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Abstract: Model evaluation of water retention (WR) services has been commonly applied for national
or global scientific assessment and decision making. However, evaluation results from different
models are significantly uncertain, especially on a small regional scale. We compared the spatial–
temporal variations and driving factors of the WR service by five models (i.e., the InVEST model
(InVEST), precipitation storage model (PRS), water balance model I (WAB I), water balance model II
(WAB II), and NPP-based surrogate model (NBS) based on partial correlation analysis and spatial
statistics on the Ramsar international alpine wetland region of the Qinghai–Tibetan Plateau (QTP).
The results showed that the wetland area continued to decrease, and built-up land increased from
2000 to 2015. The average WR volume ranged from 2.50 to 13.65 billion m3·yr−1, with the order from
high to low being the PRS, WAB I, WAB II, and InVEST models, and the average total WR capacity
was 2.21 × 109 by the NBS model. The WR service followed an increasing trend from north to south
by the InVEST, PRS, WAB I, and WAB II models, while the NBS model presented a river network
pattern of high values. The WR values were mainly reduced from 2000 to 2010 and increased from
2010 to 2015 in the PRS, WAB I, WAB II, and InVEST models, but the NBS model showed the opposite
trend. Precipitation determined the spatial distribution of WR service in the InVEST, PRS, WAB I,
and WAB II models. Still, the spatial variation was affected by climate factors, while the NPP data
influenced the NBS model. In addition, the InVEST model in estimating WR values in wetlands
and the PRS and WAB I models poorly estimate runoff, while the WAB II model might be the most
accurate. These findings help clarify the applicability of the WR models in an alpine wetland region
and provide a valuable background for improving the effectiveness of model evaluation.

Keywords: alpine wetland; water retention service; models; Qinghai–Tibetan Plateau

1. Introduction

Ecosystem services (ESs) are the benefits people obtain from ecosystems which are
essential for human well-being [1]. Water retention (WR) is a critical regulative service
that refers to the water retained in ecosystems within a certain period [2–5]. Although
China’s total water resources rank sixth in the world, it has been experiencing severe water
resource shortages due to climate change and rising water demands [6,7]. The degradation
of WR service has accelerated water shortages and become one of China’s major ecological
problems [8]. China’s first ecosystem assessment showed that WR service decreased from
the southeast to the northwest inland areas in 2010 [3]. Then, a similar spatial pattern
was also mapped from 2000 to 2013 in another way [9,10]. However, ESs are complex due
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to strong scale effects, resulting in various spatial–temporal changes at small scales by
models [11]. Therefore, it is necessary to compare the accuracy of WR service at a small
regional scale with various models to better understand their applicability.

The Qinghai–Tibetan Plateau (QTP) is the world’s largest water tower region, and
poor availability and changes in its water services have been of great concern [12,13].
Researchers have mapped the spatial pattern of WR service by the Integrated Valuation of
Ecosystem Services and Tradeoffs (InVEST) model, showing a decreasing trend from the
southeast to the northwest of the QTP [14,15]. Several other WR models, initially developed
in China, have also been applied to the QTP. The tradeoffs between carbon sequestration
and WR service and the synergy between livestock production and WR service of alpine
grassland were revealed by the water balance model I (WAB I) and the precipitation storage
model (PRS), respectively [16,17]. The sensitivity of WR under future climate scenarios
was quantified, and the ecological importance was mapped by the water balance model II
(WAB II) [18,19]. In addition, the spatial–temporal characteristics of the water and nutrient
retention service of the critical natural capital were displayed by the NPP-based surrogate
model (NBS) [20]. However, few studies compared the results of models within different
structures and characteristics of WR service, and it is necessary to reveal the WR model’s
performance for application in a specific region, especially for the spatial–temporal pattern
and its changes, because the criteria of WR service by models are different, such as mm, m3,
or dimensionless. In addition, different results have been found in the Upper Upatoi Creek
watershed and the Nansihu Lake basin between InVEST and the Soil and Water Assessment
Tool (SWAT) [21,22]. Therefore, it is essential to compare various models about how well it
fits applications to screen the model with strong applicability and low uncertainty to offer
guidance on selecting more effective tools. The Zoige Plateau (ZP), in the eastern part of
the QTP, is a critical WR region in the upper reaches of the Yellow River and is regarded as
one of the most extensive alpine peatlands in the world for storing biotic carbon [23,24].
However, warming and drying climate trends and anthropogenic perturbations such as
overgrazing and artificial ditch construction have resulted in the degradation of wetlands
and a decrease in the runoff, threatening the stable supply of water resources [25–28]. Some
researchers have evaluated the WR service of ZP [29], methane, and CO2 emissions in the
Zoige Wetland [30,31], and the ecosystem services value [32,33]. However, the accurate
assessment of the spatial–temporal variation in WR service in the ZP remains a major
challenge.

Researchers have evaluated the driving factors of WR service and highlighted that
natural and human-induced factors are vital aspects. Additionally, these factors are in-
dependent and almost always multiple and interactive, so a one-to-one linkage between
particular driving forces and particular ecosystem changes rarely exists [1]. In addition,
topography, microclimate, vegetation, and hydrological processes also played vital role in
soil water movement at a large scale [34]. Therefore, analyzing the combined effect of these
drivers spatially to identify overlapping impacts on ESs is meaningful for spatial planning
and management. Effective energy and mass transfer (EEMT), consisting of water, carbon,
and energy, is a comprehensive climate indicator essential in controlling groundwater
thickness and water availability [35,36]. It can be used for assessing the overlapping effects
of climate-driving factors.

Therefore, our study considered ZP as the focus area and compared the WR service
from 2000 to 2015 with five models, including the InVEST, PRS, WAB I, WAB II, and NBS.
We used spatial statistical methods to reveal the changes in WR and the relationship with
driving factors. The main objectives were to (1) quantify and compare spatial–temporal
patterns and variations in WR service by five models under statistical methods, (2) reveal
the relationship between natural and socioeconomic factors and WR service in different
models by partial correlation analysis, and (3) discuss the applicability of five models to the
alpine wetland region. This work will deepen our understanding of WR service simulation
models and provide the theoretical basis for model application in an alpine wetland area of
QTP.
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2. Materials and Methods
2.1. Study Area

The ZP (31◦50′–34◦49′ N, 100◦45′–103◦39′ E) is located on the eastern margin of the
QTP, with an area of 42,714 km2 (Figure 1). It is a complete orbicular plateau surrounded
by alpine mountains ranging from 2392 to 5059 m. Based on 39 years of data records
(1980–2018), the average annual precipitation is approximately 712 mm, and the mean
annual temperature is 0.87 ◦C. The main land types of ZP are grassland, shrubland, wetland,
and forestland, accounting for 69.43%, 12.71%, 9.87%, and 5.23% of the total area in 2015,
respectively. The proportion of cropland is relatively low, accounting for only 0.61% of the
total area, and is mainly distributed in Aba County. The Zoige Wetland is an integral part
of the Ramsar internationally important wetlands. In addition, almost all the rivers in this
region belong to the Yellow River water system. Its tributaries mainly consist of the White
River and Black River, providing at least 30% of the water flow into the upper Yellow River
and becoming a vital water retention functional area [27]. It is crucial for China’s ecological
protection and high-quality development strategy in the Yellow River Basin.
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Figure 1. The location (a), mean annual precipitation from 1980 to 2018 (b), and land use type
distribution from 2000 to 2015 of ZP.

2.2. Analysis Framework for Comparing the Water Retention Models

The purpose of this study was to compare the performance of WR service simulation
models in an alpine wetland region, aiming to offer guidance on selecting and applying
models in this area. Therefore, we selected five WR simulation models commonly used in
QTP. After data preparation and preprocessing, we used the five models to map the spatial
pattern of WR service from 2000 to 2015. Then, we used the spatial statistics method to
compare the pattern of WR assessed by five models and its changes in the past 16 years. In
addition, spatial partial correlation analysis was used to compare the relationship between
WR assessed by different models and driving factors. Figure 2 shows the framework of our
study.
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2.3. Data Source and Processing

The spatial data, including climate, soil, rivers, altitude, land use, vegetation, and
socioeconomic data, are presented in Table 1. The land use and digital elevation model
(DEM) data were obtained from the internal shared data of the Second Tibetan Plateau
Scientific Expedition and Research. Origin 2022 software was used to draw the Sankey dia-
gram of land use transfer. The gross domestic product (GDP) and population density (POP)
data are raster data generated by interpolation based on GDP and population statistics
data of all counties in China, considering land use types, night light brightness, residential
density data, and spatial interaction with GDP. We spatially interpolated temperature and
precipitation data from meteorological stations in China using Anusplin software at a
1 km resolution and then extracted them based on the study region. The resolution of all
raster data was resampled to 30 m. In addition, we used the Penman–Monteith equation
to calculate potential evapotranspiration (PET), and we obtained the annual PET by the
sum of the monthly PET [37]. EEMT is the sum of energy input via effective precipitation
and net primary production components; the calculation of EEMT (J m−2 s−1 or W m−2) is
given in [35] as:

EEMT = EPPT + EBIO (1)

EPPT is heat energy related to effective precipitation energy and mass transfer, and
EBIO is NPP energy and mass transfer.

2.4. Description of Selected Models
2.4.1. InVEST Model

The InVEST model simulates and provides spatial information about ESs. The water
yield module is based on the Budyko curve and water balance principles (Table 2). The
following equation can calculate WY(x):

WY(x) =
(

1− AET(x)
P(x)

)
× P(x) (2)

where WY(x) is the annual water yield for pixel x (mm), AET(x) is the potential annual
evapotranspiration (mm), and P(x) is the annual precipitation for pixel x (mm). Taking
average rainfall events from 1995–1999, 2005–2009, and 2010–2014 of four meteorological
stations on the ZP as rainfall events in 2000, 2010, and 2015, the Z values were calculated as
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follows: 11.59, 11.09, and 10.62 (Table S1). The WR values (mm) of each pixel were revised
by the following formula [15]:

WR = min
(

1,
249
V

)
×min(1, 0.3TI)×min

(
1,

Ksat

300

)
×WY (3)

where V is the velocity coefficient; Ksat is the saturated soil hydraulic conductivity (cm/d),
calculated by Neuro Theta software according to the content of soil sand, silt, and clay (%);
and TI is a topographic index, calculated from the following equation:

TI = log
(

Drainage_Area
Soil_Depth× Percent_Slop

)
(4)

where Drainage_Area is the number of catchment area grids, Soil_Depth is soil depth (mm),
and Percent_Slop is the percentage slope.

2.4.2. Precipitation Storage Model (PRS Model)

The model refers to the decreased amount of water compared to bare land under the
condition of rainfall generation as WR service [17]:

WR = A f × J0 × k×
(

R0 − R f

)
(5)

where Af is the area of ecosystem type (km2); J0 is the annual precipitation (mm); k is the
proportion of rainfall that can generate runoff, assigned a value of 0.6 in southern China; R0
is the runoff ratio of bare land, assigned a value of 1; and Rf is runoff ratio of the other land
use types. The runoff ratio (Rf) of grassland was obtained from the vegetation cover (fc):

R f = −0.3187 fc + 0.36403 (6)

2.4.3. Water Balance Model I (WAB I Model)

The WR values (mm) are considered as the balance between precipitation (mm) and
actual evapotranspiration (mm) [38]:

WR = P− ET (7)

Table 1. Spatial data sources and description.

Data Spatial
Resolution

Temporal
Resolution Units Data Source

Rivers 1:1,000,000 2019 –
National Geomatics Center of China
(http://www.ngcc.cn; accessed on

15 September 2021)

Soil texture/depth 1 km – cm
China Soil Map-Based Harmonized World Soil

Database (v1.1) (http://www.ncdc.ac.cn;
accessed on 15 September 2021)

Temperature (T) 1 km 1980–2018, monthly ◦C
The National Meteorological Information
Center of China (http://data.cma.cn/en;

accessed on 20 September 2021)

Precipitation (P) 1 km 1980–2018, monthly mm

Potential evapotranspiration
(PET) 1 km 1980–2018, monthly mm

Evapotranspiration (ET) 1 km 2000–2018, 10 days mm [39] (https://www.sciencedirect.com/;
accessed on 30 October 2021)

Net primary productivity
(NPP) 250 m 2000–2015, monthly 0.01 g/cm2 Institute of Remote Sensing and Digital Earth

Chinese Academy of Sciences
(http://eds.ceode.ac.cn/; accessed on

15 October 2021)
Fractional vegetation cover

(FVC) 250 m 2000–2015, monthly ——

Gross Domestic Product
(GDP) 1 km 2000–2015, yearly Ten thousand

yuan/km2 Resource and Environmental Science and Data
Center (http://www.resdc.cn/;accessed on

15 October 2021)Population density (POP) 1 km 2000–2015, yearly People/km2

http://www.ngcc.cn
http://www.ncdc.ac.cn
http://data.cma.cn/en
https://www.sciencedirect.com/
http://eds.ceode.ac.cn/
http://www.resdc.cn/;accessed
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2.4.4. Water Balance Model II (WAB II Model)

This model refers to the WR (m3) as the difference between the precipitation (mm) and
the sum of actual evapotranspiration (mm) and surface runoff (mm), which is revised from
the InVEST model [3].

WR =
n

∑
i=1

Ai × (Pi − Ri − ETi)× 103 (8)

where i is the ecosystem, n is the number of ecosystem types, Ai is an area of the ecosys-
tem i (km2), and Ri is the surface runoff of the ecosystem i, obtained by multiplying
precipitation and the surface runoff coefficient. Pi and ETi are the precipitation and actual
evapotranspiration of the ecosystem i.

2.4.5. NPP-Based Surrogate Model (NBS Model)

The NPP-based surrogate model simulate a variety of services, such as water retention,
soil conservation, carbon sequestration, and biodiversity conservation [9,10,20]. The ability
of WR (non-dimensional) service is calculated as follows:

WR = NPPmean × Fsic × Fpre × (1− Fslo) (9)

where NPPmean is the multi-year average net primary productivity, and Fsic, Fpre, and Fslo
are normalized (0–1) treated slope factor, soil infiltration capacity factor, and multi-annual
average precipitation raster, respectively.

2.5. Analysis of Climate Change Trends

The linear regression method was adopted to analyze the variation trend of climate
elements, including temperature, precipitation, evapotranspiration, and effective energy
and mass transfer. The linear trend was detected by the least square regression method as
follows:

yi = a + bxi + ε (10)

where a is the intercept, b is the slope, and ε is the residual. When b is negative, index i is
a decreasing trend; when b is positive, index i is an increasing trend. MATLAB2019b and
ArcGIS10.3 were used for trend analysis and spatial mapping, respectively. The change
trend is significant when p < 0.05.

2.6. Analysis of WR Service Change and Drivers
2.6.1. Quantification of WR Values and Their Changes

After completing the WR service estimation by five models, we applied the random
points tool to create 100 random points with no distance requirement to calculate the mean
and standard deviation of the same model. At the same time, we removed the extreme
values and retained 83 points in each model. Then, we carried out one-way ANOVA and
multiple comparisons based on the LSD test to investigate the differences in model results.
We used the raster calculator tool to calculate the spatial change in WR by subtracting
layers of the same model from two years to obtain the number of change values on each
pixel.

2.6.2. Determination of Land Use Attributes and Changes

Humans influence ecosystem structure and function by changing land characteris-
tics and enhancing utilization to meet their demand for land supply capacity. In this
study, we used land use intensity to characterize the spatial–temporal changes in land use
attributes [40]:

L =
n

∑
i=1

Ai × Ci =
n

∑
i=1

Ai ×
Si
S

(11)
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where L is land use intensity index; Ai is the grade index of land use type i. Considering the
intense grazing activities in the study area, grassland is set to 2.5, the forestland, shrubland,
and wetland are all 2, cropland is 3, built-up land is 4, and other types is 1. Ci is the area
percentage of land type i, Si is the area of the land use type i, and S is the total land area of
the study area.

Table 2. Basic characteristics of the five selected models.

Model Types Spatial Scale Temporal Scale Advantages and Disadvantages Reference

InVEST model Water balance-based Watershed Year

(1) Strong visualization and dynamic
(2) Complicated data input
(3) Ignores interaction between surface

water and groundwater

[14,15,21]

PRS model Process-based All scales All scales

(1) Uncertainty of runoff and rainfall
parameters

(2) Relative value to bare ground, not
an absolute value

[17,26,41]

WAB I model Water balance-based All scales All scales
(1) Easy operation
(2) Ignores runoff and groundwater
(3) Suitable for dry regions

[38]

WAB II model Water balance-based All scales All scales
(1) Easy operation
(2) Uncertainty of runoff parameters [3,19]

NBS model Surrogate biophysical
indicators-based Regional scale Year

(1) Not applicable to water bodies;
(2) Affected greatly by NPP data
(3) Cannot give specific physical

quantities
[9,10]

2.6.3. Exploration of Factors Influencing WR Service

We selected precipitation (P), evapotranspiration (ET), temperature (T), and EEMT as
the natural driving factors and GDP, POP, and land use intensity (L) as the socioeconomic
driving factors. Then, we used partial correlation analysis to explain the drivers related
to WR service. The data were normalized first using the Z score method, and the Pearson
correlation was employed to calculate the simple relationship between a dependent variable
and a single independent variable. Then, the partial correlation analysis was applied when
the two variables were simultaneously related to other variables (Equation (12)).

Rxy,z =
rxy − rxzryz√

(1− rxz2)×
(
1− ryz2

) (12)

where Rxy,z is the partial correlation coefficient between x and y, excluding the impact of z;
rxy is the correlation coefficient between x and y; rxz is the correlation coefficient between x
and z; and ryz is the correlation coefficient between y and z.

A T-test was used for the reliability of the results of the partial correlation analysis:

t =
rxy,z√

1− rxy,z2

√
n−m− 1 (13)

where n is the number of years and m is the number of the independent variables. The
significance level was at 0.05.
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3. Results
3.1. Land Use Change from 2000 to 2015

Grassland, shrubland, forestland, wetland, and cropland were the predominant land
use types, accounting for 98% of the study region (Figure 3). From 2000 to 2010, grassland
increased by 109.78 km2, while wetland and cropland decreased by 112.01 and 8.64 km2,
respectively. The shrubland and forestland increased by 3.10 and 0.65 km2, respectively.
From 2010 to 2015, grassland, shrubland, forestland, and cropland decreased by 72.49,
17.55, 3.03, 0.65, and 9.15 km2, respectively, while built-up land, bare land, and desert land
increased by 81.86, 14.62, and 6.41 km2, respectively. Over the past 16 years, the wetland
area decreased the most, reaching 129.56 km2, and was mainly converted to grassland, bare
land, and built-up land. Except for a slight increase (3.98 km2) in Luqu County, all the other
counties decreased, and Ruoergi County decreased the most, by 75.37 km2 (Figure S1).
In contrast, built-up land increased for all counties, reaching 105.26 km2, mainly from
grassland, cropland, and wetland. Grassland increased by 37.28 km2 and was distributed
primarily in Ruoergai and Maqu counties. Desert land increased by 10.11 km2 mainly
from grassland degradation. In addition, shrubland, forestland, and other land use types
remained stable.
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3.2. Climate Change Trends

From 1980 to 2018, the temperature showed a significant increasing trend (p < 0.05),
with Luqu, Ruoergi, and Maqu counties in the north being lower than Aba and Hongyuan
counties in the south and the highest increase in northwestern Maqu County (Figure 4).
Precipitation decreased at approximately 42% of the regions (p > 0.05), mainly in north-
western Aba County, southeastern Hongyuan County, central and eastern Ruoergi County,
and southern Luqu County. From 1980 to 2018, evapotranspiration showed a significant
decreasing trend outside the southeast, northern, and eastern of ZP (p < 0.05), showing a
northwest–southeast spatial distribution pattern. In addition, EEMT showed a significant
increasing trend (p < 0.05) in other areas outside the southwest of Maqu County, parts of
Hongyuan County, and Aba County.
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3.3. Spatial Pattern of WR Service

The spatial pattern of the WR service showed substantial heterogeneity across the
ZP. The spatial similarity was present between different models with an increasing trend
from north to south in the InVEST, PRS, WAB I, and WAB II models over the past 16 years.
However, the high values spread in a river network spatial pattern in the NBS model were
consistent with the distribution of river channels (Figure 5). From the pixel value perspec-
tive, the maximum value in the WAB I model was 901.24 mm in 2000. The InVEST, WAB I,
and WAB II models always had the largest weight of <100 mm, averaging approximately
83.61%, 43.03%, and 71.87%, respectively. The total area of pixel values ≤300 mm was
approximately 93.35–99.58% of the ZP during the study period for these three models
(Table S2). The PRS model had a maximum pixel area of 300–400 mm, with an area ratio
of 56.04–57.21%. More than 96% of the region’s WR ability by the NBS model was below
100 in the research period. In addition, all models showed that grassland was the land type
with the highest WR capacity, followed by shrubland, forestland, wetland, and other land
use types (Table S3).

3.4. Temporal Change in WR Service

The InVEST model had the lowest values of total WR volume, with a mean value
of only 2.50 billion m3·yr−1 (Figure 6a). The PRS model always provided the highest
WR volume, approximately 13.65 billion m3·yr−1. The results of the WAB I and WAB II
models behaved between the above two models but were closer to the InVEST model,
about 5.71 and 3.16 billion m3·yr−1, respectively. In addition, except for the NBS model,
the WR values per grid of the PRS model were significantly higher than those of the other
three models. In contrast, the InVEST model was markedly lower than PRS, WAB I, and
WAB II models (Figure 6b) (p < 0.05). From 2000 to 2010, WR in the InVEST, WAB I, and
WAB II models had a decreasing trend. The InVEST model reduced the least by 0.56 billion
m3; no decreasing regions were concentrated in the northwestern Maqu and Luqu counties,
at 4493.52 km2 (Figure 7 and Table S4). The WAB I model reduced the most, reaching
1.08 billion m3. The unreduced area was only 2795.66 km2, distributed in the junctional
area of Ruoergai, Maqu, and Luqu counties. The WAB II model reduced 1.05 billion m3,
and the spatial variation pattern was similar to the WAB I model. However, the area
unreduced was more extensive at 3111.24 km2. The PRS model showed a slight increase of
0.11 billion m3, and there was also an evident increase in wetland area compared to the
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InVEST model, reaching 9231.54 km2 overall. From 2010 to 2015, the above four models
showed an increasing trend. Maximum and minimum increased values appeared in the
PRS and InVEST models at 1.14 and 0.09 billion m3, respectively. In addition, the WAB I
and WAB II models showed 0.78 and 0.67 billion m3 increases, respectively. It was mainly
in the southwestern margin of Aba County and the eastern marginal regions of Ruoergai
County for reduced areas. From 2000 to 2015, similar spatial–temporal patterns appeared
between the InVEST and PRS models and the WAB I and WAB II models. The InVEST
model experienced an increase of 0.03 billion m3, with an area of 8203.94 km2 detected to
decrease in southwestern and southeastern margin areas, including Ruoergai, Hongyuan,
and Aba counties. In comparison, the PRS model increased by 1.25 billion m3 with a
larger reductive area at 14,580.12 km2, including most of Hongyuan and Aba counties
and the southeastern part of Ruoergai County. The WAB I and WAB II models estimated
reductions of 0.30 and 0.38 billion m3, covering 24,613.58 and 24,970.92 km2, respectively.
A northwest–southeast distribution was found for unreduced regions. The InVEST, PRS,
WAB I, and WAB II models all had more than 96.40% of the pixels whose variation in WR
ranged within 200 mm from 2000 to 2015. For the NBS model, the average WR capacity
per pixel was 46.93, and the total was 2.21 × 109. In addition, the spatial variation in
the NBS model behaved differently from the other four models. There was an increasing
trend from 2000 to 2010 and a decreasing trend in the central and easternmost parts. The
majority decreased from 2010 to 2015 and were distributed in the region outside Luqu
County for unreduced values. Over the past 16 years, the reduced pixels spread in much of
the central and eastern regions, at 42,414.28 km2. The total WR capacity changed slightly to
0.055 billion.
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Figure 6. Characteristics of water retention volume or capability by five methods from 2000 to 2015.
The units for the InVEST, PRS, WAB I, and WAB II models are m3, and dimensionless for the NBS
model (a). The values are the mean ± standard error, and lowercase letters indicates significant
differences among the different models (p < 0.05) (b).
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3.5. The Driving Factors for WR Service Change
3.5.1. Influence of Climatic Factors on the WR Service

The WR services simulated by the five models correlated significantly with climatic
factors and geographic characteristics (Figure 8 and Table 3). The results of the InVEST
model showed that 56.88% of the study area had a positive relationship between WR and
temperature, concentrated in Aba, Hongyuan, and Luqu counties. At the same time, the
negative correlation regions were distributed in most of Maqu, Ruoergai, and the low
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areas in the southern mountains. In addition, the largest area with a positive relationship
between WR and precipitation was found in the InVEST model, accounting for 65.90%,
distributed in the vast area outside the southernmost parts of Aba and Hongyuan counties.
In addition, WR was positive with evapotranspiration, mainly in central Hongyuan County,
the northern margin of Luqu County, northwestern Maqu County, and northeastern Aba
County. There was a significant negative correlation between WR and EEMT in the northern
part of Luqu County, the eastern margin of Ruoergai County, and most of Hongyuan County
by the InVEST model. The WAB I and WAB II models assumed an almost consistent spatial
characteristic between WR service and four climatic factors. In detail, WR was positively
correlated with temperature in the junctional region of Luqu, Maqu, and Ruoergai counties
and southeastern Aba County, at approximately 41.89% and 49.65% of the total area,
respectively. Likewise, the WR of these two models had a positive relationship with
precipitation in northwestern Maqu County. However, the WR of the WAB I model in the
western part of Aba County and the discontinuous central part of ZP showed a positive
relationship with precipitation. This relationship existed in the WAB II model on the eastern
margin of Ruoergai County. In addition, WR was almost negative with evapotranspiration
and positive with EEMT for the WAB I and WAB II models.
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Table 3. Area and percentage of positive and negative correlations between water retention and
drivers.

Drivers Temperature Precipitation Evapotranspiration EEMT Land Use
Intensity GDP Population

Density

Models Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

Area
(km2)

Percent
(%)

InVEST
model

Positive 24,294.96 56.88 28,149.75 65.90 17,523.39 41.03 18,773.75 43.95 11,741.67 27.49 15,585.16 36.49 16,831.87 39.41

Negative 14,935.75 34.97 9061.39 21.21 17,229.58 40.34 15,292.87 35.80 10,721.12 25.10 13,114.63 30.70 12,258.14 28.70

PRS
model

Positive 18,583.70 47.65 16,580.52 38.82 18,159.81 42.52 19,017.32 44.52 10,712.33 25.08 11,966.04 28.01 15,317.53 35.86

Negative 20,415.02 52.35 15,123.32 35.41 16,899.88 39.57 16,638.75 38.95 3728.08 8.73 16,747.22 39.21 12,381.78 28.99

WAB I
model

Positive 17,892.73 41.89 23,248.45 54.43 1155.51 2.71 24,399.69 57.12 9630.13 22.55 14,385.66 33.68 15,850.65 37.11

Negative 21,615.77 50.61 15,096.95 35.34 36,965.40 86.54 8498.39 19.90 11,715.66 27.43 14,524.02 34.00 15,063.18 35.27

WAB
II

model

Positive 21,209.20 49.65 18,129.24 42.44 2259.73 5.29 26,194.72 61.33 10,960.71 25.66 13,685.20 32.04 16,223.72 37.98

Negative 16,417.89 38.44 9235.47 21.62 30,617.34 71.68 6485.74 15.18 13,304.71 31.15 15,789.56 36.97 15,458.57 36.19

NBS
model

Positive 14,348.02 33.59 23,972.37 56.12 18,703.74 43.79 13,826.34 32.37 13,210.07 30.93 17,309.52 40.52 15,799.46 36.99

Negative 19,906.80 46.61 12,246.80 28.67 16,416.53 38.43 18,614.40 43.58 11,656.09 27.29 12,045.92 28.20 15,446.70 36.16

Similar to the InVEST model, WR service was positively correlated with temperature
in Aba and Hongyuan counties for the PRS model. In contrast, the other three counties were
opposite. There was an apparent negative relationship between WR and precipitation in the
central areas of ZP and most of Hongyuan County. Evapotranspiration positively impacts
the WR in a large area at the junction of Maqu, Luqu, and Ruoergai counties, northwestern
Aba County, and most of Hongyuan County. In addition, the WR of the PRS model service
in the central parts of ZP had a significant negative correlation with EEMT than the other
four models. The NBS model was spatially different from the other four models. There was
an apparent negative correlation between WR capacity and temperature. The WR capacity
positively correlated with precipitation outside the northeast of Maqu County, most of Aba
County, and central Hongyuan County. The NBS model also differed from the other four
models between WR service and evapotranspiration, with a negative correlation mainly
in southwestern Maqu County, northwestern Aba County, and Hongyuan County. The
T-test performed the same as the InVEST, WAB I, and WAB II models in the eastern margin
of Ruoergai County and differently from the PRS model in the central parts of ZP for the
negative performance between WR service and EEMT.

3.5.2. Influence of Socioeconomic Factors on WR Service

The WR of the InVEST model showed a positive relationship with land use intensity
in Hongyuan County and the eastern margin of Ruoergai County (Figure 9 and Table 3). In
addition, the InVEST model showed that GDP significantly inhibited WR service in 39.49%
of areas, including southeastern Maqu County and Aba and Hongyuan counties. However,
the WR of the five models positively correlated with population density. The WR of the
InVEST model indicated a significant negative correlation with population density at a
ratio of 28.70% in southwestern Aba County and northeastern Luqu and Ruoergai counties.
The WR services by the WAB I and WAB II models all showed a negative correlation with
land use intensity in the central parts of ZP and a positive correlation in southern and
northern Hongyuan County. Unlike the InVEST model, both models showed that WR
services were positively correlated with Hongyuan County’s GDP. At the same time, they
were negatively correlated with GDP in the eastern parts of Ruoergai County and most of
Luqu County. In addition, population density also significantly inhibited WR service in the
northeastern part of Aba County and the central part of Hongyuan County.
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The WR of the PRS model positively correlated with land use intensity in the central
part of ZP and northern Luqu County. The GDP in Maqu County and population density in
the central part of ZP increased the WR of the PRS model. In addition, the WR capacity of
the NBS model was equally as positive with land use intensity in Hongyuan and Ruoergai
counties as of the InVEST model. In addition, WR capacity had the least negatively
correlated area with the GDP, mainly in the northeastern part of Hongyuan County and the
southeastern part of Luqu County. Furthermore, most central and eastern areas represented
a negative relationship between WR ability and population density.

4. Discussion
4.1. Model Uncertainty and Applicability

The WAB I model takes the difference between precipitation and evapotranspiration
as the WR service, which is consistent with the principle of the water yield module in
the InVEST model. However, 30% of precipitation flows out as runoff in the growing
season, so neither the WAB I model nor the water yield volume can be used as the actual
WR volume of ZP [25,27]. The WAB I model and water yield module are more suitable
for arid and semiarid areas where water budgets mainly depend on precipitation and
evapotranspiration [38]. In addition, WR is the infiltration amount of the soil layer after
precipitation minus evapotranspiration and surface runoff [42]. Therefore, the InVEST
and WAB II models take soil infiltration over time as the WR service. However, the total
WR volume of wetlands was the lowest by the InVEST model. The main reason was
that many pixel values of lakes and rivers were zero by the water yield module and the
InVEST model [15]. Therefore, the InVEST model may have uncertainty in assessing WR
service volume in this study. In addition, the WR of the PRS model was mainly affected
by precipitation and the parameters input to the model. We used the general parameter
“0.6” as the proportion of precipitation that can generate runoff. However, observation data
showed that evapotranspiration accounts for more than 60% of the annual precipitation,
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meaning that the amount of water stored in an ecosystem is less than or equal to 40% [27,41].
Therefore, the actual volume of water storage should be lower than estimated. The WAB
II model may be the most accurate for WR volume despite five WR models showing a
consistent spatial pattern. Furthermore, the primary indicator of the NBS model is NPP
data, contributing the most to the WR values [10]. Herbaceous marsh accounted for 91.43–
92.20% of wetland areas from 2000 to 2015. The high value of NPP was more extensive
along rivers and wetland vegetation growth areas, where herbaceous peat bog soils are
abundant [43]. However, the ZP has higher vegetation cover, prosperous plant communities,
and ecosystem types than other regions, as well as a complex plateau landform landscape.
Water bodies with vegetation cover were easily classified as vegetation in remote sensing
data, which could cause uncertainty in the results of the NBS model [44,45]. Vegetated
marshlands are probably the only spectrally unique wetland category that can be discerned
from TM and ETM+ imagery [46]. Furthermore, monitoring suffered due to frequent
variable weather and thick clouds, resulting in a lack of long–time series data in the
QTP [45]. Therefore, high temporal and spatial resolution remote sensing products on
alpine ecosystems, including land use and vegetation characteristics data, contribute to the
WR service simulation.

4.2. Spatial–Temporal Patterns of WR Service

We investigated the WR service’s spatial–temporal patterns from 2000 to 2015 with
five WR models. The annual WR service had similar spatial patterns to the distribution
characteristics of precipitation in the InVEST, PRS, WAB I, and WAB II models. The
mountainous southern areas receive more rain than the plains, and the distribution of
precipitation across the region increases gradually from >500 mm in the north to >1000 mm
in the south. In addition, these four models also displayed higher values distributed in the
high-altitude regions, with the central and northern regions having lower values, consistent
with previous studies [29]. Under limited spatial data conditions, the WAB I model best
shows the WR’s spatial pattern since only precipitation and evapotranspiration raster data
are required as inputs. From 2000 to 2015, the increased region by the WAB I and WAB
II models performed a northwest–southeast distribution. Differing from the study that
increased in the Aba and Ruoergai counties from 2000 to 2017, and this may be due to
the different data sources and change analysis methods [29]. In addition, the WR of the
InVEST and PRS models increased widely in the northwest of ZP. The results showed that
the WR’s changing area (increase or decrease) calculated by the InVEST model was more
significant than that of the WAB II model [15,18]. High WR values are presented in river
network patterns by the NBS model, mainly affected by the distribution of the NPP value of
herbaceous wetlands [43]. From 2000 to 2015, wetlands’ total WR ability decreased because
the entire marsh NPP dropped [47]. Therefore, this model is suitable for identifying the
WR capacity of herbaceous wetlands.

4.3. Driving Forces of WR Service

WR service is one of the most critical regulation services in ecosystems. It can be
affected by climate change and anthropogenic perturbation. A warming and drying trend
has occurred in the upper Yellow River, and increased evapotranspiration has caused water
loss due to rising temperature [41]. The primary relationship between WR service and
precipitation was positive for all five models and determined the spatial–temporal pattern
in the InVEST, PRS, WAB I, and WAB II models. Precipitation decreased in the eastern and
southern parts of the ZP, consistent with the WR service’s spatial changes by InVEST from
2000 to 2015. Therefore, precipitation remains this model’s critical driver of WR service
changes [15]. In addition, the WAB I and WAB II models showed negative correlations with
evapotranspiration over 71% area of ZP. The variation in WR values was consistent with the
spatial variation in evapotranspiration. Therefore, the spatial variation in the WR service
in these two models was mainly related to evapotranspiration. WR of the PRS model had
a positive relationship with evapotranspiration. The evapotranspiration decreases, and
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the water storage of the ecosystem increases. Peatlands with carbon-rich soils have been
characterized in convergent areas of greater EEMT and positively correlated with annual
baseflow contributing to headwater stream runoff [48–50]. EEMT was negative in most
wetland parts, mainly in the western Ruoergai County and the eastern Maqu County, by
the PRS, InVEST, and NBS models, while positive in the WAB I and WAB II models. The
WAB I and WAB II models may better reveal the wetland region’s climate drivers. The
reason may be that the PRS model evaluates the capacity of an ecosystem to regulate water,
while the WAB I and WAB II models simulate the water stock of the ecosystem, both above
and below ground [51]. Baseflow expressed an increasing trend with climate warming,
which means water storage may become smaller [50]. Furthermore, the InVEST model
needs to estimate the wetland accurately [15]. The correlation distribution between the NBS
model and climate factors existed consistently, indicating that WR services were affected
mainly by NPP data input and its changes [9,47].

Warming and drying trends may convert wetlands to grassland, but overgrazing, gully
drainage, and peat mining are the main factors [52,53]. Since the 1960s, nearly 1000 drainage
channels have been built in the Zoige wetlands, which drain groundwater, slow subsurface
flow except in the rainy season, reduce the quality and area of wetlands, and lower the
adjacent water table [25,47,49]. Researchers have shown that the mean annual runoff depth
from the White (Black) River decreased by 28% (35%) in the human-induced period [25].
From 2000 to 2015, 129.56 km2 of wetland areas mainly transformed into grassland, bare
land, and built-up land, which altered water purification processes and weakened the
capacity of soil to regulate and store water. Furthermore, this region implemented many
measures and policies, including rotational and restricted grazing, filling ditches, planting
grasses, and forbidding peat mining [47,54]. Afterward, the amount of wetland, grassland,
and forestland areas increased, which can help to conserve water and soil [55]. Compared
to natural factors, the relationship between socioeconomic factors and WR services is
relatively weak, possibly due to the small spatial scale of the study area [11]. However,
these human disturbances should be considered in future WR service evaluations.

In addition, precipitation, evapotranspiration, infiltration, and runoff impact the water
budgets in watersheds [56]. The White River and Black River watersheds, the basic unit
of the Earth’s land surface system, constitute important WR functional areas in the upper
Yellow River [57]. Additionally, the region is transitioning between seasonally frozen
ground and permafrost. The boundaries between seasonally frozen land and permafrost
are changing due to temperature increases, which impact the downstream water supply [41].
For a cold region, glaciers, snowmelt, and permafrost (frozen water components) are also
essential parts of the water budget. However, the models discussed in this study may not
have an adequate process to capture those budgets. Beyond that, various uncertainties exist
in remote sensing data, especially in alpine regions; therefore, an integrated, distributed,
and multiscale observation dataset is essential [44,45]. Comprehensive management of the
Heihe River Basin in China through coupling ecohydrological and socioeconomic models
undoubtedly provided scientific methods and ideas for watershed management in the
Zoige Plateau.

5. Conclusions

This study compared five WR service evaluation models in terms of spatial–temporal
patterns and driving factors from 2000 to 2015 based on spatial analysis and statistical meth-
ods. The InVEST, PRS, WAB I, and WAB II models showed similar spatial patterns of an
increasing trend from north to south determined by the spatial distribution of precipitation.
The WAB II model might be the most suitable because the InVEST model underestimates
WR service due to weakening simulation in the wetland regions. The PRS model overes-
timates the proportion of precipitation that can generate runoff. The WAB I model lacks
runoff procession but is the most convenient for showing a spatial pattern. The WAB I and
WAB II models were better at revealing the overlapping effects of climate drivers in the
wetland regions. However, the NBS model presented a river network pattern of high values
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over the past 16 years. More accurate NPP spatial data in identifying herbaceous marsh
areas are essential for the assessment results of the NBS model. In addition, artificial ditch
construction and ecological restoration measures should be included in evaluating WR
services. The development of integrated watershed models in the alpine wetland region is
needed.
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