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Abstract: Wildfire is a hazardous natural phenomenon that leads to significant human fatalities,
catastrophic environmental damages, and economic losses. Over the past few years, the intensity and
frequency of fires have increased worldwide. Studies have been conducted to develop distinctive
solutions to minimize forest fires. Systems for distant fire detection and monitoring have been
established, showing improvements in data collection and fire characterization. However, wildfires
cover vast areas, making other proposed ground systems unsuitable for optimal coverage. Unmanned
aerial vehicles (UAVs) have become the subject of active research in recent years. Deep learning-
based image-processing methods demonstrate improved performance in various tasks, including
detection and segmentation, which can be utilized to develop modern forest firefighting techniques.
In this study, we established a novel two-pathway encoder–decoder-based model to detect and
accurately segment wildfires and smoke from the images captured using UAVs in real-time. Our
proposed nested decoder uses pre-activated residual blocks and an attention-gating mechanism,
thereby improving segmentation accuracy. Moreover, to facilitate robust and generalized training, we
prepared a new dataset comprising actual incidences of forest fires and smoke, varying from small
to large areas. In terms of practicality, the experimental results reveal that our method significantly
outperforms existing detection and segmentation methods, despite being lightweight. In addition,
the proposed model is reliable and robust for detecting and segmenting drone camera images from
different viewpoints in the presence of wildfire and smoke.

Keywords: drone; encoder–decoder; forest fire and smoke segmentation; deep-learning

1. Introduction

Fire disasters cause significant harm to human life and property. Therefore, it is critical
to establish appropriate, swift, cost-effective, and portable fire-detection systems for the
general public. Several studies have been conducted to develop efficient and low-cost
fire-detection systems.

The Korean Statistical Information Service reported that approximately 40,300 fire
incidences were recorded and identified by the National Fire Agency South Korea in 2019.
A result of such fires cost approximately USD 688 million in losses, injuring 2219 people
and killing 284 [1].

Wildfires have damaged millions of hectares of land, forest resources, and livestock.
They are among the most detrimental and catastrophic natural disasters in the US. Ac-
cording to the National Interagency Fire Center, wildfire summary and statistics reported
that approximately 58,985 wildfires occurred in the US in 2021, compared with 58,950 in
2020. In terms of land losses, the wildfires in 2021 consumed approximately 7,125,643 acres
compared with 10,122,336 acres in 2020 [2].

Deep learning-based image processing techniques show improved performance in a
variety of tasks, including detection [3] and segmentation [4], which can be used to develop
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wildfire- and smoke-processing techniques. UAVs occupy a central role in important
missions owing to their distinct capabilities. The key feature of drones is that they can
be automatically controlled by humans or software with sensor technologies and a global
positioning system. Recently, distant sensing techniques have been combined with UAVs
for the early detection of wildfires. This combination has received global attention and can
serve as an alternative to conventional and current wildfire-detection systems. Alternatively,
drones with computer-vision-based remote sensing systems are gradually becoming the
best option for detecting and monitoring wildfires. They are specifically known for their
mobility, speed, safety, and cost-effectiveness [5]. Additionally, they are unique because
they adhere to the specific criteria for spectral and spatial-temporal resolution. Such systems
can perform prolonged and routine functions that would be impossible for humans. They
cover an extended range of gathering and delivering intuitive and accurate information
within specific economic resources.

The classification and segmentation of computer-vision-based wildfire and smoke
detection systems have increased significantly in recent years [6]. For decades, the primary
reason behind such an increase has been the tremendous evolution of deep learning
(DL) and machine learning techniques. Computer-vision-based fire-detection systems
provide data within a limited period and can easily cover a relatively broad area. Different
approaches have been developed to detect wildfires. The approaches are classified based
on different attributes (such as motion, texture, and color) used by them for fire detection.
It has been demonstrated that DL algorithms are efficient and perform satisfactorily; they
provide optimal performance for fire detection and segmentation. However, they exhibit
certain drawbacks, such as the false detection of fire pixels and false alarms. DL techniques
yield significant results in terms of fire detection. They are specifically employed to study
the geometrical features associated with wildfires, such as width, shape, angle, and height.
Additionally, they are used to detect the color of wildfires and have achieved promising
results in segmenting and classifying wildfires [7,8]. Several studies are being conducted
to further investigate the application of DL techniques for wildfires. These methods
utilize input images to determine the exact shape of the fire. Such images are captured
using traditional visual sensors and yield favorable results. However, the usefulness of
such methods for detecting and segmenting forest fires using UAV images has not been
confirmed. It is also a matter of concern whether such methods can yield efficient results
for multiple problems in forest fires, such as image degradation, background complexity,
and small objects.

This paper describes how a proposed encoder–decoder can be used to segment forest
fires and smoke using a novel encoder–decoder framework.

In our proposed approach, we have modified EfficientNetv2 [9] with a novel attention
gate (AG)-based nested network to construct the segmentation network. The encoder
consists of two-path nested CNNs that capture the semantics and contextual information of
the input image to generate feature maps. Our novel nested decoder decodes the aggregate
feature maps to classify the events and output accurate segmented images. Additionally,
we designed the proposed method to be lightweight using depth-wise convolutions, so it
can be utilized in real-time. The proposed method was evaluated against several state-of-
the-art detection methods on publicly available datasets. The experimental results show
the effectiveness and superiority of the proposed method in terms of accuracy and speed.

The aspects of our study are as follows:
1. The proposed two-pathway architecture considers spatial details and categori-

cal semantics separately, such that it can be used for real-time fire and smoke instance
segmentation;

2. Pre-activated residual blocks and AGs are used to design a novel nested decoder to
improve segmentation accuracy;

3. A new lightweight network based on depth-wise convolutions is proposed to
augment the receptive field and capture useful contextual information;
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4. The proposed network satisfactorily generalizes the dataset using a combination of
datasets and an encoder–decoder network to segment forest fires.

The paper is structured as follows: Section 2 summarizes previous reviews about
the traditional, deep learning, and UAV methods applied to wildfire and smoke studies
and article-search strategies; Section 3 presents a detailed description of the detection
and segmentation of our model and details the specifics of the drone used in our experi-
ments; Section 4 describes the dataset and experiments and presents the results achieved;
subsequently, Section 5 provides a discussion, and Section 6 provides the conclusions.

2. Related works
2.1. Traditional and Deep Learning Methods

Several scholars have contributed to fire-detection development, including vision-
sensor-based and conventional fire alarm systems. Fire detection in conventional fire alarm
systems requires several environmental sensors, including smoke, heat, and photosensitive
sensors [10–12]. However, the techniques for conventional fire alarm systems are only
effective for fire detection close to the fire, such as when used indoors; however, they fail
when used at a long distance, such as outdoors. Moreover, a conventional fire alarm system
cannot offer a fire alert or indicate the speed at which the fire is burning. Human interven-
tion is required in conventional fire alarm systems, such as inspecting a fire spot to confirm
the presence of a fire in an alert situation. The authors have developed several optical-
sensor-based fire-detection techniques [13,14] to overcome these problems. Traditional fire
detection (TFD)- and DL-based approaches are the two primary types of vision-based fire-
detection systems; TFD is more common. TFD-based approaches function based on digital
image processing and pattern recognition techniques. Handcrafted feature extraction in
TFD-based approaches is time-consuming and labor-intensive, although these techniques
cannot attain high accuracy. The use of CCTV surveillance systems with DL-based ap-
proaches is necessary for fire detection, and completely automated characteristics and an
extraction method can improve the efficiency and safety of these models.

These models are efficient and dependable owing to the extraction procedure. A
comparison between the DL and TFD models reveals that the DL models have higher
reliability and lower error rates. Xu et al. [15] proposed a deep neural network to identify
forest fire areas in a shot, which was later implemented in a deep neural network. For
the smoky saliency map, they merged the salient regions at the pixel and object levels in
the CNN model. They established a fire-detection system based on vision transformers
and separated a picture into comparably sized patches to reveal a long-range connection.
Muksimova et al. [16] developed an attention-guided capsule network-based fire and
smoke classification approach that used CCTV to capture outdoor fire/smoke incidents,
which plausibly works for single fire and smoke incidents at different outdoor distances.
Recent studies have contributed to developing various DL-based fire-detection approaches;
all the approaches have achieved excellent accuracy in practical applications. Furthermore,
detection accuracy must be improved, and the number of false alarms must be minimized to
protect people and prevent property damage. Moreover, these models are computationally
demanding and require sophisticated graphics processing units (GPUs) and transputers.

2.2. UAV-Based Fire Segmentation Methods

In recent years, many researchers have addressed the characteristics of remote-sensing
images by proposing a high-resolution method [17–19]. With deep learning models, it
is currently possible to segment fire pixels and determine the exact shape of a flame or
smoke from various aerial images. Many modern models, which focus on areal images
from drones, implemented domain adaptation [20,21], as a method for enhancing a model’s
performance [22] on a target domain with inadequate annotated data [23,24], by applying
the knowledge the model has acquired from a related domain with sufficient labeled
data. In regards to the classification and segmentation of wildfire, an encoder–decoder
U-Net-based method [25] was proposed by [26]. This method received an 87.75% score and
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proved to be effective in segmenting wildfires, while determining the exact flame shapes
by implementing a dropout strategy and the FLAME dataset [26]. Another proposal for
smoke and fire segmentation, the VGG16 method, has been introduced [27]. With 93.4%
accuracy and a 21.1 s time segmentation for every picture, the VGG16 method proved to
be more effective than the previously mentioned models, which used techniques of data
augmentation such as crop, flip, rotation, changing brightness/contrast, and adding noises.

Barmpoutis et al. [28] suggested a new sensing system for smoke and fire segmentation,
which covered 360 degrees remotely. The RGB 360-degree images that a UAV collects were
used in this system. For the smoke and flame region detection, encoder–decoder detectors,
two DeepLab V3+s [29], and Atrous Spatial Pyramid Pooling were implemented. This is
followed by the application of an adaptive post-validation to reject regions with specifically
identical characteristics of false or positive smoke and/or flames. Experiments, which used
different degrees of urban and forest area images, performed better than existing methods
such as DeepLabV3+ and reached 94.6%. All these results demonstrated how the proposed
method can successfully reduce the rate of false-positive errors and segment both smoke
and fire efficiently.

3. Proposed Method

The two-stage architecture based on the segmentation networks of feature extraction
networks is shown in Figure 1. The first step is the feature extraction segmentation network,
and the second step is the segmentation process. Next, a brief overview of the following
research topics is provided: feature extraction (Section 3.1), attention gateway (Section 3.2),
parallel branches (Section 3.3), and segmentation network (Section 3.4).
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3.1. Feature-Extraction-Network Backbone

The foundation of the proposed method comprises an encoder that uses our rec-
ommended two-way feature pyramid network as a transmission mechanism. In every
segmentation network, the encoder is the fundamental building element. A powerful
encoder must have a large representative capacity. Our goal is to establish a fair balance
between the variable count and the computational power in a network’s representational
capacity. EfficientNets, a relatively new class of designs, has exceeded existing networks in
classification tests, while using fewer number parameters and floating-point operations per
second than previous networks. It leverages compound scaling to effectively increase the
size, breadth, and resolution of the network over its nodes. Hence, we planned to develop
an encoder with a layered decoder on top of this scaled architecture, widely known as the
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EfficientNetv2 model. EfficientNetv2 was selected because it is the most efficient network
in the EfficientNet family that can be trained and tested within a reasonable period, i.e.,
it includes comparatively fewer parameters, 18 million parameters, which is 7.7 times
decreased and has 10 times higher speed than squeeze-and-excitation (SE) models [30].

In most cases, this model may be entirely replaced with any EfficientNet model, if it is
selected based on the computing capabilities of available resources and the computational
cost. First, we removed the classification head and SE links in the network to adapt Effi-
cientNet to our work. We discovered that the precise modeling of interdependencies across
channels of fully convolutional maps, enabled by the SE connections, suppresses feature
localization in favor of contextual components in the fully convolutional maps. Adding SE
connections to our core would undermine segmentation effectiveness, which necessitates
this and the previously mentioned characteristic of a classification network. In addition, we
used synchronized in-place activated batch normalization (iABN sync) to substitute for the
existing batch normalization layers [31]. Performing multi-GPU training enables different
GPU synchronizations across and, thus, yields more accurate gradient figures. Moreover,
additional GPU memory is made available by performing in-place operations. The Effi-
cientNet encoder comprised seven blocks, as shown in Figure 1. According to the left to
right, each block is denoted as Block 1 through Block 7. The down-sampling parameters of
4 × 4, 8 × 8, 16 × 16, and 32 × 32 are generated from Blocks 2, 3, 5, and 7, respectively. Our
two-way feature pyramid network (FPN) receives inputs from the down-sampled outputs
of these blocks [32]. The standard FPN, utilized in other segmentation networks, is de-
signed to solve a multiscale feature merge by combining the feature parameters of various
resolutions in a nested manner. The 1 × 1 convolution encoder decreases or increases the
number of output channels to a specific amount, 256. Next, the lower quality features are
up-sampled to a higher resolution before the combination. For example, encoder output
aspects from a ×32-bit resolution are shrunk to a ×16-bit resolution and appended to the
encoder network output features from a ×16-bit resolution. As a final step of the encoder
part, a 3 × 3 convolution layer is applied at each scale to aggregate the fused aspects,
which results in learning the C4, C8, C16, and C32 outputs. In this FPN architecture, only
a restricted unidirectional flow of information occurs, leading to an inadequate fusion of
multiscale characteristics. To minimize this difficulty, by introducing an additional network
that collects multiscale features from the bottom to the top to enable a two-way data flow
in our proposed bidirectional FPN, two parallel branches are connected.

The 1× 1 convolution is combined with 256 output filters at each scale to minimize the
number of channels in each branch. As shown in pink in our architecture, the descending
branch follows the right-to-left aggregation approach of the standard FPN. The lower-
resolution encoder output is added to the lower-resolution down-samples from the yellow
bottom-to-top branch; this reduces the clarity of the higher-resolution elements by a factor
of two. For example, there are several approaches in which encoder output characteristics
from the×8 resolution may be expanded to include elements from the×4 resolution. In the
next step, the outputs from the bottom layer to the up layer and top layer to the down layer
per resolution are suitably concatenated and connected through a 3 × 3 convolution layer,
which consists of 256 output channels, to receive the results from C4, C8, C16, and C32.

3.2. Attention Gate

AG can be compared to the human vision focus system in terms of performance.
The concentration coefficient, αi, which is in the [0, 1] range, reduces the reactions to
unnecessary previous knowledge, while gradually increasing the responses to essential
background features’ parameters for the specific activity by automatically concentrating
on the region of interest (ROI). AG f 1̂ produces the following result, by combining input
feature maps and attentiveness coefficients element by element.

f̂ l
i,nl =

{
f l
i,nl ·α

l
i

}m

i=1
(1)
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In Equation (1), f l =
{

f l
i,nl

}m

i=1
denotes the feature for class nl and pixel i in layer l, and

mi = 1 denotes the number of features. For the pixels in the layer, each pixel has an
f l
i ∈ RFl value, where Fl is the amount of feature maps in the layer. Multidimensional

concentration coefficients are employed for the several semantic classes, for each AG to learn
to concentrate on a portion of the target structure. The AG architecture (red box) is depicted
in Figure 1. A gating vector giεRFg is employed with RFg to establish the focus area for each
pixel i. It does this by exploiting contextual information to inhibit the lower-level feature
response. Instead of using multiplicative concentration [33], additive attention is used to
obtain the gating coefficient [34]. The recent is treated as matrix multiplication, making
its speed high and more memory-effective than the original. Moreover, experiments have
shown additive attention to be more accurate than multiplicative attention. Our network
attention is expressed as:

Al = ψT(σ1(LT
f f l

i + LT
g gi + bg)) + bψ (2)

σl
i = σ2

(
Al
(

f l
i , gi; Θ

))
(3)

where σ1( fi,nl) = max(0, f l
i,nl) is the rectified linear unit, and σ2

(
f l
i,nl

)
= 1

1+exp
(
− f l

i,nl

) is a

sigmoid activation function. Its characteristics are defined by a set of variables Θ, which in-
cludes the following parameters: linear transformations L f ε RF1×Fint , Lgε RF1×Fint , ψ ε RFint×1

and bias terms bψε R, bgε RFint . Convolutions of the input tensors are performed channel
by channel using channel-wise 1 × 1 × 1 convolutions. It is possible to apply standard
backpropagation updates to train the AG parameters.

3.3. Parallel Branches

The encoder portion of the algorithm progressively decreases the input scale of the
picture to plot the final feature map. It is necessary to debug a prediction map of a similar
scale as the original picture from this reduced feature map because of the decreased feature
size. Consequently, we employed layered parallel branches to accomplish our goal, as
shown in our architecture. Several parallel branches exist, but the most common type
comprises a concatenation of AGs [35], the residual block that was pre-activated, and up-
sampling in combination. The encoder output is significantly smaller than the original input
picture; therefore, it is extended in the expansion route by utilizing transposed convolutions
to compensate for the size difference. These expansion route characteristics are integrated
with the contraction path’s characteristics; older approaches such as UNet involve direct
concatenation to achieve this combination. UNet architecture has a direct connection that
forces aggregation exclusively at the same-scale feature maps of the encoder and decoder
subnetworks, imposing an unduly restricted fusion method. With this kind of limitation,
we cannot make the network contain local and global information and advanced features.

To our network by including additional parallel branches to the decoder subnetworks,
the skip connections are redesigned to aggregate features with different semantic scales,
creating a highly flexible feature-fusion technique. However, this is not necessarily the most
effective integration method, without considering the relative relevance of high- and low-
level properties. The network may become confused because of the cryptic and misleading
information that is provided, resulting in incorrect network segmentation. Another vital
part of the proposed design is the residual block described below. The residual block
comprises a convolution layer and a skip connection, among others. Using this skip link,
the low- and high-level data are combined additively, alleviating the vanishing gradient
problem in deep networks. During the pre-activation phase of the ResNet architecture [36],
LeakyReLU [37] and batch normalization operations are moved before the convolution
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operation is performed. As shown in Figure 1, the pre-activation residual network resulting
from this calculation is expressed as follows:

R(y) = B(y) + x (4)

In Equation (4), x and B(y) are the input and output of the pre-activation residual
block, respectively. Upon summation, the final output of the residual network is repre-
sented by R(y). The pre-activation method simplifies network training because it makes
the network more responsive. The picture size input into the generator framework is
512 × 512 pixels, as specified by the user. The design utilizes the EfficientNetB4 model,
which has been pretrained on ImageNet as an encoder, and a parallel network as a decoder.
Figure 1 shows the encoder network, resolution, expansion ratio, kernel size, and number
of connections in depth. In the encoder structure, max pooling is used to compress the
picture dimension up to 8 × 8 × 448 pixels, followed by a residual network to complete
the transformation. On the other side, the decoder comprises a residual network, an AG,
and up-sampling, which are concatenated. The dropout values for the bottom two lay-
ers of the decoder are 0.25 and 0.1, respectively. To obtain the final prediction map, a
1 × 1 convolution is performed after the decoder, followed by sigmoid activation.

The network can be trained using a combination of loss functions, including dice LD
and binary cross-entropy LC, to maximize performance. This loss function steered the
framework to achieve precise segmentation, significantly improving the segmentation of
smoke and fire. The segmentation loss

(
LJ
)

is determined using Equation (5):

LJ = β1LD(sptp + β2LD(sg, tg) + β3[LC(sp, tp) + LC(sg, tg)] (5)

where sp, tp, sg and tg represent the predictability ground truth labels and predictability
map for the forest smoke and fire, respectively. Weights are represented using numbers 1,
2, and 3, which were experimentally structured as 0.4, 0.6, and 1.0 with the experimental
results of the validation set. Since the fire segmentation was more challenging than the
smoke segmentation, the weights assigned to the fire contribution exceeded those assigned
to the smoke contribution. The dice coefficient loss indicates the overlap between the
expected output and ground reality. Equation (6) is an example of this loss:

LD(s, t) = 1−
2 ∑i

c=1 sctc
i
c=1sc·tc

Σi
c=1(sc)

2 + Σi
c=1(tc)

2 (6)

where i is the total number of pixels in the image, the binary ground truth mask t = [0, 1],
and the foretold probability map s = [0, 1]. The discrepancy between the forecast output
probability’s density function and the regression coefficients’ distribution is calculated
using the binary cross-entropy function.

This function is expressed as follows by Equation (7), where R(sc) is shown to be the
residual block regression coefficient:

Lc = ∑i
c=1− log(R(sC)) (7)

3.4. Segmentation Network

Figure 1 depicts how the segmentation head of our proposed network instance func-
tions. Two steps are included in our network. Convolutional networks generate rectangular
feature recommendations and an objectless value for the FPN input layer, as shown by the
region proposal network (RPN) module in our architecture. Next, the ROI aligns [38] with
the used feature concepts to derive features from FPN encodings by directly combining the
14 × 14 spatial information from the nth channel, which is limited by the proposed feature
concept. Subsequently, the collected attributes are input into networks that require feature
categorization and mask segmentation, among other techniques. While training the Mask
R-CNN instance, loss functions are recommended to train the segmentation component.
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Two-loss functions are used for the first step of objectivity, estimation loss, and a one-loss
function is used for the second step of mask segmentation, classification. A set of optimistic
and unfavorable matches are randomly selected such that |Ni| ≤ 256. The abjectness score
loss, log, is determined as the logarithmic loss for a proposed Ni.

LL(Θ) = − 1
|Ni| ∑

( f ∗L , fL)∈Ni

f ∗L ·log fL + (1− f ∗L )· log(1− fL) (8)

Here, f ∗L is the loss of object estimation, fL is the mask segmentation, and classification loss.
The first approach involves using the objectness score branch of RPN to obtain the

objectness score. The second approach requires using the ground truth label to determine
the ground truth. To define the positive and negative matches, we used Mask R-CNN
(the same method). There are predefined criteria, denoted as TH and TL, where TH is
greater than TL. Geographic features, which are considered low-level information, are
processed during the first step. Therefore, a high channel capacity is required for this
branch to encode a large amount of spatially precise information. Since the Detail Branch is
only concerned with low-level details, we may generate a shallow structure with a short
stride for this branch to accommodate this concentration. The central theme of the Detail
Branch is to utilize large channels and shallow layers for the spatial features of the scene.
Furthermore, the spatial area and number of channels of the feature representation in
this branch are significant. Consequently, it is preferable to ignore residual connections,
which increase memory access costs and deteriorate the performance of the system. The
second stage works in combination with the first stage, and the second stage is intended
to capture high-level semantics. This branch has a limited channel capacity; however, the
first stage may provide spatial information absent in this branch. Based on our tests, the
Semantic Branch had a ratio of (1) channels in the first stage, resulting in a lightweight
branch size that is somewhat small. The fast-down sampling approach is used in the second
stage to enhance the feature representation and expand the receptive field as rapidly as
possible. High-level semantics necessitate the use of a broad receptive field. Thus, the
second approach leverages global average pooling (Liu et al., 2015) [39] to integrate the
global contextual reaction within the global contextual response.

3.5. Drone

Drones were used to generate a dataset of aerial images of forest fires. For the case
studies, we have used a DJI Mavic 3 [40] UAV (Quadcopter). DJI Mavic 3 has a dual-camera
setup in a 3-axis gimbal, i.e., a 20 MP wide-angle camera with 4/3” CMOS and a 12 MP
telephoto with 1/2” CMOS and 28x hybrid zoom. The camera setups provides a high
resolution (e.g., 5.1 K), high frame rate (e.g., 120 fps), and high dynamic range. As a result,
it can handle nearly any lighting condition and deliver low-light footage with less noise,
which is essential for extreme cases of fire and smoke. Moreover, it provides obstacle
avoidance system with auto-tracking of subjects and can cover almost 9.3 miles during
aerial maneuvers, which makes it a suitable candidate for the UAV for this study. The
specifications for the UAV are provided in Table 1.
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Table 1. Drone specifications.

UAV-Platform

Parameters Specifications

Max. flight time 46 min

Takeoff weight 895 g

Battery Lithium-Ion Polymer (LiPo)
battery: 5000 mAh/77 Wh

Camera

Hasselblad L2D-20C

Sensor 4/3” CMOS Sensor

Image size 5280-3956, 20 MP

Focal size 24 mm

f/number f/2.8 to f/11

Video format 5120 × 2700 p

Image format JPEG/DNG

4. Experimental Results

First, we present the typical performance measures applied for empirical evaluations
and briefly explain the datasets used as a basis for comparison. Thorough quantitative
comparisons, benchmarking data, and comprehensive ablation research on the different
architectural aspects are presented. Subsequently, the results of our qualitative and visual
evaluations of wildfire segmentation are presented for each dataset.

4.1. Implementation Details

Our training setup was based on the PyTorch framework [41], with Tensorflow as
the backend; it was trained with the following configuration. The generator network was
optimized using the Adam optimizer [42]. We performed experiments on a device with an
NVIDIA Geforce RTX 3080 Ti GPU. The test equipment was implemented using an Intel®

Core™ i7-11700K 3.60 GHz central processing unit (CPU). The software specifications of
the test environment include CUDA 11.1, cuDNN 8.1.1, and Python 3.8.

4.2. Datasets

Several firefighting organizations currently use DL-based fire-detection systems. Gen-
erating or locating a large dataset with minimal prejudice is the most challenging task in
machine learning research. Ideally, such a dataset would include positive instances with
significant feature variations and unfavorable instances comprising standard and complex
samples. DL methods require larger datasets for training compared with traditional ma-
chine learning methods. Data augmentation methods may be valuable in this situation;
however, they must be applied to a sufficiently large dataset to be effective. For example,
cancer detection, face recognition, and object recognition are well-developed areas with
massive datasets constructed and approved by the community. They are useful in develop-
ing and benchmarking new algorithms in their respective fields based on the information
included in these datasets. Current widely used fire-detection datasets do not contain other
information, such as the smoke area, captured area, vegetation type, prevailing hue, and
the intensity of the fire texture. Aerial forest fire images are available in some datasets (for
example, the Flames dataset [26]), but they are restricted. In studies on wildfire UAVs, there
is a need to generate a dataset to develop algorithms for wildland-fire support systems.
The performance of the model is influenced by data preparation, suggesting that some
labeling techniques facilitate the recognition and identification of wildfire patterns and
features [43]. To mitigate this problem, we collected publicly available wildfire images from
the Internet and YouTube videos and compiled them for detection and segmentation. (Our
dataset is publicly available at https://github.com/ShakhnozaSh/Wildfire-NET). The new

https://github.com/ShakhnozaSh/Wildfire-NET


Remote Sens. 2022, 14, 6302 10 of 20

dataset comprised 37,526 images, which were classified for training, validation, and testing.
Figure 2 presents an overview of the most critical fire research datasets.
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4.3. Training Details

We trained our network using image data with a resolution of 512 × 512 pixels and
performed a limited number of random input augmentations, such as data flipping and
scaling, within [0.5, 2.0]. EfficientNet values were used to form the backbone of our
structure, and the parameters for the iABN sync layers were initialized to 1 to initialize the
other layers. We utilized Xavier initialization [44]. There was no set start for the bias, and
the Leaky ReLU had an incline of 0.01. In addition, we used Leaky ReLU with an incline
of 0.1. To train our method using stochastic gradient descent in the momentum of 0.9, we
applied a multistep learning-rate plan that started with base supervised learning. The
system was built for specific iterations before decreasing the learning by a factor of 10 at
each milestone. Training continued until convergence occurred. Iterations and milestones
are denoted as ti in the following notation:

{
lrbase,{milestone, milestone}, ti

}
. An Initial

warm-up phase was performed in which lrbase was linearly increased from 1 3·lrbase to
lrbase in 200 iterations, beginning at 1 3·lrbase before commencing the training session. The
system was built for an additional 10 epochs with a predetermined learning algorithm of
lr = 10−4, in addition to freezing the iABN sync layers. For input sizes of 320 × 320 and
512 × 512, we used the ResNet-101 backbone to train our model. The total training time
was 3–6 days. For the EfficientNet backbone, the total training time was 5 days with an
input size of 512 × 512.
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4.4. Process Speediness

As our metrics calculation in the proposed work used Average Precision (AP), AP50mask,
and AP75mask and Frames Per Second (FPS), one technique to condense the PR curve
into a single value is to use average precision, while the second metric is the FPS metric
or the inverse of the Seconds Per Frame metric. The IoU threshold is set at 50% or 75%,
respectively, and is referred to as AP50mask and AP75mask. The major metric utilized
to assess segmentation performance was the DICE similarity coefficient. For analysis,
the mean, median, and standard deviation of DSC were produced. Similar to this, DSC
values for the proposed work trial were reported in data tables to show the relationship
between the performance of segmentation inside each resolution of images. Based on this
comparison, we found that our model outperformed the current best models in terms of
inference speed. The interference duration of a single picture was calculated using a batch
size of 1 and the total CNN and NMS times for 1000 images divided by 1000, to obtain the
inference time of a single image using a batch size of 1. Specifically, we used EfficientNet
reduced to the proposed approach and developed two versions: the fast version with an
input size of 320 × 320 and the standard version with an input size of 512 × 512. Our
model, which is based on PyTorch optimization, can produce accurate results within a short
period. The improvements presented in Table 2 are for the case when one-stage detection is
combined with our proposed multilevel structure. The resulting speed–accuracy curve is
superior to those of existing approaches. In addition, Table A1 provides information on the
average and standard deviation based on the resolution of the training image.

Table 2. Comparison of speed and accuracy with other models.

Method Backbone APmask FPS Time

FCIS w/o mask voting EfficientNet 27.8 9.5 105.3

Mask R-CNN (550 × 550) EfficientNet 32.2 13.5 73.9

FC-mask [45] EfficientNet 20.7 25.7 38.9

Yolact-550 [46] EfficientNet 29.9 33.0 42.1

SOLOv2 EfficientNet 38.8 31.3 42.1

Proposed method EfficientNet 40.01 33.9 24.0

4.5. Comparison with State-of-the-Art Methods

We begin by evaluating the proposed approach compared to the state-of-the-art meth-
ods on our gathered dataset drone wildfire images and videos, to assess its superiority.
Since our primary aim was to identify precision and agility, we assessed our results and
those of comparable single-model outcomes that have not been subjected to test-time aug-
mentations. The speeds reported in this paper were calculated on a single RTX 3080Ti,
indicating that some of the mentioned speeds may be higher than those reported in the
corresponding original study. The proposed model exhibits comparable segmentation per-
formance by being 3.8 times faster than the previous best instance-segmentation approach
for the COCO platform. When the results of our technique were compared with those of
other approaches, we observed a significant difference in effectiveness. The difference in the
results between Mask R-CNN and YOLACT-550 at the 50% overlap criterion was 9.5 points;
by contrast, it was 6.6 points at the 75% IoU criterion, which is comparable with our qualita-
tive findings. For instance, there was a disparity between the efficiencies of FCIS and Mask
R-CNN (AP values of 7.5 and 7.6, respectively). In addition, at the highest, that is, the 95%
IoU threshold, the proposed approach outperformed Mask R-CNN by 1.3 AP compared
with 1.6. Table 3 includes values for different model configurations, which are presented
separately. Furthermore, in addition to our basic picture size model of 512 × 512 pixels,
we trained models with 550 × 550 and 700 × 700 pixels, with the anchor sizes adjusted
accordingly. Instance segmentation naturally requires larger photographs; decreasing the
image size significantly reduces the overall performance. As predicted, increasing the
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picture size reduces the speed significantly, while simultaneously improving performance.
In addition to our backbone network EfficientNet, we tested ResNet-101 to achieve faster
results. If faster processing rates are desired, we recommend utilizing ResNet-101 instead
of shrinking the picture size, because these setups perform significantly better than the
recommended model size of 550, though are somewhat slower. The proposed method
performs better and faster than the widely used techniques that exhibit SBD performance.

Table 3. Quantitative comparison of the proposed method with existing methods in terms of accuracy
and runtime.

Method Backbone Time FPS APmask AP50mask AP75mask APSmask APMmask APLmask

SOLOv1 [47] Res-101-FPN 43.2 10.4 37.8 59.5 40.4 16.4 40.6 54.2

SOLOv2 [48] Res-101-FPN 42.1 31.3 38.8 59.9 41.7 16.5 41.7 56.2

Blend Mask [49] Res-101-FPN 72.5 25 38.4 60.7 41.3 18.2 41.2 53.3

Retina Mask [50] Res-101-FPN 166.7 6.0 34.7 55.4 36.9 14.3 36.7 50.5

FCIS [51] Res-101-C5 151.5 6.7 29.5 51.5 30.2 8.0 31.0 49.7

MS R-CNN [52] Res-101-FPN 116.3 8.6 38.3 58.8 41.5 17.8 40.4 54.4

YOLACT- 550 [46] Res-101-FPN 29.8 33.5 29.8 48.5 31.2 9.9 31.3 47.7

Mask R-CNN [38] Res-101-FPN 116.3 8.6 35.7 58.0 37.8 15.5 38.1 52.4

PA-Net [53] Res-101-FPN 212.8 4.7 36.6 58.0 39.3 16.3 38.1 53.1

YOLACT++ [54] Res-101-FPN 36.7 27.3 34.6 53.8 36.9 11.9 36.8 55.1

Proposed method Res-101-FPN 26.2 33.9 39.4 63.2 40.5 16.3 42.8 56.1

4.6. Proposed Model Stability

No matter how immobile the objects were, our findings indicate that the proposed
model produced more stable video masks than Mask R-CNN and YOLACT. However, we
used only static images for training and did not apply any temporal smoothing. Conse-
quently, our masks have a higher standard (few errors may occur in the time in-between
frames), and we believe that they are more reliable than the other masks because ours is
a one-stage model. The area recommendations provided in the first step of the two-stage
approaches significantly impact the masks established in the second stage. By contrast,
when using our proposed approach, the models are not impacted even if the model pre-
dicts separate packages across frames, resulting in significantly robust masks in terms of
temporal stability.

5. Discussion

Previous methods of spotting forest fires have many advantages, including the capacity
to recognize flames in shorter amounts of time and with a higher degree of precision.
Conversely, anytime there are problems, there will also be obstacles. For instance, when the
capture of flames from the perspective of a drone leads to an increased incidence of false
positives or when inconspicuous fire sites with a tiny target or a high degree of camouflage
are not easily discovered. To be more exact, the improved branch cascades have maps that
are the same size throughout both the encoding and decoding stages of the process. The
enhanced integration of the pixel location attributes inside the external network is made
more accessible. In addition to this, the deep neural network considers the pixel category.
As a result, the pixels around the edge of the forest fire targets are changed.

To offer a complete example of the logic behind the model described in this study,
our model is compared with the Mask R-CNN and the YOLACT included in the originals,
from many vantage points. Table 3’s comparison of convergence shows that, compared
to the other three models with the same parameters, our method has a slightly lower
total training-loss sample. The visualization result shown in Figure 3 reveals that the
segmentation masks our approach generates have the most significant matching degree
with the original, unaltered form of the forest fire. The fact that the mask is the item with
the most effective degree of resemblance demonstrates this point. When analyzing the
edge pixels of forest fires, this has obvious advantages. The quantitative evaluation shown
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in Table 3 reveals that our method can reach SOTA performance levels in terms of both
identification accuracy and segmentation quality. To prove the robustness of our model,
the results for the Flame dataset are shown in Figure A1, and additional results are shown
in Figure A2. Additionally, because of our model stable structure, it can train from the
very beginning to the very end. Consequently, it is feasible to simplify our method and
use it on edge devices, assuming that recognition accuracy can be maintained throughout
the process.
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The future goal is to create a robust real-time UAV-assisted wildfire location model
that will help firefighters locate a fire at an early stage.

6. Conclusions

In this paper, we presented a lightweight, UAV-image-based wildfire detection and
segmentation system by leveraging the advantages of DL. In this proposed approach, we
used next contributions: spatial details and categorical semantics, preactivated residual
blocks and AG, a new lightweight network, and the satisfactorily generalized dataset.
We experimented with the data preparation and model parameters to optimize the AP of
wildfire-detection models for wildfire segmentation. The proposed system improves the
accuracy and reliability of fire detection for firefighting technology. Moreover, the proposed
system can run in real time, thereby making it a potential approach to monitor, control,
and minimize the environmental damage caused by wildfires. The experimental results
demonstrated the superiority of the proposed system compared to the existing methods,
for detecting and segmenting wildfires. The proposed model can be extended to a working
prototype in future studies to determine the wildfire level in Figure 3.
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Abbreviations

AG attention gate
AP average precision
CNN convolution neural network
CCTV closed-circuit television
DL deep learning
DSC standard deviation calculator
GPU graphics processing unit
FPN feature pyramid network
FPS frames per second
iABN in-place activated batch normalization
ML machine learning
RGB red, green, and blue
RPN region proposal network
SOTA state of the art
TFD traditional fire detection
UAV unmanned aerial vehicles

Appendix A

Table A1. Additional average and standard deviation based on training image resolution.

Image Size 512 × 512 256 × 256 128 × 128 64 × 64 32 × 32 28 × 28

Proposed Work:
Average and
Std. Dev.

0.928 ± 0.072 0.948 ± 0.070 0.911 ± 0.069 0.902 ± 0.062 0.891 ± 0.087 0.890 ± 0.088
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