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Abstract: Spaceborne synthetic aperture radar (SAR) is a promising remote sensing technique, as
it can produce high-resolution imagery over a wide area of surveillance with all-weather and all-
day capabilities. However, the spaceborne SAR sensor may suffer from severe radio frequency
interference (RFI) from some similar frequency band signals, resulting in image quality degradation,
blind spot, and target loss. To remove these RFI features presented on spaceborne SAR images, we
propose a multi-dimensional calibration and suppression network (MCSNet) to exploit the features
learning of spaceborne SAR images and RFI. In the scheme, a joint model consisting of the spaceborne
SAR image and RFI is established based on the relationship between SAR echo and the scattering
matrix. Then, to suppress the RFI presented in images, the main structure of MCSNet is constructed
by a multi-dimensional and multi-channel strategy, wherein the feature calibration module (FCM) is
designed for global depth feature extraction. In addition, MCSNet performs planned mapping on the
feature maps repeatedly under the supervision of the SAR interference image, compensating for the
discrepancies caused during the RFI suppression. Finally, a detailed restoration module based on
the residual network is conceived to maintain the scattering characteristics of the underlying scene
in interfered SAR images. The simulation data and Sentinel-1 data experiments, including different
landscapes and different forms of RFI, validate the effectiveness of the proposed method. Both the
results demonstrate that MCSNet outperforms the state-of-the-art methods and can greatly suppress
the RFI in spaceborne SAR.

Keywords: synthetic aperture radar; RFI suppression; the Sentinel-1 data

1. Introduction

Synthetic Aperture Radar (SAR) is an advanced sensor [1] that can support all-weather
and all-time operation [2]. SAR performs pulse compression on the returned echo signal
and then utilizes imaging techniques to generate high-precision images of the target [3].
Spaceborne SAR provides extremely high altitude and thus enables observation over a
wide area [4], widely applied in environmental monitoring [5], disaster warning [6], and
geographic inversion [7]. However, the growing number of electromagnetic devices in
the universe space, ground, and ocean leads to the overlapping utilization of the same
spectrum, therefore the electromagnetic environment in which the Spaceborne SAR is
located becomes increasingly harsh [8]. Under such an environment, the echoes are easily
affected by electromagnetic interference, this form of interference is commonly regarded
as Radio Frequency Interference (RFI). RFI presents as striped or blocky electromagnetic
artifacts in SAR images, thereby degrading image quality [9]. With high-power RFI,
these artifacts can significantly obscure the entire images and it is detrimental to the
observation [10]. Therefore, to fully extract the geographic information from the images, a
lot of effort is required to investigate the RFI suppression approaches [11].
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RFI suppression indicates a series of measures taken to ensure effective utilization of
the spectrum under electronic countermeasure conditions [12], intending to mitigate the
effects caused by RFI. In recent years, a large amount of RFI suppression approaches for
Spaceborne SAR have emerged. The different types of Spaceborne SAR data including
level-0 raw data with complex-valued information and level-1 single looks complex data
with complex-valued information, level-1B Ground Range Detected data with real-valued
information, will require different means of RFI suppression. Many contributions have
been made to these types of data, which can be divided into four categories [13,14]: non-
parametric methods [15], parametric methods, semi-parametric methods, and deep learning
methods. The non-parametric methods refer to removing the RFI from the echoes under
one-dimensional or two-dimensional representations without prior information. Both the
notching filter method and the Eigen subspace method [16] are typically non-parametric
techniques. Chang et al. [17] found that the trap filter had a significant effect on the side
flaps of the system response, which may be considered as a false target; Wu et al. [18]
combine the advantages of traditional notching filtering and Eigen-subspace projection
methods to reduce false alarm rates providing a more accurate determination of thresholds
and gap weights. Instead of the method for processing data in the time and time-frequency
domains, Xu et al. [19] proposed an adaptive spectral iteration method to obtain the
desired range spectra from the available neighbourhood spectral data. In a nutshell, the
non-parametric method requires less computation and permits easier implementation [20],
but faces the problem of spectral loss in the echo signal, which usually presents some
significant side flaps in the image [21].

The semi-parametric methods denote separating the target signal and the interference
signal by constructing a model with setting hyperparameters, especially regarding low-
rank matrix and sparse reconstruction. The RFI occupies only part of the SAR working
band, addressing this property, many scholars consider the RFI as a low-rank matrix to
obtain the target signal by solving the sparse problem [22,23]. Yang et al. [24] employ inter-
ferometric data with joint low-rank and sparse optimization to suppress RFI in extended
scenes; Considering improvements in sparse regularizers and low-rank regularizers, a
dictionary-based non-convex low-rank minimization optimization framework is applied to
RFI suppression [13]; Fang et al. [25] propose an enhanced SAR image denoising method
based on a non-locally weighted group low-rank representation. However, the value of the
hyperparameters greatly influences the performance of semi-parametric methods and only
the appropriate hyperparameters provide satisfactory results.

The parametric methods [26], as the name implies, requires the parameters of the RFI
to construct the mathematical models to suppress the interference. Lu et al. [27] successfully
recovered the non-sparse vectors by dividing the vectors to be recovered into time blocks
and utilizing the Bayesian parameters corresponding to the RFI and useful echoes within
the time blocks. Liu et al. [28] represent RFI as a model for the superposition of multiple
complex sinusoidal signals, transforming RFI suppression into a frequency estimation
problem. However, the parametric method requires a very complex computational effort
and only suppresses a single type of RFI, with poor generalization performance.

In recent years, many scholars have been exploring the possibility of applying artificial
intelligence techniques [29] to SAR electronic countermeasures. As a result more and more
deep learning based RFI suppression methods are emerging. Similar to the conventional
notching filter method, Fan et al. [30] designed a network to identify RFI in echoes and
filter out the interference in the time-frequency domain. Based on the sparsity and low
rank of the interfering signal in the time-frequency domain, Shen et al. [31] proposed an
RFI suppression network to reconstruct the useful signal. In addition, image denoising is a
vital research direction in the field of computer vision [32,33]. Many scholars have taken
advantage of the keen sense for sniffing two-dimensional image features by convolutional
neural networks (CNN), applying deep learning methods to tasks such as rain removal
and fog removal. Further, CNN also plays an important role in the removal of scattered
spots on SAR images [34,35].
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For high-power RFI features presented directly on the image, the methods described
above lack countermeasures to solve them. To remove interference features presented on
SAR images, we propose the Multi-dimensional Calibration and Suppression Network
(MCSNet). This network is aimed at Level 1-B Spaceborne SAR data form with real-valued
magnitude information. A brief summaries of the contributions are shown below:

1. A strategy for SAR images RFI suppression across multi-dimensions and multi-channel.
2. A module applied to the global structure, with functions for extracting deep image

features and calibrating the mapping of feature maps; A novel method with a su-
pervised mechanism for calibrating image features and maintaining the scattering
characteristics of SAR images with fine detail.

3. The corresponding results show that MCSNet owns the characteristic functionality of
RFI suppression.

The entire paper is made up of five sections. Section 2 introduces the SAR image
model and the associated formulations. Section 3 explains the overall structure of MCSNet
and the roles of each module plays. Section 4 provides the experimental steps and results.
Finally, Section 5 gives a concise summary.

2. SAR Image Model and Equations

The beam emitted by the SAR will return a scattered echo when it hits the interest
region. When the frequency of the interference source is within the bandwidth of the SAR
operation, the SAR system suffers the interference at this point [36], which can be expressed
by the following equation:

SY (t) = SX(t) + SI(t) + SN(t), (1)

where SY (t) denotes the mixed echo received by the SAR receiver, SX(t) denotes the target
echo formed by scattering from the imaging area and SI(t) denotes the interfering signal
echo. In addition, SN(t) denotes the system background noise and t denotes the range fast
time. The geometric interpretation [37] of the above processes is given in Figure 1.

Spaceborne SAR #1 Spaceborne SAR #2

RFI

RFI

RFI

Ground Jamming Radar

Shipborne Jamming Radar

RFI

Figure 1. Geometric interpretation of interference to Spaceborne SAR.

For the Spaceborne SAR operating environment, SI(t) can be considered as RFI,
which in general can be divided into frequency modulation RFI (FMRFI) and amplitude
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modulation RFI (AMRFI) [23]. FMRFI with a large bandwidth can be expressed by the
following equation:

FMRFI( f ) =
M

∑
m=1

Am · e(jπKmt f
2+2π j fmt f ), f = 1, 2, · · · , R, (2)

where f , R denote the range sampling number and counting points, respectively. Am and
Km denote the amplitude and modulation slope of the FMRFI . Additionally, M denotes the
number of FMRFI and t f represents the kth range sampling moment. The bandwidth of
AMRFI is generally larger than the sampling interval of SAR which can be expressed by
the following equation:

AMRFI( f ) =
M

∑
m=1

Am(t f ) · e(2π j fmt f ), f = 1, 2, · · · , R, (3)

where M denotes the number of AMRFI . It can be observed from Equation (3) that the
amplitude of AMRFI varies with time, therefore some unintentional interference also
exhibits amplitude modulation characteristics.

Based on the electromagnetic scattering relationship between the interest region of the
SAR system and SY (t), we can obtain the final SAR image model by imaging-processing
the echo data [38], as shown in the following equations:{

IY =
∣∣SY (t) ∗ Himaging

∣∣
IY = IX + IRFI + IN ,

(4)

where IY ∈ RH×W×3 denotes the image with interference, Himaging denotes the imaging
corresponding function and ∗ denotes the CONV operation. IX ∈ RH×W×C represents the
target image without RFI. Here, we define the values of H and W as 512 while C is set
according to the training effect, usually 8 or a multiple of 8. Additionally, IRFI ∈ RH×W×3

and IN ∈ RH×W×3 denote the RFI image and the background noise image, respectively.

3. The Proposed Method

We aim to obtain the IX from the IY in Equation (4). In fact, IX and IRFI deviate from
each other in terms of the carried information and mechanism. Therefore, we consider
them as independent and thus construct a convex optimization model [39,40] with l2 norm
constraints [41] to solve the problem,

Iopt = arg min
Iid
‖Iid − IX‖,2 s.t. IY = IX + IRFI + IN , (5)

where Iopt ∈ RH×W×3 represents the ideal output image of our algorithm.
Based on Equation (5), we constructed an end-to-end MCSNet to obtain the optimal

IX
′
, and the structure of the MCSNet is shown in Figure 2. Where IY ∈ R512×512×3 and

IX
′ ∈ R512×512×3 denote the input image and the output images of MCSNet. top_En and

Bot_En indicate the top encoder and the bottom encoder, respectively. In addition, MSN
denotes the multidimensional suppression network. MCSNet splits the image into the top
and bottom parts for training. The entire architecture is mainly composed of the following
components: (1) We design the Feature Calibration Module (FCM) with attention mecha-
nisms to capture global information of the network. (2) The Multidimensional Suppression
Network (MSN) is designed for interference suppression and mainly consists of three parts:
the top encoder, the bottom encoder, and the decoder, and each part interacts with each
other in feature information. (3) Image Calibration Network (ICN) facilitates IX to calibrate
feature maps output by MSN and preserve valuable information. (4) The Residual Restora-
tion Module (RRM) implements feature interaction with the MSN, ultimately outputting
high-resolution images without interference.
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Figure 2. The overall structure of Multi-dimensional Calibration and Suppression Network, referred
to as MCSNet. Where IY and IX

′
denote the input image with interference and the output result of

MCSNet, respectively. The black arrows indicate the transfer information stream and the red dashed
lines indicate the transfer feature stream. CONV and CAT denote convolution and concatenation
operations, respectively.

3.1. FCM

In SAR image processing tasks, we need a module to extract features while being
able to calibrate them. Therefore, to preserve the feature mapping, the FCM is designed to
acquire image information on multiple channels. The architecture of the FCM is shown
in Figure 3, where g1 ∈ RH×W×C and g7 ∈ RH×W×C denote the input and output feature
maps of the FCM. ACM denotes the Attention Correction Module which is the main
component of the FCM.
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Figure 3. The overall structure of FCM, referred to as FCM. Where the black arrows indicate the
transfer information stream. ⊕ and⊗ denote feature fusion and elements multiplication, respectively.

First, we employ 1× 1 CONV to perform the multi-channel transformation on g1, for
characterizing as much image information as possible, as shown below:{

g2 = HPReLu(conv1×1(g1, w1))
g3 = conv1×1(g2, w2),

(6)

where conv1×1(∗, wi) indicates a convolution operation with kernel size of 1 and the
weight wi. g2 ∈ RH×W×C/4 and g3 ∈ RH×W×C represent the output feature maps after the
corresponding CONV operations. HPReLu(∗) denotes the PReLu activation function [42],
which can adaptively correct the linear cell parameters.
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ACM enhances the representation of feature maps, where g3 and g6 ∈ RH×W×C are the
input and output of ACM, respectively. We first acquire the mean and standard deviation
of g3, and then integrate them, as shown in the following equation:

g4 = Hcat(Hstd(g3), HMean(g3)), (7)

where Hstd(∗) and HMean(∗) denote standard deviation pooling and mean pooling [43],
respectively, and Hcat(∗, ∗) denotes CAT. In addition, g4 ∈ R1×1×C denotes the joint
pooling feature. Afterward, two-dimensional CONV is employed for the multi-channel
transformation of g4 to produce g5 ∈ R1×1×C, similar to Equation (6). After being activated
by the Sigmoid function, g5 interacts with g3 to produce the attentional feature g6 ∈
RH×W×C, As shown in the equation below:

g6 = HSigmoid(g5)⊗ g3, (8)

where HSigmoid(∗) denotes the Sigmoid activation function and ⊗ denotes elements multi-
plication. Finally, we perform feature fusion between g1 and g6 to get the output of FCM
g7 ∈ RH×W×C,

g7 = g6 ⊕ g1, (9)

where ⊕ represents the elements addition.

3.2. MSN

MSN considers the top encoder, bottom encoder, and decoder as the main struc-
ture, mainly used for removing interference features from the SAR image. The overall
structure of MSN is shown in Figure 2. To reduce the computation amount and remove
RFI features more effectively, we divide the image into two parts for processing [44],
IY _Top ∈ RH/2×W×3 and IY _Bot ∈ RH/2×W×3, respectively. Figure 4 gives the construc-
tion of the top encoder, bottom encoder and decoder. where DAM stands for Downsam-
pling Attention Module, which consists of multiple FCMs connected in series and bilinear
downsampling module. Correspondingly, UAM stands for upsampling Attention Module,
which consists of multiple FCMs connected in series and bilinear upsampling module.
The encoder increases the number of channels while continuously compressing input fea-
ture maps in dimensions. JE1 ∈ RH/2×W×C, JE2 ∈ RH/2×W×C, JE3 ∈ RH/4×W/2×(C+Ca),
and JE4 ∈ RH/8×W/4×(C+2×Ca) are feature maps output by each stage of the encoder.
The Ca ∈ R above indicates a fixed increase in the number of channels. The decoder
reduces the number of channels while squeezing the feature maps to the original di-
mension. Among them, JD1 ∈ RH×W×C, JD2 ∈ RH×W×C, JD3 ∈ RH/2×W/2×(C+Ca), and
JD4 ∈ RH/4×W/4×(C+2×Ca) are feature maps output by each stage of the decoder. This
multi-dimensional transformation on the feature maps generates more contextual informa-
tion to make the model learn better. In addition, the multi-dimensional and multi-channel
squeeze means makes it easier to filter out interference features.

In Figure 2, the MEN framework, the red dashed line indicates the transfer feature
stream. This is an attention protection mechanism that avoids useful information being lost
during dimensional transformations. Referring to Figure 4, assume that the features of each
stage of Top Encoder are {JTE1, JTE2, JTE3, JTE4}, and similarly, the features of each stage of
Bot Encoder are {JBE1, JBE2, JBE3, JBE4}. In summary, the attention protection mechanism
can be expressed by the following equations:{

JEni = Hcat(JTEi, JBEi)
JDi−1 = HUAM(HFCM(HFCM(JEni)) + JDi),

(10)

where JEni denotes the combined output features of the encoder at the ith stage. Hcat(∗, ∗)
indicates concatenation operation, HUAM(∗) indicates upsampling attention module and
HFCM(∗) indicates FCM.
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Figure 4. The overall structure of the top encoder, bottom encoder and decoder. Where (a) is the
structure of top encoder and bottom encoder. In addition, (b) is the structure of decoder. The black
arrows indicate the transfer information stream. DAM indicates Downsampling Attention Module,
UAM indicates Upsampling Attention Module.

3.3. ICN

The MSN filters the interference features, however, the transformation of the dimen-
sion of the feature maps causes the loss of useful information and some discrepancies, so
we design the ICN to calibrate the feature information. The overall structure of the ICN is
shown in Figure 5, where K1 ∈ RH×W×C and K6 ∈ RH×W×C are the input and output of
the ICN.
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Figure 5. The overall structure of ICN. Where the black arrows indicate the transfer information
stream. ⊕ and ⊗ denote feature fusion and elements multiplication, respectively.

We first employ a 1×1 CONV on K1 and perform feature fusion with IY to generate
K2 ∈ R512×512×3, as shown in the following equation:

K2 = conv1×1(K1, w3) + IY . (11)

Next, we adopt FCM to extract useful information from K2 and generate K4 ∈
R512×512×C with IY features, as shown in the following equation:

K4 = HFCM(conv1×1(K2, w4)). (12)
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The gated channel transformation block (GCTB) [45] can comprehensively learn the
relationships between channels and convey valid information, therefore we adopt the
GCTB to collect channel information of K1, as shown in the following equation:

K3 = HGCTB(conv1×1(K1, w5)), (13)

where K3 ∈ R512×512×C denotes the channel-wise feature and HGCTB(∗) denotes the GCTB
response function. Afterward, we perform the attention interaction between K4 and K3 to
produce K5 ∈ R512×512×C. Finally, the feature fusion between K5 and K1 is performed to
obtain K6 ∈ R512×512×C, the above process as shown below:{

K5 = K3 ⊗ K4
K6 = K1 ⊕ K5.

(14)

3.4. RRM

RRM is designed to further profile the output feature maps from ICN and generate
fine details for image restoration. Figure 6 gives the structure of the RRM and we can see
that RRM is similar to a residual network. Where P1 ∈ RH×W×C and IX

′ ∈ RH×W×3 are
the input and output of the RRM. Additionally, the CEU represents the feature extraction
unit, which is a series combination of the GCTB and FCM.
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Figure 6. The overall structure of RRM. Where the black arrows indicate the transfer information
stream and ⊕ denotes feature fusion.

First, P1 goes through a series of CEUs to produce the abundant feature P2 ∈ RH×W×C.
Then, we perform the feature fusion between P2 and P1 to produce P3 ∈ RH×W×C, as
shown in the following equations:{

P2 = HCEU(HCEU(. . . (HCEU(P1))))
P3 = P1 ⊕ P2,

(15)

where HCEU(∗) denotes the CEU response function. After a 1×1 CONV on P3, the final
ground recovery image IX

′
is obtained under the supervision of IY , the above as shown

below:
IX
′
= conv1×1(P3, w6) + IY . (16)

4. Experiments and Results

In this section, we will elaborate on the experiments in detail and display the final
results. Firstly the dataset composition, the loss function, and the evaluation metrics will
be presented. Secondly, compared with other state-of-the-art algorithms, the qualitative
and quantitative results of the simulation data and measured Sentinel-1 data will be given.

4.1. Dataset

There is currently a lack of end-to-end data in the field of SAR jamming. Therefore
based on Equation (4), we conduct relevant interference experiments to construct the
simulation dataset. In addition, the Sentinel-1 satellite carries a C-band SAR, which pro-
vides continuous all-weather images. We take advantage of the periodicity of Sentine1
to construct the measured dataset. Typically, the interfered region is very small relative
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to the entire scene of the Sentinel-1. To reduce the computational effort and improve the
processing efficiency of the method, we perform the cropping on Sentinel-1 images. In our
experiments, we put 1600 pairs of simulated images and 400 pairs of measured images
into one training sets Xi = {Iini, Icli}, i = 1, 2, · · · , 2000, where Iini and Icli denote SAR
images with interference and without interference.

4.2. Loss Function

Typically, the l2 loss function causes the image to be too smooth which is not suitable
for our task. To converge the training results and obtain fine images, we adopt Charbonnier
Loss as the main item to approximate the l1 loss function for enhancing the performance of
MCSNet. The entire loss function can be expressed by the following equation:

LS = Char(IX
′
, Icl) + µChar(52(IX

′
),52(Icl)), (17)

where IX
′ ∈ R512×512×3 denotes the image predicted by MCSNet and Icl ∈ R512×512×3

denotes the clean image. µ denotes the weight coefficient and LS denotes the value of the
loss function. 5(∗) denote the gradients of the vectors. In addition, Char(∗, ∗) denotes
Charbonnier Loss and can be further expressed as:

Char(A, B) =
√
(A− B)2 + ε, (18)

where A ∈ RH×W×C, B ∈ RH×W×C denote the tensor matrix. Additionally, ε denotes the
penalty factor.

4.3. Assessment Indicators

To compare the quantitative results of the different methods, difference of Equivalent
Noise of Looks (∆ENL) [34,46], Structural Similarity (SSIM) [47], and Peak Signal to Noise
Ratio (PSNR) [48] are selected as assessment indicators.

Typically, ENL is employed for grey-scale statistics of SAR images, as shown below:

IX
′
=
{

f (ai, bj)
}H,W

i=0,j=0,

ENL =
µ2

IX
′

σ2
IX
′

,

µ
IX
′ = 1

HW ∑H
i=0 ∑W

j=0 f (ai, bj),

σ2
IX
′ =

1
HW ∑H

i=0 ∑W
j=0( f (ai, bj)− µ

IX
′ )2,

(19)

where ENL indicates the value of Equivalent Noise of Looks. Additionally, µ
IX
′ and σ

IX
′

denote the mean and standard deviation of IX
′
. In the field of SAR anti-interference, ∆ENL

reflects the closeness between the image after interference suppression and the clean image,
which can be expressed by the following equation:

∆ENL =
∣∣∣ENL_IX

′ − ENL_Icl

∣∣∣, (20)

among them, ENL_IX
′

and ENL_Icl denote the ENL values for IX
′

and Icl. As explained
above, a lower ∆ENL value indicates better interference suppression performance.

We employ SSIM to measure the similarity between SAR images, as shown below:
SSIM(Icl, y) = (2µxµy+α1)·(2σxy+α2)

(µ2
x+µ2

y+α1)·(σ2
x+σ2

y+α2)
,

α1 = (K1L)2,
α2 = (K2L)2,

(21)
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where Icl ∈ RH×W×3 denotes the clean image and y ∈ RH×W×3 denotes the image to be
measured. µx and µy denote the pixel averages of Icl and y. σ2

x and σ2
y denote the pixel

variances of Icl and y. Moreover, σxy denotes the correlation coefficient between Icl and
y. Additionally, K1 and K1 default to 0.01 and 0.03, respectively, here L denotes the pixel
range of the SAR image.

PSNR is a widely used objective method for assessing the quality of SAR images, As
illustrated below:

PSNR(Icl, y) = 20 · log10 (
MAXy√

MSE(Icl, y)
), (22)

where MAXy denotes the maximum pixel value of y and MSE(Icl, y) denotes the mean
squared error between Icl and y. Typically, higher PSNR and SSIM values can induce
better image quality.

4.4. Simulation Data Results

We initially verify the effectiveness of the proposed method using simulation data.
The simulation data mainly consists of three types of interference [49], namely squelching
interference (SI), multipoint frequency shifting interference (MFSI), and RFI. The imple-
mentation of RFI has been mentioned in Equations (2) and (3). Furthermore, the principle
of MFSI is to generate a range-oriented delay after SAR matching filtering, which can be
expressed by the following equation:

MFSI( f ) = SX · ej2π fdt f +φ f , f = 1, 2, · · · , R, (23)

where fd denotes the amount of frequency shift. In addition, φ f denotes the random phase,
which serves to make the phase between each pulse incoherent and thus produce line-like
interference. In addition, the principle of SI is based on MFSI with increasing amount of
frequency shift in synthetic aperture time, as follows:

FSD = Q · fbd, (24)

where Q denotes a positive integer, which varies with azimuth to time. In addition, fbd
denotes fixed frequency shift increment, and FSD denotes total amount of frequency shift.
To show the superiority of MCSNet, we adopt the excellent denoising algorithms in the
visual field to compare with MSCNet, which are RESCAn [32] and SPANet [33], respectively,
commonly used in tasks such as de-raining, de-fogging, and de-blurring.

4.4.1. Visual Results

The visual results of the simulation data are shown in Figure 7. Both the input-
interfered images and the clean images without interference are simulated. The first
column shows the input-interfered images, where (a) indicates SI, (b) indicates MFSI, and
(c) indicates RFI. Additionally, the second column indicates the corresponding clean images
without interference, and the third to fifth columns indicate the results for each method.
The overall performance of SPANet [32] is not satisfactory, with many interference residual
textures remaining on the results. RESCAn [33] performs well on (a) and (c), but for (b), the
interference features are not completely removed. The results of our method are visually as
expected and are all close to the clean image.

4.4.2. Closeness between Results and Clean Images

The naked eye observations are not sufficient to demonstrate the best performance
of our method. Therefore, based on Equation (20), we adopt ∆ENL to check the ability of
each method to maintain the scattering characteristics of SAR images. The corresponding
results are given in Table 1, from which it can be seen that for (a), (b), and (c), our method
achieves the lowest ∆ENL values.
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(a)

(b)

Interference

(c)

(d)

(e)

(f)

Clean RESCAN SPANet OursInterference Icl RESCAN SPANet Ours

(a)

(b)

(c)

Figure 7. Visual results of simulation data. The first column gives the interfered SAR images and the
second column gives the corresponding ground truth. The third to fifth columns give the results of
the different methods. In addition, (a–c) indicate the different types of interference.

Table 1. Comparisons of ∆ENL for simulation data.

Scene

Method
Interference RESCAN SPANet Ours

(a) 0.0477 0.0865 0.0269 0.0231
(b) 0.0504 0.1450 0.0302 0.0178
(c) 38.8591 1.0719 1.7298 0.7506

4.4.3. Image Quality

Here, SSIM and PSNR are employed as metrics to evaluate the image quality of the
simulation data (Table 2). Our methods both achieve the highest PSNR and SSIM values,
whereas for (a), our results hold a PSNR value of 30.0051 and an SSIM value of 0.9962 much
higher than the other methods. In short, for simulation data, MCSNet can suppress RFI
while yielding high-resolution SAR images.

Table 2. Comparisons of SSIM and PSNR for simulation data.

Scene
Method Interference RESCAN SPANet Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
(a) 19.3025 0.8483 29.9575 0.9836 20.1814 0.8708 30.0051 0.9962
(b) 20.1116 0.7782 26.6244 0.9376 27.5343 0.9488 36.1040 0.9921
(c) 6.7635 0.3982 22.4873 0.8062 10.9940 0.4239 22.7780 0.8159

4.5. Measured Data Results

Our measured data are from the European Space Agency Sentinel-1A satellite in c-
band. The data exist in the form of Ground Range Detected (GRD) type, with polarization
modes as VV or VH. In general, the form of the GRD data mainly contains real-value am-
plitude information, reflecting the scattering intensity in the region. For the various forms
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of RFI on SAR images and different landscapes, several typical cases have been selected
as measured data to analyse the qualitative and quantitative results. The geographical
locations of these measured data are presented in Figure 8, where the red box indicates the
area from which the interfered SAR images come.

(I) (Ⅱ)

(Ⅲ)

 

(Ⅳ)

Figure 8. Geographical location description for measured data, where (I) in the region of the Korean
Peninsula, (II) in the sea and islands off Nagasaki, Japan, (III) in Astrakhan, Russia, and (IV) in
Krasnodar Krai, Russia. The red box indicates the interfered area, with a unit length of 100 km.

4.5.1. Visual Results

The visual results of the evaluation images are given in Figure 9, where the first column
indicates the input-interfered images. The second column indicates the corresponding
images without interference, they are clean images acquired at the same place at different
times according to the periodicity of the Sentinel-1A. The third and fourth columns indicate
the results of RESCAN and SPANet. The last column indicates the results of MCSNet. For
(a) corresponds to Figure 8(I), this is acquired by Sentinel-1 on the Korean Peninsula on
29 March 2021, from which we can see a clear white ripple-like interference on the hilly
terrain. For (b) corresponds to Figure 8(II), this is obtained by Sentinel-1 on 12 February 2022,
in Nagasaki, Japan, from which it can be observed that the white striped RFI spans across
the island and the sea, causing some visual obstruction. For (c) (d) and (e) corresponds
to (III) in Figure 8, they are acquired by Sentinel-1 on 5 September 2021, in the Astrakhan
region of Russia, from which it can be noticed that white block-like and stripe-like RFIs
overlay the area in the images, causing some geographical features to become blurred.
For (f) corresponds to Figure 8(IV), which is acquired by Sentinel-1 on 10 July 2021, in
the Russian Volga estuary region, where high-power RFI covers a large area making the
geographic information invisible. The results of RESCAN are not satisfactory, for (a), (b), (c),
(d), (e), and (f), all of which have RFI features left on the images. The results of SCANet are
also unsatisfactory, unable to find the RFI and remove it completely. In contrast, MCSNet is
effective in suppressing interference on each image, and our results are visually close to
clean images, reflecting the adaptability of MCSNet to different landscapes and different
forms of RFI.
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(a)

(b)

Interference

(c)

(d)

(e)

(f)

Icl RESCAN SPANet Ours

Figure 9. Visual results of measured data. The first column gives the interfered SAR images and the
second column gives the corresponding ground truth. The third to fifth columns give the results of
the different methods. Additionally, (a–f) indicate the different scenes from Figure 8. In addition,
(a,c) the enlarged regions of interest are shown in Figures 10 and 11.

(a)

(b)

Interference

(c)

(d)

(e)

(f)

Clean RESCAN SPANet OursInterference Clean RESCAN SPANet Ours

(a)

(b)

(c)

Interference Icl RESCAN SPANet Ours

Figure 10. The region of interest for enlarged display in (a) of Figure 9.
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(a)

(b)

Interference

(c)

(d)

(e)

(f)

Clean RESCAN SPANet OursInterference Clean RESCAN SPANet Ours

(a)

(b)

(c)

Interference Clean RESCAN SPANet Ours

Interference Icl RESCAN SPANet Ours

Figure 11. The region of interest for enlarged display in (c) of Figure 9.

4.5.2. Closeness between Results and Clean Images

Qualitative results from visual observations are not sufficient to judge the merits of the
methods, therefore we further compared the measured data quantitatively. As mentioned
above, ∆ENL measures the closeness between the images after interference suppression
and the clean images. The comparison results of ∆ENL are given in Table 3. For (a),
(b), (c), (d), (e), and (f), our method achieves the lowest ∆ENL values, wherein (b) even
reaches 0.0024, indicating that the results of MCSNet are closest to the clean images and the
scattering characteristics of the original image are preserved.

Table 3. Comparisons of ∆ENL for measured data.

Scene

Method
Interference RESCAN SPANet Ours

(a) 1.0709 5.0589 1.293 0.3561
(b) 0.1238 0.0299 0.1465 0.0024
(c) 1.1482 1.7534 0.5428 0.2512
(d) 3.3051 4.3230 1.8000 1.2008
(e) 1.4686 2.1999 2.1610 0.3544
(f) 0.6456 2.5004 0.9192 0.2447

4.5.3. Image Quality

The convolution and scaling operations in the network will inevitably cause some
distortion to the image. Therefore, we adopt SSIM and PSNR as criteria to evaluate the
image quality of each method. The clean images are taken as reference images and the
corresponding results are given in Table 4. It can be observed that for each scene, our
method achieves the highest PSNR and SSIM. In particular, for (b), MCSNet reaches 30.9641
PSNR value and 0.9896 SSIM value, which is much higher than the other methods. The
overall results reflect that our method can conserve the useful information and details of
the original image.

Table 4. Comparisons of SSIM and PSNR for measured data.

Scene
Method Interference RESCAN SPANet Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
(a) 19.2495 0.8355 20.0583 0.8336 20.3217 0.8644 23.0051 0.9189
(b) 20.1741 0.8653 24.6836 0.9539 19.4271 0.8400 30.9641 0.9896
(c) 21.2840 0.8420 22.9671 0.8453 23.6611 0.8705 23.7754 0.8796
(d) 18.6894 0.6173 18.6894 0.6585 19.3125 0.6763 22.3389 0.7878
(e) 16.5528 0.5411 18.0834 0.5670 17.3323 0.5797 19.8591 0.7148
(f) 17.5252 0.5251 19.8913 0.6398 20.0642 0.6947 21.8189 0.8022

4.5.4. Comparisons of Scattering Characteristics

Typically, the grayscale statistics of SAR images reflect the intensity of scattering
coefficients of ground objects [50]. The two images own similar gray-value magnitudes
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indicating that their scattering intensities are similar. The results of the scattering charac-
teristics comparisons are shown in Figure 12. To concretely exhibit the capability of each
method for preserving the scattering characteristics, we select (a), and (b) in Figure 9 as
the test data. In addition, in Figure 12, the orange horizontal lines indicate the selected
gray-value profiles. Where the trajectories of the blue and red curves are approximately
fitted, indicating that our results have similar scattering properties to the clean images,
with the best performance achieved.

(I) (Ⅱ)

(Ⅲ)

 

(Ⅳ)

Figure 12. Scattering characteristics analysis. Where the orange horizontal line indicates the gray-
value profile. The red curves indicate the scattering analysis of our results. The blue curves indicate
the scattering analysis of the clean image.

5. Conclusions

To address the observational impact caused by multiple forms of RFI in Spaceborne
SAR radar operation, this paper proposes a highly adaptive Multi-dimensional Calibration
and Suppression Network (MCSNet) to solve this problem, which can only deal with real-
valued data. Through analyzing the SAR image model, the input image is split into two
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parts for processing. First, the FCM is designed to capture full-text information. In addition,
the Multidimensional Suppression Network is designed to suppress RFI at multi-channel
and multi-scale levels. Next, a valid method is proposed to apply the input image as a
reference image to correct the features in the network and preserve the valid information.
Finally, a residual module with a channel attention mechanism is proposed to restore fine
image details further yielding high-resolution images without RFI. Both the simulation data
and measured data collected by Sentinel-1 verify the effectiveness of the proposed method.
In comparison with state-of-the-art denoising methods in the field of computer vision,
our method achieves the best results both qualitatively and quantitatively, indicating the
specific functionality of our method for RFI suppression in Spaceborne SAR.

6. Discussion

For SAR images with real-valued information, our method indeed makes a difference.
However, in the face of interference features completely overwhelming the whole image,
the problem needs to be dealt with by adopting the complex-valued information of the SAR
echo data and imaging results. Therefore, to make this idea of interference suppression
more widely applicable, in future research we consider the design of networks that can
handle complex-valued information.
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