixing result by adjusting the type and
number of snow endmember spectra of each pixel iteratively based on all endmember
combinations in the spectral library.

2.3.4. PE Factors (pet and pef)

The PE factors can be calculated from values of net soil water content, precipitation,
potential soil evapotranspiration, vegetation or snow cover influence factor, and ground-
water seepage factor in thawing and freezing periods. The net soil water content was
given from half-hourly in situ measurements at different depths (5 cm, 50 cm, 150, and
200 cm) by CMDC in the period from 2012 to 2021, the precipitation was given from daily
in situ measurements by CMDC in that period, and the evapotranspiration was given
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from monthly data that CMDC reanalyzed and reprocessed the MODIS/Terra net evap-
otranspiration 8-day L4 global 500 m SIN grid product (MOD16A2). The vegetation and
snow cover influence factors were calculated from FVC and FSC values, respectively. The
groundwater seepage factor was given as a constant value by averaging the multiple sets
of measurements by Tarnawski et al. (2015) for soil thermal conductivity [64], because in
situ measurements were not conducted in the study area.

2.3.5. LST

The LST data used in zero-curtain analysis were given by the MODIS LST/E daily L3
global 1 km SIN grid products (MOD11A1 and MYD11A1) in the period from 2012 to 2021.
Data that were missing due to some MODIS observation issues (e.g., Day 50 to 58 in 2016)
were supplemented by MODIS LST/E 8-day 1 km products (MOD11A2 and MYD11A2).
After supplementing, we combined the MOD11A1 and MYD11A1 datasets, and the daily
mean LST maps obtained for the period were used. In order to compare the overall change
of LST between 2012 and 2021, the maximum, minimum, mean and standard deviation of
LST were calculated and outputted in graphs on a yearly basis.

2.4. Validation Data and Method for Soil Thermal Conductivity

We used the measured soil thermal conductivity data obtained from previous studies
based on different research methods to improve the J-model as sample data and performed
relevant pre-processing such as resampling and recalculated. The sample data include:
McInnes (1981) [65], Hopmans and Dane (1986) [66], Campbell et al. (1994) [67], Côté and
Konrad (2005) [68], Kasubuchi et al. (2007) [69], Lu et al. (2007) [70], Chen et al. (2008) [71],
Tarnawski et al. (2012) [72], Tarnawski et al. (2015) [64], and McCombie et al. (2017) [73].
The total number of data is 128, of which 64 are in the thawing period and 64 in the
freezing period. Those soil types are consistent with any of the types in Table 1, except for
organic matter.

The preprocessing was performed considering the differences in soil properties be-
tween thawed and frozen soil. The thawed soil samples have a range of properties, in-
cluding soil particle density, soil porosity, soil dry density, and soil moisture content. In
this study, we set the soil particle density to 2500–3000 kg·m−3, soil porosity coefficient to
0.03–0.07 m, soil dry density to 400–2400 kg·m−3, and soil water content per unit volume
of soil to 0–1, and then determined the range of soil thermal conductivity for the thawed
soil samples. The frozen soil samples have soil properties, including temperature, soil bulk
density, soil porosity, and unfrozen water content. In this study, we set the temperature in
the range from −37 to −1 ◦C, soil bulk density to 900–2300 kg·m−3, soil porosity coefficient
to 0.02–0.06 m, and unfrozen water content per unit volume of soil to 0–1, and then deter-
mined the soil thermal conductivity range for the frozen soil samples. The unfrozen water
contents in different frozen soil sample data were adjusted by converting the known water
content in each sample and then calculating the ice and unfrozen water content saturation
in its corresponding volume based on temperature and empirical equations. For this, the
unfrozen water content per unit volume is 0 and 1 for the ice and unfrozen water content
saturation, respectively.

Next, we calculated the minimum, maximum, mean, and standard deviation of soil
thermal conductivity for thawed and frozen soils determined from the sample data, and
used them as validation data for soil thermal conductivity. Similarly, we calculated the
statistics of soil thermal conductivity St and Sf with the PE factors in the period 2012–2021
and compared them with those of the validation data.

2.5. Application and Evaluation of TLZ Model

The TLZ model analysis was performed as follows. First, we classified each pixel
based on a TTOP value (Equation (1)) as permafrost if TTOP < 0, as transitional per-
mafrost if 0 < TTOP < 0.5, as seasonal permafrost if 0.5 < TTOP < 1.5, and as short-term
permafrost/non-permafrost if TTOP > 1.5. Next, the time and location for the occurrence of
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the zero-curtain effect were determined by a combination of TTOP and LST and analyzed.
We then evaluated the stability of each permafrost area by the duration of the zero-curtain
effect. Permafrost areas where the zero-curtain effect lasted (a) 1–2 weeks, (b) 2–3 weeks,
(c) 3–4 weeks, and (d) 4 or more weeks were classified as (a) unstable, (b) ordinary stable,
(c) very stable, and (d) extremely stable, respectively. By adding three classes of (e) transi-
tional, (f) seasonal and (g) short-term/non-permafrost areas, we evaluated the study area
by seven permafrost classes based on the TLZ model.

Furthermore, the MAGT model based on the subsurface temperature data measured
twice per day at 27 CMDC stations near the center of the study area was employed for the
evaluation of the TLZ model. First, we used subsurface temperature data at depths of 30,
50, 60, and 300 cm at each station to determine daily mean subsurface temperatures among
27 stations at each depth for the period 2012–2021. We then calculated the MAGT values by
averaging them at each depth for each year and comparing them to the annual average of
the subsurface temperature estimates obtained by the TLZ model.

3. Results
3.1. Obtained Factors
3.1.1. Cumulative Temperature Factors (At and Af)

Figure 3 shows daily changes in the air temperature obtained in the six groups (A, B,
C, D, E, and F) for the period from 2012 to 2021. Group F shows the largest annual variation
in temperature, while Group A shows the smallest. The differences between these groups
depend primarily on elevation. Group A, located to the northwest of the study area, is
above 4000 m elevation, while Group F, located to the southeast, is near 3600 m elevation.
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Figure 4 shows the cumulative temperature factors in the thawing and freezing periods
for each year from 2012 to 2021 calculated after removing anomalies from air temperature
data, as shown in Figure 3. I can be seen that At values (thawing period) are smaller than
Af values (freezing period), and the former have an increasing trend, while the latter has a
decreasing trend from 2012 to 2021.

3.1.2. Reciprocals of Vegetation and Snow Cover Factors (Ct and Cf)

Figure 5 shows the reciprocals of vegetation and snow cover factors, Ct and Cf, for
each year from 2012 to 2021, calculated from the FVC and FSC values, respectively. It can
be seen that vegetation and snow cover throughout the study area generally remained at
low levels throughout this period, indicating little variation.



Remote Sens. 2022, 14, 6350 11 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 3. Daily mean air-temperature trends in the period from 2012 to 2021 in six groups A to F. 

 

Figure 4. Cumulative temperature factors, At and Af, in the period from 2012 to 2021. 

3.1.2. Reciprocals of Vegetation and Snow Cover Factors (Ct and Cf) 

Figure 5 shows the reciprocals of vegetation and snow cover factors, Ct and Cf, for 

each year from 2012 to 2021, calculated from the FVC and FSC values, respectively. It can 

be seen that vegetation and snow cover throughout the study area generally remained at 

low levels throughout this period, indicating little variation. 

 

Figure 5. Reciprocals of vegetation and snow cover factors, Ct and Cf, for the period from 2012 to 

2021. 

3.1.3. PE Factors (pet and pef) 

Figure 6 displays the PE factors for each year as points with each interpolation curve. 

The pet factor is larger than pef throughout the period, but only in 2013 is pef larger, most 

likely due to reduced precipitation. 

Figure 4. Cumulative temperature factors, At and Af, in the period from 2012 to 2021.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 3. Daily mean air-temperature trends in the period from 2012 to 2021 in six groups A to F. 

 

Figure 4. Cumulative temperature factors, At and Af, in the period from 2012 to 2021. 

3.1.2. Reciprocals of Vegetation and Snow Cover Factors (Ct and Cf) 

Figure 5 shows the reciprocals of vegetation and snow cover factors, Ct and Cf, for 

each year from 2012 to 2021, calculated from the FVC and FSC values, respectively. It can 

be seen that vegetation and snow cover throughout the study area generally remained at 

low levels throughout this period, indicating little variation. 

 

Figure 5. Reciprocals of vegetation and snow cover factors, Ct and Cf, for the period from 2012 to 

2021. 

3.1.3. PE Factors (pet and pef) 

Figure 6 displays the PE factors for each year as points with each interpolation curve. 

The pet factor is larger than pef throughout the period, but only in 2013 is pef larger, most 

likely due to reduced precipitation. 
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3.1.3. PE Factors (pet and pef)

Figure 6 displays the PE factors for each year as points with each interpolation curve.
The pet factor is larger than pef throughout the period, but only in 2013 is pef larger, most
likely due to reduced precipitation.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 6. Temporal changes in PE factors (pet and pef) for the period from 2012 to 2021. 

3.1.4. Corrected Soil Thermal Conductivities (St and Sf) 

Figure 7 compares the box plots of the soil thermal conductivity between the 

validation values (64 samples for each period) and the values calculated with the PE 

factors for the thawing and freezing periods, where each box indicates ± 3σ. It can be seen 

that the validation and calculated values correlate well—95.7% and 96.3% of the 

calculated values met the three sigma criteria of the validation values in the thawing and 

freezing periods, respectively. Because the maximum value of the calculated values is 

close to the soil thermal conductivity under the net moisture content state after adding the 

PE factor, and the maximum value of the validation values is essentially the soil thermal 

conductivity under the saturated moisture content state, the maximum value of the 

calculated values is smaller than that of the validation values. 

  

(a) (b) 

Figure 7. Comparison of the box plots of the soil thermal conductivity between the validation values 

(64 samples for each period) and the values calculated with the PE factors for (a) the thawing period 

and (b) the freezing period. Box indicates ± 3σ. 

3.2. Application and Evaluation of TLZ Model 

3.2.1. Permafrost Classification Maps with Four Classes 

Figure 8 shows permafrost distributions classified into four classes (permafrost, 

transitional permafrost, seasonal permafrost, and short-term/non-permafrost) for each 

year from 2012 to 2021 using the modified TTOP values. Figure 9 shows the total count of 

pixels for each class for each year. It can be seen that permafrost areas fluctuate and 

decrease year by year and change to transitional permafrost. It can be also seen that both 

seasonal permafrost areas, and short-term/non-permafrost areas are stable during this 

period, but the latter tend to transform into the former. 

Figure 6. Temporal changes in PE factors (pet and pef) for the period from 2012 to 2021.

3.1.4. Corrected Soil Thermal Conductivities (St and Sf)

Figure 7 compares the box plots of the soil thermal conductivity between the validation
values (64 samples for each period) and the values calculated with the PE factors for the
thawing and freezing periods, where each box indicates ± 3σ. It can be seen that the
validation and calculated values correlate well—95.7% and 96.3% of the calculated values
met the three sigma criteria of the validation values in the thawing and freezing periods,
respectively. Because the maximum value of the calculated values is close to the soil
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thermal conductivity under the net moisture content state after adding the PE factor, and
the maximum value of the validation values is essentially the soil thermal conductivity
under the saturated moisture content state, the maximum value of the calculated values is
smaller than that of the validation values.
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3.2. Application and Evaluation of TLZ Model
3.2.1. Permafrost Classification Maps with Four Classes

Figure 8 shows permafrost distributions classified into four classes (permafrost, tran-
sitional permafrost, seasonal permafrost, and short-term/non-permafrost) for each year
from 2012 to 2021 using the modified TTOP values. Figure 9 shows the total count of pixels
for each class for each year. It can be seen that permafrost areas fluctuate and decrease
year by year and change to transitional permafrost. It can be also seen that both seasonal
permafrost areas, and short-term/non-permafrost areas are stable during this period, but
the latter tend to transform into the former.
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3.2.2. Statistics of LST Maps

Figure 10 displays the maximum, minimum and mean of the LST maps obtained for
each year from MODIS LST products. The LST tends to increase throughout the period,
and this is especially evident in the maximum and minimum values. This can be partially
attributed to global warming as well as effects associated with changes in vegetation and
snow cover.
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3.2.3. Mean Subsurface Temperatures at Different Depths

Figure 11 demonstrates the mean subsurface temperatures at the depths of 10, 20, 30,
40, 50 and 60 cm from 2012 to 2021 by the TLZ model, as a function of time. Figure 12 shows
those values for 2012, which indicates that the zero-curtain effect was seen at the depths of
30, 50, and 60 cm below ground; however, this effect was not seen at 40 cm depth due to a
lack of data. As shown in Figure 12, the subsurface temperatures at different depths in the
thawing period (early April to mid-June) intersect the zero line for a brief period lasting no
longer than 1 week; therefore, the zero-curtain effect in the thawing period cannot easily
be used as a measure of the existence and stability of permafrost. On the other hand, the
zero-curtain effect in the freezing period (mid-October to mid-November) is maintained
for a longer period (about 3 or 4 weeks) and can be used as a measure to determine the
existence and stability of permafrost.
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3.2.4. Permafrost Classification Maps with Seven Classes

Figure 13 shows permafrost distributions classified into seven classes (extremely
stable, very stable, ordinary stable, unstable, transitional, seasonal, and short-term/non-
permafrost), obtained by combining the TLZ model with the results of Figure 8. Figure 14
displays the total pixel count of each permafrost type as a function of time. From these
figures, we can conclude the following.

• Extremely and very stable classes slightly decreased during the study period. These
decreases were mainly caused by changes from extremely to very stable classes, and
very to ordinary stable classes, respectively.

• Transitional class clearly increased in the period due to changes from ordinary stable
and unstable classes.

• Seasonal and short-term/non-permafrost classes did not show a significant change
during the study period, while the former shows a somewhat large increase between
2019 and 2020.

3.2.5. Comparison with the MAGT Model

Figure 15 shows daily mean subsurface temperatures among 27 CMDC stations at 30,
50, 60, and 300 cm depths for the period from 2012 to 2021. In Figure 16, the MAGT values
calculated from these data are compared with the annual means of subsurface temperatures
estimated by the TLZ model in the period for each depth. Table 2 gives the standard
error, mean absolute error, and RMSE of subsurface temperatures by the TLZ model with
reference to the MAGT-based values for four depths. Their mean values are 0.25, 0.27, and
0.19, respectively, all much smaller than 1, indicating that the TLZ model results of this
study are highly accurate.
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Table 2. Standard error, mean absolute error, and RMSE of subsurface temperatures by the TLZ
model for depths of 30, 50, 60, and 300 cm, with reference to MAGT-based values.

Depth (cm) Standard Error (◦C) Mean Absolute Error (◦C) RMSE (◦C)

30 0.279 0.238 0.192
50 0.158 0.291 0.200
60 0.478 0.355 0.198

300 0.094 0.189 0.165

4. Discussion

Permafrost analysis requires data and a model that are both valid and accurate. In
order to perform more valid and accurate permafrost analysis in the Qinghai–Tibetan
Plateau region, we first proposed a modified TTOP model incorporating the PE factors and
then proposed a TLZ model to classify permafrost in detail based on zero-curtain effects by
combining the modified TTOP with LST data.

In the permafrost mapping of the study area with the modified TTOP model, it was
found that the main change in the permafrost type occurred between permafrost and
transitional permafrost, and seasonal permafrost increased in the period of 2012–2021.
Overall, the permafrost trend in the period shows a more pronounced degradation trend,
but permafrost shows two small rebounds in 2018 and 2021. As a result of analyzing the
climatic conditions in 2018 and 2021, the greenhouse effect continued in the study area
and the mean air-temperature still increased in both years, but there were fewer extreme
weather events. The mean values of precipitation and snowfall were relatively stable, and
the vegetation had developed to a certain extent, which may be the reason for the delayed
degradation of permafrost in both years. The mean value of TTOP in the freezing period
was higher than that in the thawing period because the active layer releases heat to the
outside during the freezing period, increasing the temperature at the contact between the
active layer and the permafrost layer.

In the zero-curtain analysis based on the TLZ model, it was found that the zero-curtain
effect only exists in the freezing period of the active layer (mid-October to mid-November
in this study), and the existence and stability of permafrost can only be investigated during
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the zero-curtain effect in the freezing period. These results are the same as those of a
previous study by Gillespie et al. The difference between our study and the study of
Gillespie et al. [48] is the depth at which the zero-curtain effect occurs. Our results, as
shown in Figure 12, reveal that the zero-curtain effect occurs at 30, 50, and 60 cm, while in
the previous study by Gillespie et al., the zero-curtain effect mainly occurred at 15, 25, and
30 cm. The most likely causes of this difference are the differences in soil properties between
our study area (Qinghai–Tibetan Plateau region in Asia) and their study area (Chilean
region in South America) and differences in how zero-curtain effects are determined.
Gillespie et al. judged the zero-curtain effect based only on LST, but we determined the
zero-curtain effect based on the combination of LST and TTOP using the TLZ hierarchical
algorithm. Because the zero-curtain discrimination is based on LST in Gillespie et al.’s
study, they verified zero-curtain occurrence using LST with a subsurface temperature at
2 cm depth at three subsurface temperature observation sites, which indirectly proved the
accuracy of zero-curtain speculation [48]. In contrast, in this study, the MAGT model was
constructed to directly validate the subsurface temperature at the depth of zero-curtain
occurrence using 27 actual measured subsurface temperature data for comparison. There
are differences in the validation techniques between the two studies, and because Gillespie
et al. did not provide specific accuracy validation values in their previous study, we cannot
compare them using specific values such as RMSE to those in this study. However, in
general, the direct validation method is more accurate than the indirect validation method.
We also compared the error results at different depths with those of Zhao et al., who also
studied a zero-curtain effect to detect permafrost changes in the Qinghai–Tibetan Plateau
region [51]. Their mean errors at 5, 10, 40, 105, and 245 cm exceeded 0.4 ◦C, indicating that
the mean errors of the TLZ model at different depths are smaller than the conventional
zero-curtain model.

In permafrost mapping based on the TLZ model, the study area was classified to seven
permafrost classes for each year in the period 2012–2021. In this period, extremely and
very stable classes slightly decreased, and transitional class significantly increased, while
seasonal and short-term/non-permafrost classes did not show a significant change. These
changes can be investigated by analyzing conversions between different types. Particularly,
the decreases in extremely and very stable classes were mainly caused by changes from
extremely to very stable classes, and very to ordinary stable classes, respectively, and the
increase in transitional class was mainly due to changes from ordinary stable and unstable
classes. These changes indicate the overall degradation of permafrost in the study area,
probably due to the recent onset of global warming. In 2020, the results show a somewhat
different tendency, most likely due to the frequent occurrence of several extreme weather
events in 2020. This indicates that the frequency of extreme weather phenomena, as well as
the increase in air temperature, may affect permafrost stability.

In the validation study based on the MAGT model, it was shown that the average of
RMSE between the MAGT-based and the TLZ-based values was 0.19 ◦C. Ni et al. reported
a mean RMSE of 0.53 ◦C in 2021 when using the TTOP model and the MAGT model for
the active layer (0–2.99 m) of the Qinghai–Tibetan Plateau [44]. Ran et al. (2022) reported a
mean RMSE of 0.93 ◦C when analyzing the active layer (2.35 m) of the Qinghai–Tibetan
Plateau using the TTOP model and the MAGT model [45]. Yin et al. (2021) reported a
mean RMSE of 0.5 ◦C when analyzing the active layer (0.69–4.32 m) of the Qinghai–Tibetan
Plateau using the TTOP model and the MAGT model RMSE [46]. Compared to their study,
our RMSE value of 0.19 ◦C is small enough, indicating that the TLZ model is higher in
accuracy than conventional TTOP models. It should be noted that even after removing
the effect of vegetation and snow, there is still some difference between LST and 0 cm
temperature, and a more reasonable method to convert the former to the latter should be
considered in future studies.
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5. Conclusions

In this study, a TLZ model was proposed to analyze the zero-curtain effect in per-
mafrost, with LST as the upper-limit temperature and TTOP as the lower-limit temperature.
Here, the formula for calculating TTOP was modified to include new PE factors to take
into account the effect of soil water content. Compared with the conventional TTOP-based
models, the TLZ model is expected to better reflect the state of the active layer using LST
instead of the air temperature. Compared with the LST–zero-curtain model proposed by
Gillespie et al., the TLZ model is expected to more realistically evaluate the zero-curtain
effect based on the lower-limit temperature of the active layer of permafrost with a curvilin-
ear variation. Using this model, we evaluated permafrost distribution and temporal change
at large, medium, and small scales in the central–eastern area of the Tibetan Plateau from
2012 to 2021, and validated the results using the MAGT model, indicating the superiority of
the TLZ model in comparison with the conventional TTOP and LST–zero-curtain models.
The TLZ model can not only judge the existence area of permafrost in a large or medium
scale, but also conducted detailed small-scale analyses of stability, periodic change patterns,
permafrost type transition, and degradation prediction. The TLZ model is a new direction
for permafrost mapping and permafrost analysis studies at different scales and requires
a higher accuracy. These features of the TLZ model will be significant advantages over
conventional methods for permafrost analysis.
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