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Abstract: Remote sensing images are widely applied in instance segmentation and objetive recog-
nition; however, they often suffer from noise, influencing the performance of subsequent applica-
tions. Previous image denoising works have only obtained restored images without preserving
detailed texture. To address this issue, we proposed a novel model for remote sensing image
denoising, called the anisotropic weighted total variation feature fusion network (AWTVF2Net),
consisting of four novel modules (WTV-Net, SOSB, AuEncoder, and FB). AWTVF2Net combines
traditional total variation with a deep neural network, improving the denoising ability of the pro-
posed approach. Our proposed method is evaluated by PSNR and SSIM metrics on three benchmark
datasets (NWPU, PatternNet, UCL), and the experimental results show that AWTVF2Net can obtain
0.12∼19.39 dB/0.0237∼0.5362 higher on PSNR/SSIM values in the Gaussian noise removal and
mixed noise removal tasks than State-of-The-Art (SoTA) algorithms. Meanwhile, our model can
preserve more detailed texture features. The SSEQ, BLIINDS-II, and BRISQUE values of AWTVF2Net
on the three real-world datasets (AVRIS Indian Pines, ROSIS University of Pavia, HYDICE Urban)
are 3.94∼12.92 higher, 8.33∼27.5 higher, and 2.2∼5.55 lower than those of the compared methods,
respectively. The proposed framework can guide subsequent remote sensing image applications,
regarding the pre-processing of input images.

Keywords: remote sensing image; noise removal; weighted total variation; feature fusion; convolutional
neural network

1. Introduction

Remote sensing imagery has been widely used in various fields, including land use
and land cover mapping [1–3], forest fire recognition [4], military target reconnaissance [5],
and so on. However, due to the irreducible influences of imaging equipment and the
processes of image compression, transmission, and storage, the collected images will be
distorted by random noise [6]. Image denoising is an ill-posed problem that aims to
restore clean images, which can satisfy the visual perception of humans. The noise in
collected remote sensing images can be divided into periodic and random, according to its
manifestation [6]. We can improve the hardware equipment or model the periodic noise to
eliminate periodic noise, but we cannot remove random noise by improving the imaging
equipment, due to the fixed nature of the imaging system. According to the description
in [7], we can divide random noise into multiplicative and additive noise, based on the
relationship between the noise and image signals. The noise model can be written as the
following inverse problem:

yi = φ(xi) + N(0, σ2), (1)

where yi denotes the collected remote sensing image value at pixel i, xi represents the clean
image value, the functional φ represents the noise which is multiplicative noise, N(0, σ2)
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denotes the signal-independent noise (i.e., additive Gaussian noise), and σ2 is the parameter
of the Gaussian distribution.

Researchers tend to use image-processing methods to eliminate remote sensing noise
signals, and traditional image denoising methods are usually limited by prior knowledge
about the noise [8] and the parameters of these algorithms must be tuned [9], which is
inevitable and complex. Recently, various studies have proposed deep convolutional neural
networks for image denoising. For example, Wang et al. [10] proposed a 3D convolutional
neural network (CNN) for remote sensing image denoising; Feng et al. [11] utilized
generative network (GN) technology to denoise remote sensing images; Dou et al. [12]
used a spatial and spectral channel attention network for hyperspectral remote sensing
image denoising. However, as remote sensing images contain rich texture information,
previous deep neural networks could not allow the restored remote sensing images to
preserve significant image textures efficiently. For this purpose, we proposed an anisotropic
weighted total variation feature fusion network (AWTVF2Net) for remote sensing image
denoising. The proposed network consists of an anisotropic weighted total variation
(AWTV-Net) module and four strengthen–operate–subtract boosting strategy modules
(SOSB), three auto-encoder modules (AuEncoder), and three fusion block modules (FB).
The image-denoising workflow of our model is shown in Figure 1.

𝐴𝑊𝑇𝑉𝐹2𝑁𝑒𝑡
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𝑓𝜃

一
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Figure 1. The workflow of our model for remote sensing image denoising. The first subfigure is the
training process, which consists of the proposed network, optimizer, and loss functions. The second
subfigure is the inference process, which uses the trained networks to restore remote sensing images.

In summary, our main contributions are as follows:

1. To preserve the rich and complex texture features in remote sensing images, inspired
by the anisotropic diffusion coefficient function, we proposed a new diffusion coeffi-
cient as a weighted function integrated into the traditional total variation (TV) model,
and designed an AWTV-Net module that combines the weighted TV model into a
deep learning method. The AWTV-Net module helps to extract rich features and
detailed textures from noisy remote sensing images, strengthening the ability of our
proposed model to preserve details.

2. For multi-scale features, we design an AuEncoder module network architecture to
extract multi-scale features from various input sources, consisting of maps transferred
from the AWTV-Net module and the original noisy image. The former features are
boosted by the proposed SOSB modules, providing detailed contents and texture
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information, while the latter features provide the necessary information. The two
kinds of features facilitate the subsequent noise reconstruction. As a result, we
propose the FB module to combine the two above-mentioned types of multi-level
feature maps. Notably, the fusion features improve the expressiveness of the proposed
model. The use of multi-level feature fusion enhances the denoising ability while
preserving details.

3. The proposed network uses two weighted losses—L2 loss and TV loss—which allow
the network to converge better without losing image detail information. We conducted
ablation experiments to confirm the weighting parameters of two losses. The optimal
chosen parameters enable improvement of the noise removal capability.

4. Extensive experiments on synthetic noisy remote sensing images and real noisy remote
sensing images were conducted, in order to verify the effectiveness of the proposed
AWTVF2Net. Numerical metrics and visual comparisons indicate that our proposed
anisotropic weighted total variation feature fusion network has significantly superior
performance over the State-of-The-Art (SoTA) algorithms for remote sensing image
noise removal.

The remainder of this article is organized as follows: In Section 2, we mainly describe
related works focused on remote sensing image denoising and the motivation of our pro-
posed model. Section 3 introduces the proposed method, which includes the proposed
anisotropic weighted function and the details of the proposed network. We present the
neural network settings and our method’s implementation process in Section 4. Section 5
provides the comparative results of our comprehensive experiments, illustrating the com-
petitive effectiveness of the proposed AWTVF2Net. Section 6 discusses the limitations of
this study and the differences among all the compared methods. Finally, our conclusions
and directions for future research are given in Section 7.

2. Related Works
2.1. Traditional Methods of Remote Sensing Image Denoising

A growing number of approaches has been proposed and applied in remote sensing
image denoising [13]. Traditional image noise removal methods can be divided into three
categories: filter-based methods, total variation, and tensor decomposition-based algorithms.

Filter-based methods use the local information of the center pixel and remove noise
according to the numerical relationship between the current pixel and neighboring pixels,
such as mean filter [14], median filter [15], and Gaussian filter [16]. Filter-based meth-
ods tend to apply to image de-noising with a quick implementation property. However,
filter-based methods provide the same coefficient in all directions, causing blurring in fine
features. Buades et al. [17] have proposed a non-local mean method to overcome the limita-
tions of filter-based methods. This method can obtain higher-quality restored images than
local information-based filters. The block matching and three-dimensional filtering (BM3D)
algorithm [18] is more complicated than the non-local mean method, which combines the
advantages of the non-local mean method and wavelet transform domain methods.

The total variation model [9] was proposed in 1992, which aims to preserve image
structure information. Total variation-based methods use regularization to constrain the
denoising model, maintaining image texture features. Considering the spectral noise and
spatial information difference in hyperspectral images, Yuan et al. [19] have proposed a
spectral–spatial adaptive total variation (SSAHTV) model for hyperspectral remote sensing
image denoising. Due to the structural sparsity of hyperspectral images, a group sparsity
regularized hybrid spatial–spectral total variation (GHSSTV) [20] model has been proposed
for hyperspectral image restoration. In recent years, deep image prior [21,22] information
has been integrated into total variation models, which can make up for the unknown prior.
However, the total variation-based methods require the tuning of complex parameters,
which is usually not easy. Therefore, adaptive parameter selection for the weighted-TV
model [23] has been used to address the complex parameters’ tuning problem.
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Tensor decomposition-based algorithms consider the inherent structure of remote
sensing imagery, using low-rank tensor decomposition and recovery technology for hy-
perspectral image restoration. Wang et al. [24] have utilized the consistent structures
between clean hyperspectral images and noisy images for image denoising by tensor
decomposition and recovery. As the low-rank tensor approximation lost small content
information, Zeng et al. [25] have added regularization to the low-rank tensor approxi-
mation item, which can improve the performance of remote sensing image restoration.
Kong et al. [26] have proposed a framelet-tensor nuclear norm model for hyperspectral im-
age denoising that takes full advantage of the redundancy of the framelet transform and the
low-rank nature of the framelet-based transformed tensor. Overall, Tensor decomposition-
based algorithms have excessively high computational and time costs, due to the need for
decomposition on high-dimensional tensors.

In summary, the traditional methods have achieved remarkable performance in remote
sensing image denoising. However, they have three key drawbacks: (1) it is hard to tune
the various hyperparameters assigned manually for them; (2) they depend closely on the
number of iterations and easily produce over-smoothing; and (3) they are typically only
adaptive to a single type of noise.

2.2. Deep Learning Methods of Remote Sensing Image Denoising

Image noise removal technology based on deep learning methods has achieved re-
markable results in recent years, which can be divided into supervised and unsupervised
deep learning methods.

Supervised deep learning methods for image denoising involve the use of paired clean
and noisy images to train neural networks. The multi-layer perception (MLP) denoising
network [27], consisting of four fully connected layers, was proposed by Burger et al. It was
the first time that deep learning achieved similar performance to that of the BM3D algorithm
in the image restoration task. Considering the high spectral correlation between adjacent
bands in hyperspectral images, Maffei et al. [28] have utilized a single supervised model
for hyperspectral image denoising, obtaining better results than BM3D and the MLP-based
model. Combining the local and global information of noisy remote sensing images, a deep
spatial–spectral global reasoning network based on the U-Net architecture was invented by
Cao et al. [29] in 2021. This model used the U-Net network to extract rich features from the
input images, in order to obtain high-quality denoised images. Jia et al. [30] have proposed
a dual-complementary convolution network (DCCNet) for remote sensing image denoising.
The DCCNet uses a wavelet transform operation and combines it with a shuffling operation
to recover the image structure and texture information. Ulyanov et al. [31] have used a
generator network to learn the prior from the random input noise vector, then restored the
image from the prior information by a decoding network. All of the models mentioned
above are supervised methods and require clean images for supervised learning during
network training.

Unsupervised deep learning involves training neural networks with noisy images,
and does not require clean images as in surpervised learning. Unsupervised deep learning
methods for image denoising are also called blind denoising methods. As clean remote
sensing and medical images are hard to acquire, blind image denoising has become popu-
lar. There exist many blind denoising algorithms [32–37]. The “Noisy-As-Clean” (NAC)
strategy [38] of training a self-supervised network for image denoising involves adding a
simulated noise to the noisy image as input data and regarding the noisy images as target
images. The NAC model further destroys the information of noisy images, leading to
poor results. Huang et al. [39] have constructed paired images from the same noisy image
using a random neighbor sub-sampler. This model avoids ruining the noisy image, but
it lose information about the noisy image due to down-sampling, leading to unsatisfying
results. A single-image capable speckling method for image denoising has been proposed
by Wang et al. [40] in 2022, which presented better restoration results than previously
mentioned unsupervised models.
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The deep learning based image denoising methods also have drawbacks: (1) the
extracted feature maps of these models are not rich and sufficient, and they only utilize a
single kind of feature map extracted from networks; and (2) they only handled the specific
noise and are not adaptive to mixed types of noise.

2.3. Motivation

The proposed model was inspired by the anisotropic diffusion coefficient function
and total variation model. We first revisit the classic anisotropic diffusion coefficient-based
method and total variation model to introduce our algorithm better.

2.3.1. Anisotropic Diffusion Coefficient Function

Many PDE-based methods deployed with various diffusion coefficient functions have
been applied in the image restoration field. In 1990, Perona and Malik [41] proposed an
anisotropic diffusion model with two different anisotropic diffusion coefficient functions.
The PM model [41] is written as:{

It = div(c(x, y, t)∇I) = c(x, y, t)∆I +∇c · ∇I,

I(x, y, 0) = I0,
(2)

where I0 and I are the noisy image and restoration image, respectively; and div,∇, ∆
represent the divergence operator, gradient, and Laplacian operator with respect to the
space variables, respectively. The above formula can be simplified into the isotropic heat
diffusion equation when the coefficient function c(x, y, t) is a constant. The diffusion
coefficient c is a function of the gradient magnitude, and also the range of coefficient c is
in (0, 1]. In the PM model [41], two diffusion coefficient functions were proposed, written
as follows:

f1(||∇I||) = exp (−(||∇I||/K)2), (3)

f2(||∇I||) = 1
1 + (||∇I||/K)2 , (4)

where I denotes the image, K is a control parameter that keeps the fine and texture features
from blurring, and the diffusion coefficient f is a function of the gradient magnitude
on the input image. It provides a small value in the large value of gradient magnitude
while providing a large value in the small value of gradient magnitude. That coefficient
function can smooth the image in homogeneous regions and stop diffusion on texture
features. Usually, an effective diffusion coefficient function must satisfy the following
requirements [41]:

1. It must be a positive and strictly decreasing function of gradient magnitude;
2. It must be a continuous and differentiable function;
3. It must satisfy limx→+∞ f (x) = 0, limx→0 f (x) = 1.

In recent years, various diffusion coefficient functions have been derived from tangent
sigmoid function proposed in [42], due to the better performance of Tansig function close
to 0 faster than hyperbolic tangent [43] function. The tangent sigmoid function in [44] is
written as:

tansig(x) =
2

1 + exp (−2x)
− 1. (5)

It is evident that the above tansig function is not a diffusion coefficient function,
as it cannot satisfy the three criteria of the coefficient function. However, it is essential
for designing a coefficient, and many coefficient functions have been inspired by it. An
anisotropic diffusion coefficient function based on the tangent sigmoid function has been
proposed in [43], which is written as follows:

f3(x) =
2

1 + exp (2abs(x/k)2)
. (6)
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From Formula (6), this coefficient function can be regarded as a modified version of
tansig; that is,

f3(x) = 1 + tansig(−abs((x/k)2)) =
2

1 + exp (2abs(x/k)2)
, (7)

where x denotes the gradient magnitude, k is a constant value, and abs(·) represents the
absolute operator. Obviously, f3 satisfies the three properties of the diffusion coefficient.
Therefore, f3 can be used in the diffusion model. The curves of the tangent sigmoid function
and f3 are shown in Figure 2, where K = 25.

Figure 2. Curves of Tansig and f3 coefficient functions.

From Figure 2, we can see that values of tansig function lie in [0, 1] when x ≥ 0. In
contrast, the values of the diffusion coefficient function also lie in [0, 1]. This is why many
diffusion coefficients are derived from the tansig function. The right picture is the curve
of f3(x). According to the work of [41], if the value of the diffusion coefficient function is
closer to 0, more small textures are retained in the denoised images, which are restored by
the diffusion model. The same conclusion has been demonstrated in work related to f3(x).
Our work was inspired by this conclusion, and we propose a novel anisotropic diffusion
coefficient function, which is described in Section 3.

2.3.2. Total Variation Model

The total variation model is a classic regularized reconstruction-based method, which
can convert the ill-posed image restoration problem into an optimization problem. The
merit of the total variation model is that it can restore images while preserving edges, even
when it was first proposed in [9]. The formula for total variation is written as follows:

min
u

1
2

n

∑
i=1

(u− g)2
i + R(u), (8)

where u is the restored image and g is the noisy image. The first term of above model is
the fidelity term, while the second term is the regularization term. The fidelity always
depends on noise with mean zero, and it is usually defined as a l2 norm functional. For the
regularization term, there exists a popular selection that is a total variation-based functional.

To solve the model of (8), we usually use the discrete form of R(u) [9], defined as:

R(u) =
n

∑
i=1]
||(Du)i||p =

n

∑
i=1

((Dhu)p
i + Dvu)p

i )
1/p, p ∈ {1, 2}, (9)

where (Dhu)i, (Dvu)i denote the horizontal and vertical discrete gradient of u computed
at pixel i, respectively; and Dh, Dv are the first-order finite difference discrete operators.
In this study, we only consider the case of p = 2. It is worth noting that there are many
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related works considering 0 ≤ p ≤ 2 in the total variation models. Therefore, according to
(9), problem (8) can be rewritten as follows:

arg min
u,t

1
2

n

∑
i=1

(u− g)2
i + α

n

∑
i=1
||ti||p,

s.t. Du = t.

(10)

where the parameter α is used to control strength of the regularization term. Generally,
we solve the minimization problem (10) using the augmented Lagrangian function in the
ADMM framework [45], which has been widely applied to non-convex image restoration
problems, as in [46].

In this research, we are greatly motivated by (10), and we replace α with an anisotropic
diffusion coefficient, which differs in each pixel. Based on the above-mentioned anisotropic
diffusion coefficients and basic total variation model, we propose a novel diffusion coeffi-
cient function and integrate the coefficient as a weight into the traditional total variation
model, named the anisotropic weighted total variation model. The details of our proposed
method and the solution to our model are described in Section 3 below.

3. Methodology
3.1. Anisotropic Weighted Total Variation

In this section, we mainly introduce our proposed model. Based on the description
in Section 2.3, our model was greatly motivated by the anisotropic diffusion coefficient
function and the traditional total variation model. We also start from the tansig function to
derive our coefficient function. According to Equation (5), we have

1
2
+

1
2

tansig(−(x/k)2) =
1

1 + exp (2(x/k)2)
. (11)

The above equation is close to the diffusion coefficient f3(x). Still, Formula (11) is
not a diffusion coefficient, as it does not meet the three criteria of diffusion coefficient
functions. The conclusion of [41] illustrated that the diffusion coefficient is faster close to 0,
and the diffusion model can retain more details in restored images. Thus, we desired to
design a novel coefficient that is the low bound of f3 and satisfies the properties of diffusion
coefficients. Inspired by above description of the anisotropic diffusion coefficient function,
we proposed a new diffusion coefficient function, which is written as follows:

f4(x) =
1

1 + x2 exp (2(x/k)2)
, (12)

Based on f3, the proposed f4 is the lower bound of f3, which is demonstrated as follows:

1 + x2 exp (2(x/k)2) ≥ 1 + exp (2(x/k)2), x ≥ 1. (13)

Then, we can obtain

1
1 + x2 exp (2(x/k)2)

<
2

1 + exp (2(x/k)2)
, x ≥ 1. (14)

In this research, x denotes the gradient value of pixels. We have x ∈ Z. When x = 0,
the left of the inequality (14) is equal to the right item. That is

1
1 + x2 exp (2(x/k)2)

=
2

1 + exp (2(x/k)2)
. (15)

According to the Formulas (13)–(15), we have illustrated that f4(x) is the lower bound
on f3(x) by mathematical theory. That also shows that our coefficient is better than f3(x).
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It is worth noting that the proposed new diffusion coefficient function satisfies the three
requirements mentioned in Section 2.3.1. f4 is a continuous and differentiable function. As
shown in Figure 3, f4 is a positive and strictly decreasing function. Finally, f4 also satisfies
the limit condition, that is, limx→+∞ f (x) = 0, limx→0 f (x) = 1.

Figure 3. Comparisons of different diffusion coefficient function curves.

Figure 3 presents comparisons of our coefficient with other coefficient functions.
Notably, our proposed coefficient approached zero faster than others, which means our
coefficient can stop earlier at edges than others. Therefore, our coefficient can preserve
more details of images. We introduced our novel anisotropic diffusion coefficient using
mathematical theory and numerical simulation. The proposed coefficient function is better
at retaining small contents than existing diffusion coefficients. Next, we introduce our
modified anisotropic weighted total variation based on the proposed diffusion coefficient
in the following.

Using a deep neural network to restore images involves a process that learns a map
from noisy images to clean images. This process can be converted into a mathematical
minimization problem, which reads as follows:

θ∗ ∈ arg min
θ

L( fθ(g), u), (16)

where fθ denotes the proposed neural network with parameters θ, L is the designed loss
function (which we introduce in the following section), and g and u are paired noisy and
clean images from a training set. Many methods have been proposed to solve (16), such as
SGD and Adam. After we obtain θ∗ by learning from the training dataset, we can infer u∗

from g; that is, u∗ = fθ∗(g).
Based on the above analysis, combining total variation in (10), we proposed the

anisotropic weighted total variation model, written as:

θ∗ ∈ arg min
θ

1
2

n

∑
i=1

( fθ(g)− g)2
i + α

n

∑
i
||(D fθ)i(g)||p +

n

∑
i

ai||(D fθ)i(g)||p,

ai = f4(||(D fθ)i(g)||p) =
1

1 + ||(D fθ)i(g)||2p exp (2(||(D fθ)i(g)||p/k)2)
,

(17)

To simplify the proposed model, (17) can be rewritten as follows:

θ∗ ∈ arg min
θ

1
2

n

∑
i=1

( fθ(g)− g)2
i +

n

∑
i
(αI + ai)||(D fθ)i(g)||p, (18)

where I denotes the identity matrix, D represents the discrete first-order finite difference
operator as described in (9), and ||.|| denotes the norm computation operator based on the
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value of p, which can be assigned as 1 or 2; in this paper, we mainly discuss the model with
p = 2. The constrained equivalent formula of (18) reads as:

{θ∗, t∗} ← arg min
θ,t

1
2

n

∑
i=1

( fθ(g)− g)2
i +

n

∑
i
(αI + ai)||ti||p p = 2,

s.t. D fθ(g) = t.

(19)

We use the ADMM algorithm [45] to solve the non-convex problem of (19). Therefore,
the augmented Lagrangian function of our model is defined as:

L(θ, t, λt) =
1
2

n

∑
i=1

[( fθ(g)− g)2
i + 2(αI + ai)||ti||2 + βt(D fθ(g)− t)2

i ]+ < λt, D fθ(g)− t >, (20)

where βt, λt denote the penalty parameter and the Lagrangian parameter, respectively.
Here, βt must satisfy βt > 0. In the ADMM framework [45], we find the solution of (20)
by a minimization step for the primal variable θ, t, and a maximization step for the dual
variable λt. Considering the kth iteration of the ADMM algorithm [45], the three primal
sub-problems of our model can be written as follows:

θk+1 ∈ arg min
θ

1
2
|| fθ(g)− g||22 +

βt

2
||D fθ(g)− tk +

λk
t

βt
||22, (21)

tk+1 = arg min
t

n

∑
i=1

(αI + ai)
k||ti||2 +

βt

2
||t− D fθk+1(g)− λk

t
βt
||22, (22)

λk+1
t = λk

t + βt(D fθk+1(g)− tk+1). (23)

The three primal sub-problems can be solved efficiently, in closed form, by shrinkage
or projection operators and linear system solvers. In the second problem (22), the iterative
form of the proposed weight ai is written as:

ak
i = f4(||(D fθk+1)i(g)||2) =

1
1 + ||(D fθk+1)i(g)||22 exp (2(||(D fθk+1)i(g)||2/k)2)

. (24)

The anisotropic weight regularizes more in the homogeneous region, and regularizes
less in the areas with detailed complex texture.

3.2. Network Architecture

In this subsection, we mainly present the proposed network architecture and its
components. Our network consists of four parts: The AWTV-Net module, four SOSB
modules, three AuEncoder modules, and three FB modules. The detailed architecture of
AWTVF2Net is shown in Figure 4.

U-Net [47] has been widely used in different computer vision tasks, due to its strong
ability to extract features. The proposed AWTV-Net module of our network is a modified
version of U-net. The main difference between AWTV-Net and U-Net is the down-sampling
operator. The implementation of the down-sampling operator in U-Net is max-pooling,
while the down-sampling operator in AWTV-Net is a convolution layer with a stride of 2.
The channel of intermediate output features is 128, except for the skip connection output.
We set the skip size to 4. The skip connection output features are inputs to the SOSB
module that can enrich feature space for the restoration of clean images. The final output
of AWTV-Net is used to calculate the anisotropic weighted TV loss, which can preserve
fine features in the denoised images. We enrich the feature space of model using the final
output of AWTV-Net. Therefore, AWTV-Net provides multi-scale features by anisotropic
weighted total variation, which prevents some crucial details from being smoothed in the
restored images.
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Figure 4. Network architecture of the proposed AWTVF2Net. In this framework, the light green
rectangles denote the middle features of the AWTV-Net module. The blue rectangle is the final
output feature from AWTV-Net. The white rectangles are the skip feature maps. The thick, different-
colored arrows indicate convolutional operators with different kernel sizes and strides, described
in the middle dot-line rectangle. The black arrows denote the directions of data flowing. The
SOSB rectangles are the feature map boosting modules, and AuEncoder rectangles are the modules
extracting features from multi-inputs, ⊕ denote additive operator. FB rectangles indicate the feature
fusion modules. The red arrow marks the process of image reconstruction. The loss rectangles
represent different loss calculations.

The Strengthen–Operate–Subtract boosting (SOSB) strategy was first used in [48]. Its
function is to operate the refinement process on the strengthened image, based on the
previously estimated image in image-denoising tasks. In our network, we use the SOSB
strategy to work on all outputs of skip connections. The mathematical formula of the SOSB
strategy in [48] can be written as follows:

jn = Rn
θn
(in + (in−1) ↑2)− (in−1) ↑2, (25)

where Rn
θn

is the refinement unit at the nth level parameterized by θn, ↑2 denotes an up-
sampling operator with a scale parameter of 2, (in + (in−1) ↑2) is the strengthened feature,
and jn is the inputs to the next layer (as in). In this work, each refinement unit is embedded
into a residual group. Hence, the SOSB strategy [48] can be simplified as follows:

jn = Rn
θn
(in + (in−1) ↑2) + in. (26)

We present the SOSB module architecture of our network in Figure 5. A deconvolution
layer replaces the up-sampling operator in the SOSB module. The trainable refinement
unit comprises a convolution layer, followed by a BatchNorm operator and a LeakyReLU
function. The SOSB module is a bridge that connects the output maps of skip layers with
the main framework of restored images. Meanwhile, it also enriches the feature space,
which preserves some details on denoised images.

To better introduce the AuEncoder and FB modules, we first describe four important
sub-architectures, as shown in Figure 6. Figure 6a,b show the EB (Extracting Block) and
RB (Residual Block), respectively. Similar structures have also been used in [49], named
as DB [50] and RB [51]. The proposed EB and RB are motivated by DB and RB, but with
some differences. The extracting block includes two convolution operators, followed by
a BatchNorm layer and a ReLU layer. At the end of EB, we concatenate the inputs and
outputs of the module. The residual block differs from the original RB and that of [49]. We
add a concatenate layer among the six layers in the RB. The first three layers are used to
extract features, and the latter are for changing the dimension of images. Note that the
proposed EBs possess powerful feature extraction capabilities, similar to DBs. Therefore,
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we propose an EBS (Extracting Blocks Set) module that includes several extracting blocks,
as shown in Figure 6c. The concatenate layer is also utilized in the EBS. The function of
last three layers is to adjust the dimension of features. The proposed RBS (Residual Blocks
Set) module has the same workflow as EBS. The RBS consists of several RBs. To solve the
dimension change caused by the concatenation layer, we take the same approach as in
EBS for adjusting the dimension of features at the end of RBS module. Both EBS and RBS
possess powerful feature extraction capabilities. We use them to construct more powerful
modules for extracting features and feature fusion. The rich maps extracted by EBS and
RBS help to improve the model performance and allow more critical details to be preserved
in the restored remote sensing images.

BatchNorm

LeakyReLU

Conv  1 ✕ 1, s=1

𝑖!"#

𝑖!

ConvT 3 ✕ 3, s=2

Figure 5. Intuition architecture of the SOSB module.
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C
on
ca
t

(d)  RBS

Conv 3 ✕ 3, s=1 BatchNorm ReLU

Figure 6. Architectures of (a) EB, (b) RB, (c) EBS, (d) RBS.

Based on the proposed EBS and RBS modules, AuEncoder and FB modules (shown in
Figure 7) are introduced in the following. The AuEncoder (Auto-Encoder) module consists
of an EBS, and an RBS. As the AuEncoder accepts multi-scale inputs, we add three layers
at the head of AuEncoder module to make the dimension of the inputs uniform. The merit
of AuEncoder is that it can extract rich features from different inputs, which is helpful
for feature fusion in the downstream task. We also propose an FB (Fusing Block) module
for feature fusion in the downstream task in this work. The FB module only consists
of an RBS, which accepts multi-level features. To solve the problem caused by different
dimensionalities, we adjust the dimensions of the multi-level features by a convolutional
layer with a kernel size of 1. The convolution layer is followed by a BatchNorm layer and a
ReLU layer. We demonstrate this process using mathematical formulas to understand the
feature-fusion process efficiently.
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(a)  AuEncoder

Conv 3 ✕ 3, s=1 BatchNorm ReLU

EBS RBS

(b)  FB

RBS

Conv 1 ✕ 1, s=1

Figure 7. Architectures of (a) AuEncoder, (b) FB.

As shown in Figure 4, we denote the features extracted by the three AuEncoders
as fnoise, fskip and fA; that is, fnoise denotes features extracted by AuEncoder from noise
images, fskip represents features extracted from outputs of SOSB modules, and fA denotes
features from the final output of AWTV-Net. All ⊕ in Figure 4 can be written as follows:

f 1
f use = fnoise + fskip, (27)

f 2
f use = fnoise + fA, (28)

f 3
f use = fskip + fA. (29)

Then, we put the three f i
f use features into the following two FB modules. The process

can be written as follows:

I1 = FB1([ f 1
f use, f 2

f use]), (30)

I2 = FB2([ f 2
f use, f 3

f use]), (31)

where [·] denotes the concatenation operation. Ii will be sent to the third FB module, which
is close to the tail of the whole network:

I3 = FB3([I1, I2]), (32)

where I3 denotes the final output of our network. The red arrow in Figure 4 represents
a convolution layer, used to restore the dimension of the denoised images. AWTVF2Net
has a powerful feature extraction capability, working on multi-scale feature maps. This
nature of AWTVF2Net preserves some critical details of the restored remote sensing images.
AWTVF2Net, as an end-to-end framework, is the first model that fuses the feature maps
from the TV model.

3.3. Loss Function

According to our proposed network architecture, the use of fusion features helps to
preserve complex textures. Our proposed model integrates anisotropic weighted total
variation into the deep learning framework. Therefore, the loss function in our proposed
AWTVF2Net consists of the total variation loss and l2 loss. The total variation loss function
is defined as in (21), which reads as follows:

L1 =
1
2
|| fθ(g)− g||22 +

βt

2
||D fθ(g)− tk +

λk
t

βt
||22 (33)

We utilize the mean square error function as the second part loss to measure the
difference between denoised images restored by AWTVF2Net and clean images. This part
loss is written as:

L2 =
1
n

n

∑
i
( fθ(g)− x)2

i , (34)
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where x is the clean image, we have weighted the two parts of loss as the total loss by
introducing parameters γ1 and γ2 in our algorithm. That reads as follows:

L = γ1L1 + γ2L2, s.t. γ1 + γ2 = 1. (35)

where γ1 and γ2 are two weights, which are positive. The two parameters are selected
manually, and the effect of γ1 and γ2 on restored results are discussed in Section 5.

4. Experiments

In this section, we detail the used datasets, settings in the experiments, implemen-
tation details, environment settings of the used computer, methods for comparison, and
evaluation metrics.

4.1. Datasets
4.1.1. Benchmark Datasets

We used three benchmark datasets in our experiments to train and test AWTVF2Net.
These three datasets were NWPU-RESISC45 (NWPU) [52], PatternNet [53], and UC Merced
land-use dataset (UCL) [54]. Northwestern Polytechnical University created the NWPU-
RESISC45 dataset for remote sensing image scene classification. The NWPU-RESISC45
dataset includes 45 classes, where each class has 700 images with a size of 256 × 256. All of
these images are colorful, with a spatial resolution from 0.2–30 m for most scene classes.
The PatternNet dataset contains 38 classes, and each of which has 800 images. All remote
sensing images in PatternNet have a spatial resolution from 0.062–4.693 m with a size of
256 × 256 in the RGB color space. The UC Merced land-use dataset is a freely and publicly
available remote sensing image dataset, composed of 21 classes with a total number of
2100 images. The images in the UC Merced land-use dataset have a spatial resolution of
0.3 m and a size of 256 × 256 in the RGB color space.

4.1.2. Real-World Datasets

We compared the performance between our model and other methods on three real-
world datasets: AVRIS Indian Pines dataset [55], the ROSIS University of Pavia dataset [56],
and the HYDICE Urban dataset [24]. The AVIRIS Indian Pines dataset was gathered by
an AVIRIS sensor over the Indian Pines test site in North-western Indiana, and consists of
145 × 145 pixels images with 224 spectral reflectance bands in the wavelength range of
0.4∼2.5×10−6 m. The AVIRIS Indian Pines dataset includes some bands affected by the
mixture of Gaussian and impulse noise, as introduced in [55]. For this study, we have used
bands 3∼6 to test our model. The ROSIS University of Pavia dataset is a hyperspectral
image dataset gathered by a ROSIS sensor over Pavia, Italy. The size of images is 610 × 340
with 103 spectral bands. The geometric resolution of the images in the ROSIS University
of Pavia dataset is 1.3 m. We used the first six bands’ images in our experiments. The
HYDICE Urban dataset is one of the most widely used hyperspectral remote sensing image
datasets. The size of these images is 307 × 307, where each pixel corresponds to a 2 × 2 m2

area. There are 210 wavelengths ranging from 400 nm to 2500 nm, resulting in a spectral
resolution of 10 nm. We have chosen bands 138, 203, and 205 for our experiments.

4.2. Implementation Details

We used the NWPU-RESISC45 dataset to train our proposed model, and used the
other two datasets to verify the performance of the new model. The NWPU-RESISC45
dataset was used to synthesize four different cases of noise for training the proposed model.
The four cases of noise were described as follows:

(1) Gaussian: White Gaussian noise with zero mean and different noise levels from 15
to 50 (σ2 = 15, 25, 35, and 50) was added to the training and testing images. For each
noise level, we have trained and tested our model on all three datasets.
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(2) Gaussian + salt&pepper: A mixture of Gaussian noise (zero mean, σ2 = 15) and
salt&pepper noise (with a parameter of 0.005) was used in our training and testing
experiments.

(3) Gaussian + speckle: A mixture of Gaussian noise (zero mean, σ2 = 15) and speckle
noise (with a parameter of 0.005) was added to the training and testing datasets.

(4) salt&pepper + speckle: A mixture noise of salt&pepper and speckle noise (with a
unified parameter value of 0.005) was added to all training and testing datasets.

The NWPU-RESISC45 dataset, with the above four different cases of noise added,
was used to train our model. To verify and compare the performance of our model, we
randomly selected 50 images from the NWPU-RESISC45 dataset and the PatternNet dataset,
respectively, and 40 images were chosen from the UC Merced land-use dataset randomly
for testing experiments. To all testing images, the same four cases of noise mentioned above
were added.

The detailed architecture of our network is shows in Figure 4. Images of the NWPU-
RESISC45 dataset were added with different types of noise for training. We empirically
set α = 0.5, βt = 10 in (22), γ1 = 0.4 and γ2 = 0.6 in (35). There were some other
hyper-parameters in our network, such as the number of RBs (assigned as 4), and EBs (set
empirically with a value of 3). The parameters of the ReLU and LeakyReLU function were
set as defeated (0.2). We set the skip size to a value of 4 in skip connection layers. The batch
size was 4 for loading input data. The learning rate is initialized as 10−3 and decayed by
0.1 every 15 epochs. The total number of epochs was 30.

The proposed AWTVF2Net was implemented using the PyTorch framework and
parameters were updated using the Adam optimizer. The β1, β2 values of the Adam
optimizer were 0.9 and 0.99, respectively. All experiments in this work are implemented in
a computer server equipped with an E5-2698 CPU and 4 GTX 3090 AERO GPUs, where
each GPU has 24 GB RAM. In addition, we used Python (version 3.6.13) and PyTorch (1.8.0)
to conduct the training and testing experiments.

4.3. Model Comparison and Evaluation

In order to verify the performance and effectiveness of our proposed method, we
compared AWTVF2Net with several image denoising methods, including WNNM [8],
BM3D [18], ADNet [57], DnCNN [58], ECNDNet [59], DIP-TV [60], and DIP-WTV [22].
These compared methods were tested on the three test datasets mentioned above. We
not only compared the performance in terms of visual perception, but also evaluated the
effectiveness of our model against the others through numerical metrics. Peak signal-to-
noise ratio (PSNR) and structural similarity index measurement (SSIM) have been widely
used to measure the quality of images restored from noisy images.

We used the PSNR and SSIM metrics to evaluate the performance of different methods.
The PSNR is defined as follows:

PSNR = 10log10(
b2

MSE
),

MSE =
1

M× N

M−1

∑
x=0

N−1

∑
y=0

(Ic(x, y)− It(x, y))2,
(36)

where b is the maximum value of the gray level (generally, b is assigned as 255 for 8-bit
image). MSE is the mean square error evaluated from the clean and denoised images,
M× N is the size of original image, and Ic, It represent the clean image and intermediary
image in the diffusion process, respectively. A high value PSNR value indicates a better-
restored image. The second metrics, SSIM, is written as follows:

SSIM =
(2µxµy + ε1)(2cov(Ic, It) + ε2)

(µ2
x + µ2

y + ε1)(σ2
x + σ2

y + ε2)
, (37)
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where µx, µy denote the average patch pixel values of the clean and denoised images,
respectively; σx, σy are the variances of patch pixel values for the clean image and denoised
image, respectively; cov is covariance operator; and ε1, ε2 are two control parameters,
which are used to stabilize the division with small denominators. The range of SSIM is
[0, 1], where a value closer to 1 indicates higher quality of the restored image. In this
work, we mainly use the PSNR and SSIM metrics to compare performance of our proposed
AWTVF2Net with that of other methods.

5. Results

This section mainly describes the results of the comprehensive experiments conducted
between the proposed method and compared methods on the considered datasets. This
section consists of four components: The results for different noise levels (Gaussian), results
for mixed noise, results of ablation experiments, and results of comparisons on real noisy
remote sensing images, respectively.

5.1. Experimental Results of Additive White Gaussian Noise

To verify the performance of our proposed method, we present the results under dif-
ferent noise levels of white Gaussian noise, with σ2 = {15, 25, 35, 50}, on the three different
datasets. Figures 8–11 present the visual results of all compared methods. Table 1 provides
quantitative numerical results for all methods, according to the PSNR and SSIM metrics.

Table 1. Comparison results of different methods with four noise levels on the three datasets. The
bold values denote the best results.

Datasets Method WNNM BM3D ADNet DnCNN ECDNet DIPTV DIPWTV AWTVF2Net

Metrics 1 σ2 P/S P/S P/S P/S P/S P/S P/S P/S

NWPU
15 30.73/0.8856 31.28/0.9076 25.43/0.5812 24.54/0.5377 24.54/0.5388 28.31/0.8462 29.53/0.8752 32.27/0.9393
25 28.01/0.8515 29.28/0.8757 24.46/0.5440 23.55/0.4834 23.54/0.4831 27.21/0.8212 27.52/0.8267 29.57/0.8975
35 26.21/0.7500 28.21/0.8602 23.96/0.5080 22.73/0.4288 -/- 25.34/0.7498 24.64/0.7164 28.33/0.8663
50 24.18/0.6600 26.05/0.7972 22.94/0.4529 21.68/0.3595 21.69/0.3616 22.89/0.6322 22.77/0.6314 27.00/0.8301

PatternNet
15 31.22/0.9014 31.48/0.9209 25.57/0.6379 24.87/0.5948 24.87/0.5961 27.95/0.8008 28.65/0.8081 32.48/0.9323
25 28.56/0.8156 30.64/0.8993 24.98/0.6006 24.05/0.5431 24.04/0.5432 26.51/0.7550 26.34/0.7465 30.79/0.9017
35 26.65/0.7516 28.55/0.8546 24.38/0.5636 23.29/0.4909 -/- 25.08/0.6988 24.76/0.6896 28.83/0.8578
50 24.40/0.6710 26.14/0.7922 23.36/0.5052 22.21/0.4262 22.20/0.4277 22.86/0.5910 22.89/0.6038 27.90/0.8395

UCL
15 30.34/0.8843 31.02/0.9152 25.02/0.5468 24.30/0.5057 24.30/0.5065 28.13/0.8389 28.31/0.8310 30.84/0.9204
25 28.64/0.8203 28.96/0.8561 24.44/0.5135 23.49/0.4556 23.48/0.4553 26.99/0.8093 26.28/0.7742 29.36/0.8852
35 26.82/0.7601 27.49/0.8243 23.93/0.4835 22.81/0.4078 -/- 25.25/0.7388 23.79/0.6900 27.97/0.8420
50 24.70/0.6797 26.43/0.8108 23.17/0.4359 21.93/0.3500 21.93/0.3516 22.29/0.6010 21.71/0.5919 27.19/0.8250

1 P: PSNR, S: SSIM.

Figure 8 shows a visual comparison between proposed AWTVF2Net and other four
compared methods with a noise level of σ2 = 15. We also present the PSNR and SSIM
values under these sub-figures. It is notable that AWTVF2Net obtained the highest PSNR
and SSIM values, demonstrating that our proposed method has the best performance on
this level of white Gaussian noise. Meanwhile, we can see, from Figure 8, that denoised
images restored by DnCNN and ADNet methods were distorted, and that DnCNN and
ADNet have obtained the lowest PSNR and SSIM values. WNNM and DIPWTV obtained
competitive results, but the images restored by them were over-smoothed, with consequent
loss of fine features and details.

We also tested the performance of the proposed AWTVF2Net with white Gaussian
noise at σ2 = 25. The restored images, in comparison with other methods are shown in
Figure 9. These results proved that our AWTVF2Net method had the best performance
among the compared methods—whether from visual comparison or numerical metrics.
From Figure 9, it is evident that, in the images restored by the DIPWTV method for the
three datasets, there exists a water ripple phenomenon in the images, thus reducing the
quality of denoised images. Meanwhile, the images restored by DnCNN and ADNet were
distorted, and the background colors had changed in these images. The WNNM method
has restored better images than DIPWTV, DnCNN, and ADNet. Notably, our proposed
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method has higher quality restored images than WNNM, as the proposed AWTVF2Net
retained more details in the denoised images. The highest values of PSNR and SSIM also
illustrate that our method had the best performance among all compared methods.

Figure 10 shows denoised images on NWPU, PatternNet, and UCL datasets with
additive white Gaussian noise σ2 = 35. Meanwhile, we also compared our method with
other methods for a higher noise level (σ2 = 50), as shown in Figure 11. From Figure 10,
we can also see water ripples on the denoised images obtained by the DIPWTV method.
DnCNN and ADNet methods caused mild color distortion on the PatternNet dataset;
although they had competitive quality in restored images on both PatternNet and UCL
datasets, they caused serious color distortion on the UCL dataset. Compared with WNNM
method, they could obtain better visually denoised images, but WNNM has smoothed fine
features and details. In contrast, our method obtained the highest quality restored images,
as well as PSNR and SSIM values. The same manifestations of all compared methods can
be observed in Figure 11.

Particularly, in Figure 11, it is notable that ADNet and DnCNN presented weakened
color distortion on those images with a dack background. However, they also presented a
distortion effect on the images of the UCL datasets, leading to negative SSIM values (we use
the symbol ‘-’ to denote a negative SSIM value). The WNNM method has also smoothed
the small image content in these results. The proposed AWTVF2Net restored the denoised
images with high quality and prevented small image content from being smoothed. Thus,
our method retained more important fine features in these restored remote sensing images.
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Figure 8. Restored images of NWPU, PatternNet and UCL datasets with noise level σ2 = 15.
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Figure 9. Denoised images in NWPU, PatternNet and UCL datasets with noise level σ2 = 25.
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Figure 10. Restored results on NWPU, PatternNet and UCL datasets with noise level σ2 = 35.
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Figure 11. Visual results on NWPU, PatternNet and UCL datasets with noise level σ2 = 50.

We provide the average PSNR and SSIM values of the different methods on the NWPU,
PatternNet, and UCL datasets at the four different noise levels in Table 1. Notably, AWTVF2Net
obtained the highest PSNR and SSIM values on NWPU and PatternNet datasets at all noise
levels. BM3D had the highest PSNR value on the UCL dataset with a noise level σ2 = 15,
while our method had the highest SSIM value. AWTVF2Net also obtained the highest PSNR
and SSIM values for the other noise levels on the UCL datasets. Overall, whether from the
visual comparison or the numerical comparison, our proposed AWTVF2Net presented the
best performance and retained more important fine image contents in the denoised images.

To further verify the superior performance of our approach, we randomly selected
a class of image from each dataset and enlarged detailed image content to compare the
restored image quality of different methods. Figure 12 shows the comparison results of
all approaches on the ’Commercial area’ image with white Gaussian noise level σ2 = 50.
Figure 12 indicates that our proposed AWTVF2 had the highest PSNR and SSIM values in
this case. From the enlarged region of each image, we can see that DIPTV and DIPWTV
obtained restored images which were fuzzy. Meanwhile, some water ripples existed in the
image denoised by the DIPWTV approach. The WNNM, DnCNN, and ECDNet methods
over-smoothed the edges of buildings. The BM3D approach was better than WNNM,
DnCNN, and ECDNet, but it still smoothed the edges of buildings. The ADNet method
obtained a competitive restored image with slight color distortion. In contrast, the image
denoised by our method not only effectively removed noise but also prevented detailed
image contents from smoothing.

We used ten classes of images from the NWPU dataset, and the average PSNR values
of different methods with four noise levels for each class of images are provided in Table 2.
The table shows that our model had the highest PSNR values on these classified images
with a noise levels of σ2 = 15, except for the ‘Desert’ image, for which BM3D obatined the
highest PSNR. For noise levels of σ2 = {25, 50}, AWTVF2Net also obtained the highest
PSNR values among all ten classes of images. As for the noise level σ2 = 35, the BM3D
approach obtained a PSNR value of 27.60—the biggest among all compared methods.
Combining the visual and numerical results, our proposed AWTVF2Net outperformed
compared approaches.
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In the same way, we compared our method with other approaches on the PatternNet
dataset. First, we compared enlarged details of the ‘Harbor’ image with noise level σ2 = 50.
The enlarged details of different methods are shown in Figure 13. From the figure, it can be
seen that AWTVF2Net had the highest PSNR and SSIM values (located under each image).
According to the enlarged regions, The WNNM made the restored image more blurred;
the BM3D method smoothed some image contents in the denoised image; the DIPTV
and DIPWTV models restored images with some water ripples, andADNet, DnCNN, and
ECDNet approaches effectively removed noise, but also brought color distortion to these
images, which was especially serious for the DnCNN and ECDNet methods. A numerical
comparisons of the average PSNR values for each class of images from the PatternNet
dataset with noise levels σ2 = {15, 25, 35, 50} is shown in Table 3. We selected ten image
classes for testing, where each class contained five samples from the PatternNet dataset.

Table 3 shows that our model had the highest PSNR values for all the classes among
compared approaches. Notably, the BM3D model obtained competitive PSNR values at
the noise levels σ2 = {15, 25}, presenting a small gap from our model’s performance.
Combining the visual comparisons from Figure 13 and the numerical results, our model
outperformed the compared methods on the PatternNet dataset.

Clean image Noisy image WNNM

22.09 / 0.5759

BM3D

23.74 / 0.6794

DIPTV

22.76 / 0.6256

DIPWTV

22.39 / 0.5834

ADNet

24.21 / 0.6806

DnCNN

22.29 / 0.5544

ECDNet

22.30 / 0.5568

AWTVF2Net

25.82 / 0.7719

Figure 12. Detailed comparisons on the ‘Commercial area’ with noise level σ2 = 50.
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Table 2. PSNR comparisons of all classes’ images in the NWPU dataset. The bold values denote the
best results.

Image Aitplane Baseball Diamond Beach Church Commercial Area Desert Mountain Palace Roundabout Sea Ice

Noise level 15

WNNM 31.67 31.27 29.64 30.93 28.88 31.31 29.82 31.52 28.75 31.17
BM3D 34.09 33.68 32.42 33.43 31.77 33.80 32.41 33.80 31.68 33.69
ADNet 29.14 26.08 20.06 30.62 30.31 15.57 20.77 24.60 28.33 31.38

DIPWTV 28.03 25.48 19.82 29.06 28.00 15.50 20.46 24.13 26.59 29.57
DIPTV 28.03 25.48 19.82 29.05 27.97 15.50 20.46 24.13 26.58 29.57

DnCNN 29.74 30.47 28.26 28.87 25.90 28.13 29.01 30.25 27.30 30.36
ECDNet 30.90 31.47 29.06 29.62 26.82 30.64 29.63 31.16 28.44 31.87

AWTVF2Net 34.39 34.29 32.84 33.85 32.28 30.43 32.91 34.00 32.25 33.74

Noise level 25

WNNM 28.35 28.77 29.73 28.28 26.12 30.74 28.08 28.77 28.54 28.54
BM3D 30.63 30.93 31.92 30.43 28.43 32.78 30.17 31.01 30.83 30.83
ADNet 28.83 25.60 19.86 29.11 28.12 19.10 26.81 24.39 28.51 28.51

DIPWTV 27.78 28.81 29.43 28.02 25.36 29.40 27.52 28.53 28.60 28.60
DIPTV 27.78 28.66 29.15 28.08 25.25 28.61 27.86 28.87 28.64 28.64

DnCNN 27.07 24.77 19.66 27.38 25.87 18.98 25.55 23.61 26.88 26.88
ECDNet 27.06 24.77 19.65 27.39 25.84 18.98 25.55 23.61 26.88 26.88

AWTVF2Net 31.11 31.29 32.00 30.98 29.13 29.34 30.42 31.34 31.25 31.25

Noise level 35

WNNM 26.59 26.58 28.87 26.45 26.10 25.79 28.20 26.97 26.66 27.82
BM3D 28.58 28.41 30.72 28.17 27.94 27.60 30.10 28.98 28.73 29.73
ADNet 27.70 22.48 20.36 27.67 27.13 16.51 25.01 24.14 27.38 29.08

DIPWTV 26.29 26.50 27.90 26.31 25.27 25.10 26.43 26.47 26.64 27.75
DIPTV 26.54 26.49 27.19 26.57 25.81 25.18 25.65 26.70 26.66 28.11

DnCNN 25.84 21.87 20.13 25.99 25.25 16.28 24.20 23.11 25.59 27.22
ECDNet - - - - - - - - - -

AWTVF2Net 29.50 29.35 31.13 29.21 28.98 26.45 30.21 29.64 29.73 30.79

Noise level 50

WNNM 23.75 25.15 27.02 24.24 24.05 27.79 26.11 24.92 24.33 25.47
BM3D 25.60 27.00 28.74 25.57 25.54 28.71 28.11 27.03 26.07 26.77
ADNet 24.63 24.26 20.37 25.54 25.34 19.05 26.00 23.67 25.53 26.34

DIPWTV 23.39 24.27 24.77 23.99 23.08 23.79 24.51 24.22 24.33 24.68
DIPTV 23.44 22.79 23.26 23.59 23.32 22.25 24.10 23.78 23.31 23.97

DnCNN 22.93 23.16 20.01 24.15 23.52 18.82 24.47 22.43 23.88 24.96
ECDNet 22.92 23.17 20.01 24.13 23.54 18.84 24.49 22.42 23.86 24.97

AWTVF2Net 27.03 28.26 29.69 28.03 27.48 28.91 29.43 28.16 28.11 29.26

Clean image Noisy image WNNM

24.00 / 0.7771

BM3D

25.71 / 0.8211

DIPTV

24.92 / 0.7016

DIPWTV

24.35 / 0.6596

ADNet

25.97 / 0.7552

DnCNN

24.00 / 0.6864

ECDNet

23.96 / 0.6888

AWTVF2Net

28.07 / 0.8595

Figure 13. Detailed comparisons on the ‘Harbor’ image with noise level σ = 50.
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Table 3. PSNR results of different methods for each calss from the PatternNet dataset. The bold
values denote the best results.

Image Aitplane Bridge Cemetery Closedroad Coastalmansion Footballfield Harbor Shippingyard Swimmingpool Wastewaterplant

Noise level 15

WNNM 32.18 32.28 30.12 30.39 28.12 32.85 31.65 30.56 30.80 32.60
BM3D 33.42 32.59 31.55 32.31 30.80 34.71 33.68 33.08 32.74 34.67
ADNet 28.09 29.02 25.64 24.80 24.91 23.77 26.39 24.67 25.88 23.93

DIPWTV 5.96 30.69 30.16 29.38 26.11 32.31 30.84 28.74 30.72 32.45
DIPTV 15.63 29.46 28.90 28.62 25.22 31.46 29.58 27.13 29.82 31.38

DnCNN 27.25 28.09 24.93 24.24 23.96 23.48 25.74 24.02 25.25 23.62
ECDNet 27.25 28.07 24.93 24.23 23.95 23.48 25.74 24.01 25.26 23.62

AWTVF2Net 34.32 33.40 31.64 32.35 30.87 34.75 33.71 33.46 32.76 34.71

Noise level 25

WNNM 30.20 31.61 27.52 31.16 25.71 31.35 28.95 28.56 29.09 31.35
BM3D 32.31 33.17 29.70 33.51 27.96 33.23 31.21 30.49 30.72 33.46
ADNet 29.60 32.27 25.01 27.30 22.09 25.50 25.97 22.85 21.90 25.12

DIPWTV 29.72 30.53 27.80 30.13 25.58 29.96 28.47 28.15 28.76 30.63
DIPTV 29.69 30.27 27.85 30.23 25.40 29.64 28.54 28.19 13.17 30.43

DnCNN 28.04 30.57 24.01 26.54 21.32 24.97 25.04 22.35 21.46 24.63
ECDNet 28.03 30.59 24.00 26.55 21.31 24.97 25.04 22.36 21.46 24.64

AWTVF2Net 32.64 33.23 29.93 33.79 28.48 33.39 31.65 30.76 31.11 33.73

Noise level 35

WNNM 28.43 29.60 25.78 28.98 23.86 29.53 27.07 26.73 26.10 29.36
BM3D 30.43 30.77 27.54 31.42 25.81 31.46 29.07 28.68 28.08 31.23
ADNet 28.62 30.35 24.34 26.81 21.59 25.32 25.61 22.63 21.59 24.75

DIPWTV 27.49 28.28 25.92 27.49 24.13 26.74 26.89 25.41 4.93 27.92
DIPTV 27.01 27.95 25.67 26.89 24.64 26.62 27.04 26.70 26.72 26.86

DnCNN 26.86 28.77 23.17 25.82 20.65 24.59 24.43 21.97 20.93 24.10
ECDNet - - - - - - - - - -

AWTVF2Net 31.09 31.23 28.56 32.23 27.03 31.75 30.01 29.37 29.16 32.18

Noise level 50

WNNM 26.12 26.73 23.86 26.60 21.77 27.41 24.77 24.30 24.48 26.96
BM3D 28.13 27.13 25.31 28.90 23.36 29.24 26.39 26.26 26.54 28.47
ADNet 27.29 27.06 23.47 25.72 20.82 24.91 24.64 22.13 21.26 23.99

DIPWTV 24.47 25.15 23.42 24.87 22.38 24.77 24.50 24.13 6.38 25.12
DIPTV 23.05 23.70 22.52 23.44 22.71 23.34 24.21 23.75 24.10 23.04

DnCNN 25.43 26.18 22.25 24.63 19.79 23.95 23.23 21.22 20.38 23.33
ECDNet 25.41 26.09 22.25 24.65 19.78 23.95 23.22 21.23 20.39 23.31

AWTVF2Net 29.63 30.81 27.06 30.60 25.52 30.31 28.54 28.00 28.27 30.64

Figure 14 shows visual comparisons of different models on the ’Dense residential’
image, which is from the UCL dataset with noise level σ2 = 50. The PSNR and SSIM
(located under each image) indicate that the values for our method were highest among the
compared models. From each enlarged region, we can see that WNNM and BM3D removed
the noise without preserving the small contents in images. The DIPTV and DIPWTV models
could not remove the noise, and also caused some water ripples in denoised images. The
ADNet, DnCNN, and ECDNet models not only over-smoothed the restored images, but
also brought some color distortion, leading to the color of buildings being changed. Our
AWTVF2Net obtained a higher quality restored image while preserving detailed contents,
compared to the other approaches.

We selected eight classes of images from the UCL dataset, where each class had five
samples. Using these images with four different noise levels σ2 = {15, 25, 35, 50}, we tested
the performance of the compared models. The average PSNR values for each class are
presented in Table 4. We can see that AWTVF2Net obtained the highest PSNR value for the
noise levels of 15 and 50; while, for the noise level of 25, the BM3D method had the highest
value (0.18 higher than that of our model). However, AWTVF2Net had the highest PSNR
values for other classes. As for the noise level of 35, the BM3D model outperformed our
proposed method on the ‘Freeway’ image, with the PSNR value of the BM3D approach on
the ‘Freeway’ image being 0.15 higher than that of AWTVF2Net. Our model obtained the
best performance for the other classes of images.

Overall, in both visual and numerical comparisons, our proposed AWTVF2Net showed
superior performance over the other compared methods in the additive white Gaussian
noise experiments. Our model thus provides effective noise removal along with powerful
preservation of fine image details.
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Clean image Noisy image WNNM

23.36 / 0.7242

BM3D

25.44 / 0.8183

DIPTV

23.00 / 0.6452

DIPWTV

23.44 / 0.6865

ADNet

24.40 / 0.6306

DnCNN

22.55 / 0.5297

ECDNet

22.55 / 0.5298

AWTVF2Net

27.40 / 0.8688

Figure 14. Detailed comparisons of the ‘Dense residential’ image with σ = 50.

Table 4. Comparison results of different methods on UCL dataset. The bold values denote the best
results.

Image Aitplane Buildings Denseresidential Forest Freeway Intersection Rvier Storagetanks

Noise level 15

WNNM 32.21 32.70 31.17 26.94 31.95 32.22 32.98 34.16
BM3D 32.74 34.17 32.03 27.81 32.07 33.31 34.44 35.22
ADNet 19.11 22.61 19.34 25.20 30.28 28.23 30.38 26.50

DIPWTV 31.81 32.66 6.05 24.64 31.05 31.59 32.47 33.62
DIPTV 31.48 31.62 16.59 24.63 30.20 30.89 30.14 32.72

DnCNN 19.02 22.36 19.18 23.86 29.11 27.43 29.29 26.12
ECDNet 19.01 22.36 19.18 23.86 29.09 27.42 29.27 26.12

AWTVF2Net 33.06 34.25 32.09 28.00 32.10 33.45 34.84 35.29

Noise level 25

WNNM 27.80 29.67 27.97 23.99 27.64 29.23 30.13 26.92
BM3D 29.63 31.33 29.71 26.56 28.38 31.03 32.50 28.39
ADNet 22.69 22.46 26.27 23.95 27.73 27.50 29.49 27.20

DIPWTV 27.39 29.40 28.00 23.03 26.39 29.20 29.27 20.98
DIPTV 27.23 29.49 27.81 23.86 26.57 29.31 29.42 25.43

DnCNN 22.13 22.01 24.98 22.29 26.16 26.30 27.97 25.43
ECDNet 22.12 22.01 24.96 22.28 26.12 26.30 27.96 25.37

AWTVF2Net 29.90 31.74 29.79 26.38 28.67 31.05 32.66 28.45

Noise level 35

WNNM 25.86 27.41 26.73 25.38 28.42 27.42 28.11 29.35
BM3D 27.49 29.26 28.53 26.77 29.58 29.47 30.31 31.10
ADNet 22.43 22.25 19.23 25.51 28.35 26.99 28.51 25.89

DIPWTV 25.85 26.62 6.05 24.67 5.65 27.27 27.59 28.26
DIPTV 25.98 26.74 16.59 24.25 27.01 27.30 27.97 27.37

DnCNN 21.65 21.59 18.83 24.26 26.84 25.47 26.76 25.06
ECDNet - - - - - - - -

AWTVF2Net 28.36 30.42 28.57 26.96 29.43 29.87 31.11 31.68

Noise level 50

WNNM 23.73 24.76 24.59 24.27 26.90 25.27 25.97 26.73
BM3D 25.20 26.80 26.56 25.66 28.22 27.37 27.77 28.59
ADNet 21.90 21.87 19.14 24.57 27.42 26.05 26.92 25.21

DIPWTV 23.75 24.09 6.05 23.07 25.11 25.02 25.22 25.08
DIPTV 22.89 23.18 16.59 21.76 23.66 23.97 23.79 23.19

DnCNN 20.98 20.93 18.56 23.45 25.79 24.24 25.29 24.16
ECDNet 20.96 20.93 18.56 23.48 25.75 24.26 25.25 24.17

AWTVF2Net 27.20 28.75 27.15 25.90 28.60 28.48 29.63 30.29
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5.2. Experimental Results of Mixture Noise

To further test the performance of our model, we conducted comprehensive experi-
ments using multiple kinds of mixed noise, such as Speckle noise, white Gaussian noise,
and Salt&Pepper noise. We use the same (NWPU, PatternNet, and UCL) datasets to com-
pare the performances of all methods. The noisy images include three kinds of mixed noise.
The first type of noise was a mixture of white Gaussian and Salt&Pepper noise, the second
type was a mixture of white Gaussian and Speckle noise, and the final type was a mixture
of Salt&Pepper and Speckle noise. Figures 15–17 show the restored images obtained by
DIPTV, DIPWTV, DnCNN-B, and our proposed method for the three types of mixed noise,
respectively, in the NWPU, PatternNet, and UCL datasets.

Figure 15 shows denoised results by different methods. The images used for Figure 15
were distorted by the mixture of white Gaussian noise and Salt&Pepper. This type of noise
was introduced in Section 4.1. According to Figure 15, it can be seen that our model had
the highest quality of restored images, as it presented the highest PSNR and SSIM values.
Meanwhile, the DnCNN-B approach could not remove Salt&Pepper noise, and brought
some color distortion into the denoised images. The DIPWTV and DIPTV methods also
could not obtain good visual quality of the restored images. In contrast, our model obtained
higher quality denoised images while preserving fine features.

Figure 16 shows the denoised images of compared approaches for the mixed white
Gaussian and Speckle noise. It is evident that all methods could not obtain good visually
restored images. However, our model outperformed the others in this situation, having
higher PSNR and SSIM values.

N
W
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Clean Image Noisy Image DIPTV

9.96 / 0.6495

DIPWTV

9.93 / 0.6403

DnCNN-B

9.82 / 0.4867

AWTVF2Net

32.72 / 0.9560

Pa
tt

er
nN

et

11.16/ 0.6476 11.07 / 0.6369 10.28 / 0.3809 30.86 / 0.9544

U
C

L

10.99 / 0.6626 10.91 / 0.6533 10.89 / 0.5603 26.5106 / 0.9381

Figure 15. Restored images distorted by mixture noise of Gaussian and Salt&Pepper.
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Clean Image Noisy Image DIPTV
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DIPWTV

11.49 / 0.6031

DnCNN-B

11.45 / 0.6017

AWTVF2Net

12.12 / 0.7044
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10.20 / 0.6761 10.15 / 0.6521 9.95 / 0.5506 11.01 / 0.7266
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11.47 / 0.6393 11.38 / 0.6253 11.32 / 0.4269 12.11 / 0.6972

Figure 16. Denoised images distorted by mixture noise of Gaussian and Speckle.
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DIPWTV

8.77 / 0.6063

DnCNN-B

8.71/ 0.5279

AWTVF2Net
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11.57 / 0.6700 11.54 / 0.6745 11.44 / 0.4900 34.24 / 0.9650
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11.96 / 0.6872 11.90 / 0.6799 11.76 / 0.4129 34.51 / 0.9798

Figure 17. Restored results of images distorted by mixture noise of Salt&Pepper and Speckle.

Although the DnCNN model had a competitive capability to remove noise, it caused
color distortion and smoothed the details of images, as shown in Figure 16. For this case of
noise, the DIPTV and DIPWTV models caused some water ripples in the restored images.
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Figure 17 presents the experimental results with the mixed Salt&Pepper and Speckle noise.
According to the visual comparisons in Figure 17, we can see that the DIPTV and DIPWTV
approaches could not remove noise artifacts in the second row of Figure 17. Meanwhile,
they over-smoothed the denoised images, causing image details to be smoothed. The
DnCNN-B model still could not handle Salt&Pepper noise. However, our model makes up
for these issues of the compared methods. The proposed AWTVF2Net not only smoothed
the noise and noise artifacts, but also effectively preserved the detail contents of images.
We present the overall results for the three types of mixed noise in Table 5. The left values
denote the PSNR, and the right values are the SSIM. These results prove that our model
obtained the best performance.

Table 5. Numercial comparisons of different datasets with various types of mixture noise. The bold
values denote the best results.

Datasets Method DIPTV DIPWTV DnCNN-B AWTVF2Net

Metrics 1 Noise Type P/S P/S P/S P/S

NWPU
Gaussian + Salt&Pepper 9.65 / 0.5716 9.50 / 0.5458 9.64 / 0.3765 29.04 / 0.9127
Gaussian + Speckle 9.65 / 0.5717 9.45 / 0.5355 9.68 / 0.3899 11.71 / 0.6709

Salt&Pepper + Speckle 9.63 / 0.5744 9.49 / 0.5497 9.64 / 0.3966 28.90 / 0.9193

PatternNet
Gaussian+Salt&Pepper 10.76 / 0.6389 10.71 / 0.6183 10.47 / 0.4065 29.98 / 0.9297
Gaussian + Speckle 10.78 / 0.6402 10.54 / 0.5961 10.52 / 0.4251 11.24 / 0.6639

Salt&Pepper + Speckle 10.76 / 0.6428 10.51 / 0.5902 10.47 / 0.4249 29.59 / 0.9311

UCL
Gaussian+Salt&Pepper 9.10 / 0.5343 8.82 / 0.4729 9.31 / 0.3944 26.08 / 0.8520
Gaussian + Speckle 9.11 / 0.5351 8.67 / 0.4620 9.33 / 0.4035 13.30 / 0.6608

Salt&Pepper + Speckle 9.09 / 0.5343 8.57 / 0.4490 9.31 / 0.4128 25.26 / 0.8425

We further compared the performance of our model with other methods by enlarging
details of images. Figures 18–20 present the restored results for different classes from
the three datasets with the mixture of Salt&Pepper and Speckle noise. Figure 18 shows
enlarged detailed comparisons to other methods for the ‘Commercial area’ image from
the NWPU dataset. Notably, the DIPTV and DIPWTV models presented over-smoothed
denoised images. It is obvious that the edges of the target in the enlarged regions were
smoothed. While the DnCNN-B model kept the edges of the target, it could not remove the
Salt&Pepper noise. It can be seen, from the restored image of our proposed method, that
it effectively removed the mixed noise without losing the target’s edge information. We
also present the overall PSNR values for 10 classes of images with all three types of mixed
noise in Table 6, for images included in the NWPU dataset. From Table 6, we can conclude
that our proposed AWTVF2Net outperformed other methods, as it obtained the highest
PSNR values.

Clean Image Noisy Image DIPTV

9.95 / 0.6560

DIPWTV

9.90 / 0.6276

DnCNN-B

9.82 / 0.5083

AWTVF2Net

29.34 / 0.9557

Figure 18. Enlarged details of the ‘Commercial area’ image with the third case of mixture noise.
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Table 6. PSNR comparisons of each class in the NWPU dataset with various types of mixture noise.
The bold values denote the best results.

Image Aitplane Baseball
Diamond Beach Church Commercial Area Desert Mountain Palace Roundabout Sea Ice

Noise type Gaussian + Salt&Pepper

DIPTV 8.52 9.07 9.42 9.85 9.96 8.66 10.80 9.74 11.23 11.99
DIPWTV 8.47 9.03 9.40 9.81 9.93 8.65 10.78 9.69 11.21 11.90

DnCNN-B 8.42 8.95 9.19 9.58 9.82 8.00 10.59 9.49 11.08 11.76
AWTVF2Net 28.05 29.75 33.26 31.78 32.72 30.62 36.58 29.67 33.78 35.69

Noise type Gaussian + Speckle

DIPTV 6.31 9.50 10.35 11.93 11.53 7.82 7.82 11.28 8.90 15.47
DIPWTV 4.83 6.02 10.35 11.89 11.49 4.22 7.80 11.23 8.88 15.34

DnCNN-B 8.48 9.29 9.23 11.81 11.45 8.20 7.75 10.68 8.81 15.14
AWTVF2Net 17.18 10.55 12.15 12.05 12.12 21.59 13.17 11.74 12.20 15.40

Noise type Salt&Pepper + Speckle

DIPTV 8.49 10.27 9.42 9.85 9.69 8.65 10.24 9.75 11.24 12.86
DIPWTV 8.47 10.20 9.40 9.80 9.66 8.64 10.20 9.68 11.21 12.80

DnCNN-B 8.42 10.15 9.21 9.59 9.58 8.00 9.93 9.49 11.08 12.62
AWTVF2Net 27.57 29.84 34.15 32.36 29.48 27.99 35.50 29.33 34.53 35.80

Figure 19 shows the restored results of the ‘Harbor’ image from the PatternNet dataset.
The visual comparisons in Figure 19 lead to the same conclusions as Figure 18. The DIPTV
and DIPWTV models obtained denoised images without preserving details. The DnCNN-B
approach led to color distortion in the denoised image without removing the Salt&Pepper
noise. Our proposed model removed the mixed noise and prevented detailed image
contents from smoothing. We tested all ten classes of images from the PatternNet dataset
and the overall PSNR values of images from these classes are provided in Table 7.

From Table 7, we can see that our model obtained the highest PSNR values than
compared methods for the first and third cases of mixed noise. For the second case of mixed
noise, The DIPTV mode obtained the highest PSNR values in the ‘Bridge,’ ‘Closedroad,’
and ‘Wastewaterplant’ images. In contrast, our model obtained the highest PSNR values
in the other classes. Overall, our proposed AWTVF2Net approach obtained a completive
performance than the other methods on the PatternNet dataset. In addition, our model
preserved more image detail contents than all of the compared approaches.

Clean Image Noisy Image DIPTV

11.47 / 0.6512

DIPWTV

11.46 / 0.6508

DnCNN-B

11.18 / 0.2371

AWTVF2Net

31.93 / 0.9469

Figure 19. Detailed comparisons of the ‘Harbor’ image with the third type of mixture noise .

Clean Image Noisy Image DIPTV

9.15 / 0.6661

DIPWTV

9.13 / 0.6604

DnCNN-B

9.04/ 0.5038

AWTVF2Net

26.56 / 0.9448

Figure 20. Enlarged details of the ‘Dense residential’ image with the third type of mixture noise.
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Table 7. PSNR results of different methods on the PatternNet dataset. The bold values denote the
best results.

Image Aitplane Bridge Cemetery Closedroad Coastalmansion Footballfield Harbor Shippingyard Swimmingpool Wastewaterplant

Noise type Gaussian + Salt&Pepper

DIPTV 8.51 11.57 15.16 10.81 11.16 10.96 12.98 10.90 10.74 11.05
DIPWTV 8.50 11.55 15.09 10.79 11.07 10.95 12.95 10.85 10.70 11.02

DnCNN-B 8.39 11.45 14.89 10.58 10.28 10.64 12.81 10.39 10.48 10.75
AWTVF2Net 29.51 33.86 28.56 33.73 30.86 34.20 28.56 33.25 31.66 35.09

Noise type Gaussian + Speckle

DIPTV 8.30 13.22 11.81 10.42 12.02 9.88 11.72 10.20 10.23 10.63
DIPWTV 5.33 13.19 15.15 10.40 8.91 9.86 11.69 10.15 10.20 10.56

DnCNN-B 8.27 13.12 15.09 10.21 11.75 9.45 11.46 9.95 9.73 10.24
AWTVF2Net 12.86 13.19 12.01 10.33 12.86 10.32 11.90 11.01 11.96 10.54

Noise type Salt&Pepper + Speckle

DIPTV 9.10 11.35 11.79 10.46 11.15 10.95 11.47 10.94 10.73 11.04
DIPWTV 9.10 11.33 11.73 10.42 11.10 10.95 11.46 10.82 10.70 11.03

DnCNN-B 9.02 11.21 11.46 10.25 10.29 10.64 11.18 10.41 10.48 10.74
AWTVF2Net 30.08 35.89 35.77 37.81 31.84 34.55 31.93 33.97 32.10 36.67

Figure 20 shows comparisons of enlarged details from the ‘Dense residential’ image in
the UCL dataset for different methods. According to the enlarged regions of each image,
the proposed AWTVF2Net model led to a higher quality restored image. The DnCNN-B,
DIPTV, and DIPWTV model removed the mixed noise but lost fine feature information of
the image. Moreover, the DnCNN-B model caused serious color distortion. For this type of
mixed noise, the enlarged detail of the denoised image restored by our model illustrates
its superior performance in noise removal and image detail preservation. The numerical
results for images from all eight classes in the UCL dataset are shown in Table 8. These
results demonstrate that our model outperformed the other approaches in removing all
three types of mixed noise.

Table 8. Comparison results of different methods on NWPU dataset. The bold values denote the
best results.

Image Aitplane Buildings DenseresidentialForest Freeway Intersection Rvier Storagetanks

Noise type Gaussian + Salt&Pepper

DIPTV 8.24 9.77 9.18 8.66 5.63 8.24 11.95 9.94
DIPWTV 8.23 9.74 9.13 8.63 6.17 8.22 11.91 9.96

DnCNN-B 8.12 9.54 9.05 8.55 7.26 8.08 11.76 9.82
AWTVF2Net 27.97 27.09 27.85 31.35 31.40 29.36 32.86 27.34

Noise type Gaussian + Speckle

DIPTV 7.75 11.43 6.41 8.34 6.65 8.58 11.47 9.11
DIPWTV 4.07 11.34 4.34 8.28 7.90 5.72 11.38 9.12

DnCNN-B 8.73 11.69 9.38 8.27 7.91 8.43 11.32 9.01
AWTVF2Net 21.47 17.42 14.63 14.04 19.54 13.35 12.11 14.73

Noise type Salt&Pepper + Speckle

DIPTV 8.21 9.76 9.15 8.64 5.63 8.21 11.96 9.94
DIPWTV 8.19 9.76 9.13 8.62 6.17 8.20 11.90 9.94

DnCNN-B 8.10 9.55 9.04 8.54 7.22 8.07 11.76 9.81
AWTVF2Net 27.55 25.85 26.56 31.07 29.57 28.64 34.51 28.55

Although all methods considered for comparison performed poorly in removing the
second type of mixed noise, producing corresponding low PSNR values, our approach
outperformed the compared methods in terms of denoising and preserving details. Our
proposed model had a superior performance compared to other models in the task of
removing the mixed noise. Whether white Gaussian noise or mixed noise is considered, our
method can remove noise well without losing detailed information and retain the details of
images better than all of the models used for comparison.



Remote Sens. 2022, 14, 6300 28 of 34

5.3. Ablation Study

To validate the effectiveness of proposed AWTVF2Net model, our ablation experiments
included two aspects: The selections of γ1 and γ2, and the effect of the SOSB block module
in our network.

For the selection of γ1 and γ2, we fixed the other parameters in our model and set
γ1 from 0.1 to 0.9, with the constraint of γ1 + γ2 = 1. For different settings of γ1 and
γ2, we re-trained our model using the same epoch number. The numerical results under
different γ1 on the PatternNet dataset are presented in Table 9. We can see that the obtained
mean values of PSNR and SSIM were the highest when taking γ1 and γ2 as 0.4 and 0.6,
respectively. In the simulation experiments for our proposed network, we thus assigned the
values of γ1 and γ2 as 0.4 and 0.6. This set of weights can well join the two loss function of
L1 and L2, allowing our model to obtain superior performance over the compared methods.

Table 9. Mean metrics comparisons of different γ1, γ2 on the PatternNet dataset. The bold values
denote the best results.

γ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PSNR 26.78 26.74 26.73 26.88 26.56 26.71 26.60 26.49 26.24
SSIM 0.7963 0.7893 0.7909 0.7998 0.7875 0.7865 0.7890 0.7953 0.7882

As for the effect of the SOSB block module, we conducted ablation experiments with
two types of networks. One network was our proposed AWTVF2Net, which includes SOSB
block modules. The other network did not include the SOSB block modules. We used the
same hyperparameters to train the two networks, and tested them on the PatternNet dataset.
The mean values of PSNR and SSIM for the network without SOSB block modules were
26.71 and 0.7873, respectively, while our proposed AWTVF2Net with SOSB block modules
obtained higher PSNR and SSIM values: 26.88 and 0.7998, respectively. To further illustrate
the effect of the SOSB block modules, we provide a visual comparisons of the restored
images in Figure 21. These denoised images were obtained by networks with/without
SOSB block modules. According to Figure 21, the image restored using the approach
without SOSB block modules was denoised, but the image details were over-smoothed
(we recommend viewing the small details of the tree in enlarged regions of each image).
In contrast, our proposed AWTVF2Net with SOSB block modules not only outperformed
better in terms of noise removal, but also preserved some small key details of the image.
This is one of the merits of our model over the other compared methods. The values of
PSNR and SSIM for Figure 21 are presented in Table 10. Notably, the proposed approach,
when deployed with SOSB block modules, obtained higher PSNR and SSIM values.

Clean image Noisy image Without SOSB block With SOSB block

Figure 21. Enlarged detail comparisons of with/without SOSB block modules (with white Gaussian
noise level σ2 = 50).
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Table 10. Comparison results of with/without SOSB modules. The bold values denote the best
results.

Metrics Noisy Image With SOSB Block Without SOSB Block

PSNR 14.94 24.73 24.44
SSIM 0.4093 0.8143 0.7924

Overall, the ablation experiments illustrated that optimal choice of γ1 and γ2, along
with the deployment of SOSB block modules, enabled our proposed AWTVF2Net model to
have better denoising ability while preserving the fine details of images.

5.4. Experimental Results of Real-World Noisy Remote Sensing Images

To further verify the ability of our proposed model for restoring real-world noisy
remote sensing images, we used three real-world datasets: The AVRIS Indian Pines
dataset [55], the ROSIS University of Pavia dataset [56], and the HYDICE Urban dataset [24].
As these real noisy remote sensing images do not include paired clean images, the full-
reference image quality of PSNR and SSIM metrics are unsuitable for use in this sub-
section. Hence, the no-reference image quality measurement of the Spatial-Spectral
Entropy-based Quality (SSEQ) [61], the Blind/Referenceless Image Spatial Quality Evalua-
tor (BRISQUE) [62], and the blind image integrity notator using DCT statistics (BLIINDS-
II) [63] were used to evaluate the quality of the denoised images. Using a bilinear operator,
we resized all of real-world noisy images to 256 × 256. It is worth noting that our model
was not proposed for blind image denoising. Therefore, we set the σ2 = 35 for the AVRIS
Indian Pines and the ROSIS University of Pavia datasets, and we used the model trained
on a mixed of Gaussian and Speckle noise for denoising the HYDICE Urban dataset. The
choices of noise level and the type of mixed noise were based on our rough estimation. The
visual comparisons and numerical measurement comparisons are presented in Figure 22
and Table 11, respectively.

Figure 22 shows detailed comparisons for the three datasets. We present band 3 of
the AVRIS Indian Pines dataset in the first row of Figure 22, while the second row is band
2 of the ROSIS University of Pavia Dataset. The last row is presented in band 205 of the
HYDICE Urban dataset. From Figure 22, we can conclude that the DIPTV, DIPWTV, and
DnCNN-B models obtained similar restored images in the AVRIS Indian Pines dataset,
which were not much different from the noisy remote sensing image. Notably, the DIPTV
and DIPWTV models could not restore images from the ROSIS University of Pavia dataset
and the HYDICE Urban dataset. There was no content in the images obtained by the DIPTV
and DIPWTV approaches. The DnCNN-B method could remove noise from these two
datasets; however, it could not preserve the details of images. In contrast, our proposed
AWTVF2Net model not only removed the noise without losing detailed contents of images,
but also made the images clearer than the original noisy images.

In Table 11, we present the mean SSEQ, BRISQUE, and BLIINDS-II metrics of the
different methods on the three datasets. A higher SSEQ value denotes higher quality of
the restored image, while a lower BRISQUE metric means that the quality of the denoised
image is the higher. The BLIINDS-II metric is the same as the SSEQ: a higher value indicates
higher quality of the restored image. As DIPTV and DIOWTV were invalid in the last
two datasets, the mean values of SSEQ, BRISQUE, and BLIINDS-II could not be calculated
(denoted by the ‘-.’). From Table 11, it can be seen that our model performed best in the first
and the last real noisy remote sensing image datasets. The DnCNN-B approach obtained
the lowest value of BRISQUE on the ROSIS University of Pavia dataset. For the SSEQ and
BLIINDS-II metrics, our model obtained the highest values in the same dataset. Overall,
the proposed AWTVF2Net presented superior performance over compared methods on
the real noisy remote sensing image datasets.
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Noisy Image DIPTV DIPWTV DnCNN-B AWTVF2Net

Figure 22. Restored details comparisons of real world noisy remote sensing image datasets.

Table 11. Numerical comparisons of different real noisy remote sensing image datasets. The bold
values denote the best results.

Dataset Evaluation Method DIPTV DIPWTV DnCNN-B AWTVF2Net

AVIRIS Indian
Pine dataset

SSEQ ↑ 34.92 28.89 24.94 37.86
BRISQUE ↓ 42.83 41.42 44.77 39.22

BLIINDS-II ↑ 29.38 14.38 1.88 29.38

ROSIS University
of Pavia dataset

SSEQ ↑ - - 21.30 26.45
BRISQUE ↓ - - 25.85 26.82

BLIINDS-II ↑ - - 21.75 30.08

Urban
SSEQ ↑ - - 24.28 35.27

BRISQUE ↓ - - 34.01 30.67
BLIINDS-II ↑ - - 15.50 26.83

From the experimental results in synthesized and real noisy remote sensing images
denoising, the visual comparisons and numerical results well-demonstrated that our pro-
posed AWTVF2Net model can remove various types of noise effectively without losing the
essential detail contents of remote sensing images. Moreover, the real-world noisy image
experimental results indicate that our model is not only suitable for color image denoising,
but also gray image restoration. The proposed method obtained superior performance
over the other approaches used for comparison. The key merit of our proposed model is
preventing fine feature information from smoothing in the denoising process.

6. Discussion

This study provided a framework for pre-processing noisy images in real-world
remote sensing applications. We proposed an anisotropic weighted total variation feature
fusion network consisting of four modules: AWTV-Net, SOSB, AuEncoder, and FB. The
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denoising capability of the proposed model was evaluated through experiments on different
benchmark and real-world datasets. By comparing the results of our method with the
other methods, we confirmed that AWTVF2Net could obtain a higher quality of denoised
remote sensing images. Compared with the other methods, the proposed framework easily
preserved more the fine details in the restored images. The AWTV-Net module of this
study is a modified U-Net, which differs from the original U-Net [47]. The original U-Net
integrates the skip layer outputs into the feature maps of the decoder, while our framework
inherits the original U-Net and uses SOSB modules to boost the skip layer outputs. This
combined use of the SOSB module and skip layers allows our framework to extract more
critical detailed information about remote sensing images. Different from DIPWTV [22], the
proposed weight function is an anisotropic diffusion coefficient function. The anisotropic
diffusion coefficient can change as the algorithm iteration, thus adaptively preserving the
small contents in restored images. This is a significant merit of the model proposed in this
context over State-of-The-Art (SoTA) models, as it can obtain high-quality denoised sensing
images while preserving small textures.

The excellent results obtained can be attributed to the following: (1) Multi-scale
input sources are processed by the AuEncoder modules, enriching the feature space of
reconstruction images; (2) multi-level feature maps are concatenated by FB modules to
provide comprehensive essential information of remote sensing images, also as mentioned
in [49]; and (3) the novel anisotropic diffusion coefficient function and suitable weights for
loss functions allow the framework to stay robust under different datasets and noise cases.

We focused on the remote sensing image restoration task based on the proposed
AWTVF2Net. However, it is worth noting that there are some limitations when using the
proposed framework: (1) our model is not designed for blind image denoising, therefore,
before using our framework, it is recommended to (at least roughly) estimate the noise
intensity [49]; (2) in the hyperspectral image denoising task, it is recommended to account
for the lightness and image contrast [13], which may directly affect the restoration quality
of remote sensing images; (3) for the mixed noise removal task, we mainly focused on
the low level of noisy images, as the heavy mixed noise could cause loss of information
in the restored images, also mentioned in [40]; and (4) our network was designed with
many layers to preserve image texture information, which led to it not being applicable to
mobile devices. Thus, potential further work includes designing a blind denoising network
for noisy remote sensing images, exploring the relationship between the lightness and
the quality of restored remote sensing images, and improving the contrast of denoised
images with low lightness. Furthermore, we intend to investigate further the design of
a lightweight version of our network to retain superior performance under constrained
computation scenarios, including its application in mobile devices.

7. Conclusions

Remote sensing image restoration is a critical task in the remote sensing image process-
ing field. We proposed a novel denoising deep learning network, named the anisotropic
weighted total variation feature fusion network (AWTVF2Net) framework, in this work,
which provides an example of fusing extracted maps from the traditional model with
feature maps from deep convolutional neural networks. Comprehensive experiments were
conducted to test and validate the performance of our proposed AWTVF2Net model. These
experiments mainly included three aspects: removing the white Gaussian noise, removing
mixed noise, and processing real noisy remote sensing images. First, we compared the
effectiveness of our approach on the NWPU, PatternNet, and UCL datasets. For the Gaus-
sian noise removal task with different noise levels on the three benchmark datasets, our
model’s PSNR and SSIM values were 0.12∼7.73 dB and 0.0327∼0.4750 higher, respectively,
than other methods used for comparison. In the mixed noise removal task, our model’s
PSNR and SSIM values were 0.46∼19.39 dB and 0.0237∼0.5362 higher, respectively, on the
three datasets.The SSEQ and BLIINDS-II, and BRISQUE values of AWTVF2Net on the three
real-world datasets were 3.94∼12.92, 8.33∼27.5 higher, and 2.2∼5.55 lower than those of
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the compared methods, respectively. The final restored images of our method can preserve
more texture details than those of other compared algorithms. In addition, as the noise
level increased, the proposed model still obtained superior performance over the other
methods. Extensive experiments demonstrated that our model can achieve satisfactory
results through objective numerical metrics, and it obtained high-quality denoised remote
sensing images without the loss of detailed textures.
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