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Abstract: Dynamic technological progress has contributed to the development of systems imaging
of the Earth’s surface as well as data mining methods. One such example is super-resolution (SR)
techniques that allow for the improvement of the spatial resolution of satellite imagery on the basis
of a low-resolution image (LR) and an algorithm using deep neural networks. The limitation of
these solutions is the input size parameter, which defines the image size that is adopted by a given
neural network. Unfortunately, the value of this parameter is often much smaller than the size of the
images obtained by Earth Observation satellites. In this article, we presented a new methodology
for improving the resolution of an entire satellite image, using a window function. In addition, we
conducted research to improve the resolution of satellite images acquired with the World View 2
satellite using the ESRGAN network, we determined the number of buffer pixels that will make
it possible to obtain the best image quality. The best reconstruction of the entire satellite imagery
using generative neural networks was obtained using a Triangular window (for 10% coverage). The
Hann-Poisson window worked best when more overlap between images was used.

Keywords: remote sensing; satellites; neural network application; image processing; image resolution

1. Introduction

In recent years, we have been witnessing a growing interest in imagery obtained from
space altitudes. According to the Union of Concerned Scientists (UCS) Satellite Database,
(as of 1 January 2022) 1031 Earth Observation satellites have been launched since 1994,
and 68% of them were launched in the last 5 years. At least 55% of Earth Observation
satellites enable the acquisition of the following types of images: optical (e.g., Pleiades
Neo, SkySat, Gaofen, Worldview), optical stereo (e.g., Gaofen 14), multispectral (e.g., Dove
4p-1-5, 7, 10-11, CSO-1,2), hyperspectral (e.g., ÑuSat-4, 5, Spark- 1,2, OHS), infrared (e.g.,
Tianjin Daxue 1, HOPSAT-TD, TTU100), radar (e.g., Yaogan, COSMO-Skymed, SAR-Lupe,
Capella, ICEYE), as well as video materials (Jilin-1, UVS). As Earth Observation systems
are evolving, small satellites are becoming increasingly popular, including nanosatellites
(weight 1–10 kg, e.g., Dove, NAPA- 1, 2, and Jin Zijing 2 constellations), microsatellites
(weight 10–100 kg, e.g., Jilin, BlackSky Global, ICEYE, OHS, and GRUS constellations), and
minisatellites (weight 100–500 kg, e.g., Capella, SkySat, and Kanopus-V-IK constellations).
These small satellites, with weights that do not exceed 500 kg, enable the acquisition of
images of a spatial resolution lower than 1 m. Their potential is also emphasized by their
number: according to data provided in the UCS Satellite Database, they account for 71% of
all imagery acquiring satellites.

Satellite imagery is commonly applied in numerous areas. It is frequently used in
environmental protection, spatial planning, monitoring changes, or in military applications.
However, in order to improve the interpretational capacity of the acquired satellite imagery,
it is necessary to perform certain operations on the images. The traditional and most
popular of which include digital image processing methods, such as segmentation or
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detection of changes. However, new methods that employ machine learning and especially
deep learning have been becoming increasingly popular in recent years. Multiple solutions
that enable the detection and recognition of objects have been developed [1–4], as well as
those that allow for the segmentation of scenes [5–7] or improvement of the resolution of
satellite images [8,9] and using linear regression [10,11].

Unlike classification, the task of linear regression is to predict numeric variables,
not discrete (categorical) variables. In the literature, there are solutions in which clas-
sification tasks are solved by regression. This is possible by using the appropriate loss
function—mean squared error (MSE), root mean squared error (L2), mean absolute error (L1)
or Huber loss. This method is used in tasks related to ice concentration estimation [12–14],
vegetation index estimation [15], motion parameters estimation of moving targets [16] and
ship orientation angle estimation [17].

Methods that use deep neural networks make it possible to process large datasets
quickly and to extract information that would be impossible to extract with the use of
digital image processing methods. In order to use the designed architectures for other
purposes than those for which they were dedicated, it is necessary to prepare a database of
training data in such a way that the data will meet the input parameters of the network
(height, width, and number of channels). Unfortunately, this operation leads to changing
the values of pixels in the image, which may, in turn, result in the loss of information from
the image. A review of the size of the parameters that define the entry to the network
reveals that they are significantly smaller than the dimensions of images that are acquired
by optoelectronic sensors installed on UAVs, Reconnaissance aircrafts or EO satellites.
Moreover, even nanosatellite systems that are equipped with small arrays, e.g., CMOS [18]
or CMOSIS CMV [19], characterized by a low quantum yield have a much higher resolution
than that of the designed input to the neural networks. In order to apply the solutions that
use deep neural networks, it is thus necessary to divide the imagery into smaller images
of specific dimensions, and the training process should be performed according to the
diagram below (Figure 1). The result of this procedure is a set of resulting images, yet not
the whole image. This gives rise to the question: how to combine the obtained results?
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Figure 1. Diagram illustrating the process of improving the resolution of satellite imagery.

Moreover, as far as image to image [20] algorithms are concerned, as in the example of
improving the spatial resolution of satellite imagery with the use of generative adversarial
networks, the problem is additionally complicated as each of the pixels in the image is re-
evaluated. Additionally, in order to use AI algorithms to improve the resolution of images
that depict urban areas and contain a large number of details, it is necessary to minimize
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the phenomenon where the same object that is present in several images is represented in
different ways.

It is well known that in spite of the very high computational power of graphic pro-
cessors and the possibility to use virtual machines, it is very difficult to process such large
satellite images. As a result, the following research questions arise:

1. Are there any methods to combine images after the application of algorithms to
improve spatial resolution with the use of deep learning methods?

2. What methodology should be adopted to combine images evaluated by generative
adversarial networks?

3. What is the number of buffer pixels that will result in the best quality of the resulting
image?

4. Can this method also be used to combine images that are the outcome of segmentation
algorithms?

The paper consists of the following sections: Section 2 discusses the methods of
improving the resolution of satellite imagery. The proposed methodology is presented in
Section 3. Section 4 contains the Discussion, while the final conclusions are presented in
Section 5.

2. Related Works

Considering the review of the solutions used to improve the resolution of satellite
images [21,22], the methods may be divided into two groups. The first group contains
methods that enable the processing of whole images. These include interpolation, solutions
using signal processing (e.g., MUltiple SIgnal Classification (MUSIC) algorithm [23]) and
pansharpening methods. The second group are the methods that allow for the improvement
of the resolution only for images of specific dimensions. Examples of this are all solutions
that employ convolutional neural networks (CNN). They enable the learning of local
patterns of the image, which are the basis for image classification. Classification is applied
both to groups of pixels (object classification) and single pixels (image segmentation). One
of the elements that characterize each convolutional neural network is the dimension of
input to the first hidden layer. This parameter defines the dimensions of square images that
will be processed by the network. This value is determined mainly by the computational
power of workstations, as the number of searched parameters increases with the growing
size of the image. Table 1 presents examples of the input dimensions to the first hidden layer
in sample networks that solve the problems of the classification, detection, segmentation,
and translation of digital images. Based on the presented information, one may notice that
the size of the processed images usually does not exceed one million pixels.

Table 1. Sample dimensions of the input layers used in processing satellite data.

Method Input Size

classification 224 × 224 [24–26], 299 × 299 [27]
object detection 400 × 400 [28], 668 × 668 [29], 1024 × 1024 [30]
segmentation 32 × 32 [31], 128 × 128 [32], 512 × 512 [33], 513 × 513 [34]

image-to-image translation 256 × 256 [35,36], 500 × 500 [37,38], 64 × 64 [39], 96 × 96 [40,41],
128 × 128 [41], 192 × 192 [41]

Apart from that, it is noticeable that the results presented by other authors have the
form of small resultant samples [42–44]. Unfortunately, researchers do not address the
issue of improving the resolution of whole satellite images or developing the methodology
to improve entire satellite images.

The problem of combining images most often appears in the literature, in the context
of creating panoramas or stitching several photos [45,46]. An example is the work of the
Mingyuan Lin team. They drew attention to the problem of combining images by disparity-
guided multi-plane alignment. In this solution, the researchers used the algorithm guided
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by the disparity map, which allowed for limiting the occurrence of parallax artifacts [47].
However, the use of this solution for a large number of images (which we deal with when
improving spatial resolution with solutions using neural networks) would require the
use of large image coverage, which would significantly extend the work of the algorithm.
Meanwhile, the problem of processing large images using deep neural networks has been
noticed by scientists involved in the processing of biological and medical images, where
samples containing several gigapixels are used. They found that the use of the Hann
window to combine images significantly reduces the number of unwanted artifacts (e.g.,
edge effects) [48]. Unfortunately, in the case of satellite imagery, where the number of
details in the photos is very large, the problem of combining photos is more complicated.

3. Experiments and Results
3.1. The Proposed Method

The aim of the experiment is to combine super resolution (SR) images estimated
with the use of a GAN network based on low resolution (LR) images. In the proposed
methodology, the fragments of the scene are combined with the use of two-dimensional
window functions. The application of the window function consists of preparing the
adequate matrix of weights (which is symmetrical in relation to the center of the image)
and then multiplying it by the super resolution (SR) image, estimated by the generative
adversarial network. The specific stages of the process are presented in Figure 2.
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Figure 2. Diagram of the methodology to improve the resolution of whole satellite scenes. Step 1:
divided of image, step 2: upload images to the network, step 3: use a method of improving spatial
resolution using neural networks, step 4: select a window function to combine images, step 5:
combine images.

This solution may be applied thanks to the properties of the window function: (1) non-
zero on a finite interval, (2) reaches a maximum at the center of the interval, (3) is sym-
metrical relative to the center of the interval. Additionally, for combining images, another
condition should be checked: (4) the sum of weights for each of the pixels equals 1. If the
sum of weights is lower (or higher) than 1, the image after combining has a characteristic
grid that consists of pixels of lower (or higher) DN values. For the purpose of the analysis
of selected windows, four parameters were tested: minimum and maximum value, the
average sum of weights and the sum of weights for the shared area of the images. The
tests of the possibility to apply windows for the purpose of combining images were con-
ducted for images with the dimensions 384 × 384 pixels. The combination of two images
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of the size 384 × 384 pixels was simulated. This dimension was not selected at random.
The SRGAN and ESRGAN networks usually collect low resolution (LR) images with the
dimensions of 96 × 96 pixels as input, and return an SR image with the dimensions of
384 × 384 pixels. The works on the analyzed issue were divided into two stages. At the
first stage, preliminary tests were conducted, which were the basis for selecting only those
windows for which: (1) the sum of weights at a point belonged to the range 0.95 to 1.05],
and (2) the sum of weights for the overlap area belonged to the range 190 to 192, based on
the assumption that the overlap of the combined images (component images) was 50%.
Based on the set of metrics proposed in the subsequent sections of this paper, the quality of
the image after combining (the resultant image) was assessed. Additionally, it was assumed
that the analyzed image would not be subjected to any digital image processing operations.
Thus, the image would be divided into component images and then combined, with the
use of windows, to create one resulting image. At the main stage tests, the influence of the
size of overlap of component images on the quality of the resulting image was analyzed.
Only four windows that brought the best results in the preliminary research phase were
used.

3.2. Equations

The quality of the SR images estimated by the ESRGAN network was determined
with the use of some of the most popular metrics used in the fields of remote sensing and
computer vision.

3.2.1. Peak Signal-to-Noise Ratio

Peak signal-to-noise ratio (PSNR) [49] (Equation (1)) is the ratio of the maximum signal
power (maximum value of the image) to the power that interferes with his signal, i.e., the
mean square error. PSNR values are expressed in decibels.

PSNR = 10·log10
[max(HR(n, m))]2

MSE
, (1)

where MSE—mean square error, max(HR(n,m))—maximum value of the image.
For images that have been recreated in high quality, i.e., when the MSE approaches

zero, the value of PSNR tends towards infinity. This means that the higher the PSNR value,
the better the images had been combined.

3.2.2. Universal Quality Measure

Universal Quality Measure (UQI) [50,51] is another metric that compares the reference
image (HR) and the image after processing (HR′). The value of the UQI metric is determined
based on the values of the image pixels, but also their average and variance. UQI is
calculated from equation (Equation (2)):

Q =
σ′HRHR

σHRσ′HR
· 2·HR·HR′(

(HR)
)2(

(HR′)
)2 ·

2σHRσ′HR
σ2

HR + σ2
HR′

, (2)

where HR—reference image, HR′—image after processing.

3.2.3. Spatial Correlation Coefficient

The Spatial Correlation Coefficient (SCC) [49] is a method of assessing image process-
ing based on CC. In this method, maps of the properties of high frequency images which
emerge after the application of edge detection filters are assessed.
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3.2.4. Spectral Angle Mapper

Spectral Angle Mapper (SAM) [49,52] is a metric that defines the average change of all
angles in the spectral component (Equation (3)).

SAM(v, w) = cos−1

 ∑N
i=1 HR′ i HRi√

∑N
i=1 HR′2i

√
∑N

i=1 HR2
i

, (3)

where N—number of channels, HR′, HR, respectively: test spectrum and reference spectrum
(each has n components).

3.2.5. Spectral Angle Mapper

Structural similarity index measure (SSIM) [49] (Equation (4)) is a measure of the
structural similarity in the image domain, additionally taking into account the changes
in brightness and contrast. The measure of brightness changeability is defined by the
difference in the value of average brightness in the image, while the change in contrast is
defined by the standard deviation. SSIM takes the values from the range <−1, 1>, where if
SSIM = 1, the reference image is the same as the processed image.

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) , (4)

where µx—average brightness in the X window, µy—average brightness in the Y window
σx

2—variance in the X window, σy
2—variance in the Y window, σxy—covariance of pixels

in the X and Y windows, C1 and C2—permanent coefficients.

3.2.6. VIFP

The VIFP metrics is also known under the name VIF. It is the quantification of two
mutual information quantities: the mutual information between the input and the output
of the HVS channel when no distortion channel is present (this is referred to as the reference
image information) and the mutual information between the input of the distortion channel
and the output of the HVS channel for the test image [53].

3.2.7. Normalized Root Mean-Squared Error

Another modification of the mean square error MSE is the Normalized root mean-
squared error (NRMSE) [49] (Equation (5)). Literature does not provide a standard normal-
ization method. Depending on the chosen method, this error is calculated as the quotient
of the square root of the MSE (i.e., the RMSE) and the mean (in subject literature, the mean
value is sometimes replaced with standard deviation, difference between maximum and
minimum or the interquartile range). A sample equation is represented as.

SNRMSE =
RMSE

HR
, (5)

where RMSE is the Root mean square error, HR—reference image.

3.2.8. Mean Square Error

The Mean square error (MSE) [49] between images is based on calculating the square
error between the estimator (the HR image) and the estimated value (the HR′ image) (6). It
is the main measure to assess the quality of the generated image. As a result, lower values
of the MSE correspond to a better recreation of the image. This error is calculated with the
equation:

MSE =
1

NM

N

∑
n=1

M

∑
m=1

[
HR(n, m)− HR′(n, m)

]2, (6)
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where N, M—image resolution, n,m—coordinates of the analyzed pixel, HR—high-resolution
image, HR′—image combined with the use of the window function.

3.2.9. Root Mean Square Error

The Root mean square error (RMSE) [49] is another measure used to assess the quality
of the generated image. RMSE is the square root of the mean square error (Equation (7)):

RMSE =

√√√√ 1
NM

N

∑
n=1

M

∑
m=1

[HR(n, m)− HR′(n, m)]2, (7)

where N, M image resolution, n,m—coordinates of the analyzed pixel, HR—high-resolution
image, HR′—image combined with the use of the window function.

3.3. Preliminary Tests

The tests verified the possibility to use the chosen windows (i.e., Welch, Sine, Hann,
Bartlett-Hann, Triangular, Hann-Poisson, Gaussian, Lanchos, Blackman, Blackman-Nuttall,
Blackman–Harris window, Flat top window, Poisson, and Hamming [53]). For the simu-
lated image combination, the sum of weights at a point, the sum of all weights, and the
average value in the image overlap area were calculated. Appendix A presents the obtained
results and the window formula that was used for the calculations. Considering the prop-
erties of windows (2) reaches a maximum at the center of the interval, (3) is symmetrical
relative to the center of the interval], for the purposes of tests it was assumed that the
windows are one-dimensional.

Considering the obtained results, which are additionally visualized in Figure 3, one
may notice that the properties defined above are met only by the following windows: Hann,
Bartlett-Hann, Triangular, and Hann Poisson. Additionally, it is worth noting the Backman
window, which does not meet only the condition that refers to the sum of weights of the
windows. As far as the Backman window is concerned, the sum of all weights equals
190.08, which is 1.92 lower than the target. Additionally, at the further stages of research,
the Gaussian, Lanchos, and Blackman window functions will be tested. They do not meet
the condition introduced by the authors at all, but, at the same time, the sums of weights
do not diverge significantly from the target.

Additionally, Appendix A presents the functions that describe the manner of collecting
samples of the image, i.e., calculating the weights that will be used while combining the
images. Some of the presented window function formulas (Hann-Poisson) use (constant)
parameters that were determined by the authors of the relevant solutions. However, in
order to meet the condition of the sum of weights of image pixels, new values of these
parameters were defined. As a result of this operation, the sum of weights of the pixels for
those solutions is close to 1.

Table 2 and Figure 4 present the results of the final stage of preliminary research.
The tests were conducted on one of the images from the sequence of images acquired
by the Jinlin minisatellite. The prepared image was divided into component images of
the dimensions 384 × 384 pixels with an overlap of 192 pixels (50%). Then, the prepared
images were combined with the weights calculated with the use of the Hann, Bartlett-
Hann, Triangular, Hann-Poisson, Gaussian, Lanchos, and Blackman window functions.
The quality of the obtained resultant image was analyzed based on the evaluation metrics
described in point A. The obtained results clearly reveal that those windows, where the
sum of weights for a single pixel equals 1, present the best results of the evaluation metrics.
Apart from that, combining images based on weights determined with the use of window
functions leads to a slight deterioration in image quality, which is proven by the low value
of MSE and RASE errors. At the same time, the Peak signal-to-noise ratio (PSNR) takes
high values, e.g., for the Hann window PSNR = 51.89 dB, which means very high similarity
between the resulting image and the reference image. As for the windows, for which the
sum of weights in a point in the overlap area is different from 1, horizontal and vertical
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stripes are visible in the resulting images. If the value of the sum of weights is lower than
one, the DN values for those pixels are lower than the target value, which, in consequence,
leads to the emergence of a dark grid. On the other hand, if the sum of weights is higher
than 1, the DN value of the pixel is higher than the target value, which results in the
emergence of lighter stripes (Figure 5).

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 23 
 

 

 

Figure 3. Presentation of the values of the average, minimum, and maximum values of the weights 

of the analyzed windows. It was assumed that the images overlapped in 50%. Numerical values 

were determined for the overlap area. 

Additionally, Appendix A presents the functions that describe the manner of col-

lecting samples of the image, i.e., calculating the weights that will be used while com-

bining the images. Some of the presented window function formulas (Hann-Poisson) use 

(constant) parameters that were determined by the authors of the relevant solutions. 

However, in order to meet the condition of the sum of weights of image pixels, new 

values of these parameters were defined. As a result of this operation, the sum of weights 

of the pixels for those solutions is close to 1. 

Table 2 and Figure 4 present the results of the final stage of preliminary research. 

The tests were conducted on one of the images from the sequence of images acquired by 

the Jinlin minisatellite. The prepared image was divided into component images of the 

dimensions 384 × 384 pixels with an overlap of 192 pixels (50%). Then, the prepared im-

ages were combined with the weights calculated with the use of the Hann, Bartlett-Hann, 

Triangular, Hann-Poisson, Gaussian, Lanchos, and Blackman window functions. The 

quality of the obtained resultant image was analyzed based on the evaluation metrics 

described in point A. The obtained results clearly reveal that those windows, where the 

sum of weights for a single pixel equals 1, present the best results of the evaluation met-

rics. Apart from that, combining images based on weights determined with the use of 

window functions leads to a slight deterioration in image quality, which is proven by the 

low value of MSE and RASE errors. At the same time, the Peak signal-to-noise ratio 

(PSNR) takes high values, e.g., for the Hann window PSNR = 51.89 dB, which means very 

high similarity between the resulting image and the reference image. As for the windows, 

for which the sum of weights in a point in the overlap area is different from 1, horizontal 

and vertical stripes are visible in the resulting images. If the value of the sum of weights 

is lower than one, the DN values for those pixels are lower than the target value, which, 

Figure 3. Presentation of the values of the average, minimum, and maximum values of the weights
of the analyzed windows. It was assumed that the images overlapped in 50%. Numerical values
were determined for the overlap area.

Table 2. Assessment of the quality of combining images with the use of windows. For methods
marked with “*”, histogram adjustment was applied before assessment.

Window
Function\Metrics MSE RMSE PSNR UQI SCC SAM SSIM RASE VIFP NRMSE

Overlap 0.00 0.00 - 1.00 1.00 0.00 1.00 0.00 1.00 0.00
Hann a0 = 0.5 0.42 0.64 51.89 1.00 1.00 0.01 1.00 0.35 1.00 0.01
Bartlett-Hann 3.66 1.91 42.49 1.00 0.91 0.01 1.00 101.21 0.98 0.02

Triangular 3.84 1.95 42.29 1.00 0.90 0.01 1.00 104.21 0.98 0.02
Hann-Poisson 3.42 1.85 42.78 0.99 0.92 0.01 1.00 96.91 0.98 0.02

Gaussian 92.79 9.63 28.46 0.99 0.89 0.08 0.99 401.44 0.89 0.08
Gaussian * 75.74 8.70 29.34 1.00 0.88 0.07 0.99 354.06 0.87 0.07

Lanchos 1288.29 35.89 17.03 0.90 0.85 0.30 0.88 1658.52 0.72 0.32
Lanchos * 863.22 29.38 18.77 0.95 0.81 0.24 0.88 1294.12 0.59 0.24
Blackman 16.68 4.08 35.91 1.00 0.90 0.02 1.00 207.04 0.97 0.03

Blackman * 3.23 1.80 43.03 1.00 0.89 0.01 1.00 87.88 0.97 0.01
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Figure 4. Sample image generated as a result of combining images with the use of selected windows.
For methods marked with “*”, histogram adjustment was applied before combining images after
adjusting the histogram to the reference image.
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Figure 5. Fragment of the resulting image that was generated with the use of the Lanchos window.
The lighter stripe of pixels that shows that the sum of weights is higher than 1 and is marked with
the yellow arrow, while the red arrow indicates the stripe of darker pixels, where the sum of weights
is lower than 1.

Considering the results presented above, the main tests will be conducted for the
Hann, Bartlett-Hann, Triangular, and Hann Poisson windows.

3.4. Results

The aim of the main tests was to verify the windows determined in the preliminary
phase of research and to determine the best level of overlap between component images.
For the purposes of tests, a GAN model was prepared that makes it possible to increase
the spatial resolution of the input images four times. To achieve it, the ESRGAN network
was trained with the use of an own database consisting of low-resolution (LR) images and
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corresponding high-resolution (HR) images. The quality of the combination of component
images was assessed for images, whose spatial resolution was improved with the use of
the trained network.

3.4.1. Database

For the purposes of these tests, a database was prepared that consisted of low-
resolution (LR) images and corresponding high-resolution (HR) images. The task of the
ESRGAN network was to improve the resolution of channels 2, 3, and 4 of multispectral
images obtained by the World View 2 (WV2) satellite. This satellite captures panchro-
matic images with a spatial resolution of 0.5 m and multispectral (8-band) images with
a resolution of 2 m. The database of low-resolution images was created with the use of
multi-spectral images presenting the areas located in south-eastern, southern, and northern
parts of Poland. The corresponding high-resolution images were prepared based on colored
satellite images after traditional pansharpening.

The spatial resolution of the images was improved with the use of the Gram–Schmidt
method [54–56]. The main reason for choosing this method was the fact that the color
distortions are the lowest (in comparison to other methods). Figure 6 presents sample pairs
of LR and HR images.
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Figure 6. Sample pairs of (A) LR and (B) HR images that were used to train the ESRGAN network.

As a result of the operations described above, a database containing 29,500 LR images
with the dimensions of 96 × 96 pixels and corresponding HR images with the dimensions
of 384 × 384 pixels was created.

3.4.2. The ESRGAN Network

The Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) [41]
are the most popular modification of the SRGAN networks. Their task is to estimate a
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high-resolution image based on a low-resolution one. The ESRGAN model uses the low-
resolution image and a deep convolutional network that contains residual blocks to estimate
high-resolution images. It consists of two models: the generator and the discriminator.
The task of the generator network is to improve the resolution of the input image, while
the discriminator model evaluates the generated image and is used only during network
training.

As it was mentioned before, the ESRGAN model is a modification of the SRGAN
network. The batch normalization (BN) layers have been removed from its generator, and
the basic block was replaced with a Residual-in-Residual Dense Block (RRDB), being a
combination of a multi-level residual network and dense connections (Figure 7). The re-
moval of the BN layers resulted in stable training and improved network capacity (the time
required for training became much shorter), which is a result of the reduced computational
complexity. In cases when the statistical data of the training and testing processes differ
significantly, the BN layers tend to generate artefacts in the SR image. This phenomenon
comes from the difference between the datasets that are used to calculate the average and
the variance. During network training, they are calculated based on a certain batch of
images, while at the stage of testing information from the whole dataset is used. Another
modification of the generator network can be found in the implementation of RRDB blocks
that have a residual structure. This solution makes it possible to increase the network
capacity, which, in turn, improves its performance.
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Figure 7. Model of the ESRGAN network generator (base on [41]).

The authors of ESRGAN also modified the discriminator, by replacing it with a rela-
tivistic discriminator. As opposed to the standard discriminator used in SRGAN, which
estimates the probability that the evaluated image belongs to the set of HR images, the
relativistic discriminator attempts to predict the probability that the true image IHR is
relatively more realistic than the false image ISR (Equations (8)–(9)).

RMSE =

√√√√ 1
NM

N

∑
n=1

M

∑
m=1

[HR(n, m)− HR′(n, m)]2, (8)
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D_Ra ( ÎHR, ÎSR) = σ
(

C
(

IHR
)
− Ex f

[
C
(

ISR
)] )

(9)

where σ—sigmoid function, C(x)—output data of the generator, before applying the last
activation function, E[·]—the average of all false data in the mini-batch.

The losses of the generator (Equation (10)) and discriminator (Equation (11)) may be
formulated as follows:

LRa
D = −Exr

[
log
(

DRa

(
IHR, ISR

))]
− Exr

[
log
(

1− DRa

(
ISR, IHR

))]
, (10)

LRa
G = −Exr

[
log
(

1− DRa

(
IHR, ISR

))]
− Exr

[
log
(

DRa

(
ISR, IHR

))]
(11)

where lSR—Perceptual loss function.
Another modification of the SRGAN model is the application of the perceptual loss

before activation layers (instead of after them). This allows for an increase in the number
of properties used to calculate lSR

VGGi,j, which makes it possible to improve network perfor-
mance. Additionally, it enables much better reconstruction of the brightness of SR images.
As a result, the total loss of the generator may be presented in form of Equation (12).

LG = Lpercep + λLRa
G + ηEx1‖G(xi)− y‖1, (12)

where Lpercep—perceptual loss, λ, η—coefficients compensating various losses, Ex1‖G(xi)−y‖1—(also
denoted as L1), distance between the SR and HR images.

The ESRGAN network is trained based on network interpolation, whose task is to
remove the noise from the estimated SR images. It consists of the training of the G_PSNR
network that is oriented on the PSNR and then the G_GAN. The network is obtained as a
result of adjustments. The generator model is obtained as the interpolation of other models
according to the equation below (Equation (13)).

θ INTERP
G = (1− α)θPSNR

G + αθGAN
G , (13)

where: α—interpolation parameter, α = [0, 1], θ INTERP
G , θPSNR

G , θGAN
G —parameters of the

GINTERP, GPSNR, GGAN networks.
This modification enables the generating of results for any value of the α coefficient,

reducing the presence of artefacts in the image. Secondly, it is possible to modify SR images
without the need to re-train the model.

3.4.3. Network Training

The network was trained on an Nvidia TITAN RTX 24 GB graphics card, Intel Xeon
Silver 4216 processor, and an Ubuntu 18.04 operating system. The initial parameters for
the ESRGAN network training were those recommended by the authors of the solution:
learning rate is initialized as 2 × 10−4, decayed by a factor of 2 every 2 × 105 of mini-
batch updates. The generator is trained using the loss function in (12) with λ = 5·10−3

and η = 10−2. For optimization, we use Adam with β1 = 0.9, β2 = 0.999. The learning
rate is set to 1 × 10−4 and halved at [50 k, 100 k, 200 k, 300 k] iterations [41]. The aim of
introducing a change to the learning rate during network training is to improve the model’s
resistance to overtraining.

The application of the above approach resulted in the observed phenomenon of
disappearing gradients after performing approximately 35,000 iterations, which are very
easy to identify through a rapid increase of the LG loss (Figure 8).

As a result, it is necessary to reduce the learning values earlier in the network training
process. Based on the conducted experiments, a modification of the learning rate parameter
(Table 3) was proposed, in order to improve the resistance of the neural network to the
unstable gradient syndrome. As a consequence of this operation, the training process
becomes significantly longer.
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Figure 8. Sample pairs of LR and HR images that were used to train the ESRGAN network.

Table 3. Learning rate values used in network training.

Iterations Learning Rate

35,000 2 × 10−4

80,000 1 × 10−4

80,000 5 × 10−5

100,000 2 × 10−5

3.4.4. Combining Images

At the main stage of the research on the possibility to combine SR images with the use
of window functions, the authors also focused on determining the best degree of overlap
between the combined images. For this purpose, five fragments of multi-spectral satellite
scenes with dimensions not smaller than 900 × 900 pixels (LR) were selected. These images
show urban areas and outskirts of cities, forests, agricultural areas, and a fragment of a
wind farm. The reference high-resolution (HR) images selected for evaluation were the
same images, whose spatial resolution was improved with the use of pansharpening with
the Gram–Schmidt method (Figure 9).
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Figure 9. Sample test image—fragment of a multi-spectral image captured by the World View-2
satellite, depicting the suburbs of the town of Radom: (A) low-resolution (LR) image (dimensions:
917 × 921 pixels), (B) high-resolution (reference) image obtained as a result of pansharpening with
the Gram–Schmidt method (dimensions: 3667 × 3684 pixels).

For test purposes, the LR images were divided into smaller images with a resolution
of 96 × 96 pixels. Ten sets of component images were prepared (for each of the scene
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fragments), using various degrees of overlap (from 50% to 5% at 5% intervals). Before
starting the tests, the spatial resolution of every component image was improved with the
use of the trained ESRGAN network. Images prepared in this way were then combined
with the use of the window functions selected in the preliminary research phase (Figure 2).

The operation described above resulted in creating 200 new image fragments (5 scene
fragments × 10 degrees of overlap × 4 window functions = 200 images) of a spatial
resolution improved with the use of the ESRGAN network. Each of the estimated images
was then evaluated based on the metrics presented and described in Section III.A. The
average value of the analyzed metrics for each image was calculated taking into account the
classification based on the image combining method. The obtained results are presented
in Appendix B. They reveal that the quality of the resulting image improves with the
decreasing degree of overlap between images, and the maximum value is achieved for
the overlap of 10%. For lower values of overlap, the quality of the combined image
deteriorated. Additionally, one may notice that the images combined with the use of the
triangular window achieve the best quality results for the overlap between images that is
higher than 25%.

For an overlap lower than this threshold, the best evaluation results were achieved by
images combined with the use of the Hann-Poisson window, although this method works
best when the overlap between images does not exceed 15%. For further verification, the
values of the SSIM and PSNR metrics were analyzed for the image presented in Figure 10.
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The obtained results confirm that the window functions allow for the combination of
image fragments whose spatial resolution was improved with the use of the generative
adversarial network. Although one may notice that combining images with the use of the
Triangular window resulted in the best values of evaluation metrics, the differences between
the other analyzed window functions were small, e.g., for SSIM it was approximately 0.0002.

As for the comparison of quality of different resulting images, a significant shift of the
SSIM and PSNR metrics along the y axis was noted for the analyzed images (Figure 11).
The reason is, however, the quality of evaluating the SR images by GAN, not the method of
combining images, which is confirmed by the shape of the curves being the interpolation
of the results of the analyzed metrics. Moreover, the analysis of the obtained results clearly
demonstrates that the application of a large overlap between the combined results has
a negative influence on the values of the evaluation metrics. At the same time, using
an overlap of approximately 10% of the image enables the best estimation of the super
resolution (SR) image.
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Figure 11. SSIM values for the analyzed images.

4. Discussion

This article presents a new methodology for improving the spatial resolution of whole
satellite scenes with the use of deep learning methods.

In this solution, the input low-resolution image is divided into smaller fragments with
dimensions equal to the dimensions of the input data of the neural network. Based on the
tests presented above, the recommended overlap between images should be approximately
10%. Then, the spatial resolution of all LR images is improved with the use of any deep
learning method (the authors used the ESRGAN network). This stage is followed by
using window functions to combine the SR images of a higher resolution created using the
methods described above. If the overlap between images equals 10%, it is recommended
to use the Triangular window. For an overlap exceeding 20%, the authors recommend
using the Hann-Poisson window instead. At the same time, considering the results of the
main tests, the degree of overlap between images has a stronger influence on the quality
of the resulting image than the window function used to combine images. Therefore,
each of the window functions that were verified in the main phase of research, i.e., Hann,
Hann-Poisson, Bartlett-Hann, and Triangular may be applied to combine the estimated SR
images.

At the same time, window functions may be successfully implemented to combine
other images that result from image translation operations, for example the activity of the
U-Net network or conditional generative adversarial networks (CGAN). The illustration
below shows an example of shadow detection in panchromatic images with the use of
CGAN. Figure 12 shows two images with 5%, 10%, and 50% degrees of overlap, respectively,
and the result of their combination with the use of the Hann-Poisson window. The resulting
images were generated based on the assumption that, if the probability of defining the
resulting pixel as a shadow is lower than 70%, then it will not be assigned to the “shadow”
class. Such a solution allows for the elimination of errors that may appear at the borders of
the image, where only parts of the object are often visible.
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Figure 12. An example of the application of window function to combine shadow masks that were
detected with the use of the UNet network. The images shown have an overlap of: (A) 5%, (B) 10%,
(C) 50%. For panchromatic images (where histogram equalization was applied) window functions
were not used.

Unfortunately, the literature review performed by the authors revealed that the results
of the application of deep learning algorithms are presented for small images. One of
the numerous examples is the solution presented by Xiaoyu Dong [57], which makes it
possible to improve the spatial resolution of images with dimensions of 48 × 48 pixels.
A similar problem may be encountered in the segmentation of images. Binge Cui et al.
presented a method that enables Sea-Land Segmentation of images with dimensions of
256 × 256 pixels [58].

On the other hand, the methodology presented in this paper could make it possible to
apply solutions proposed by scientists to satellite images of any dimensions.

5. Conclusions

The conducted research revealed that it is possible to improve the spatial resolution
of whole satellite image scenes with the use of deep learning algorithms. However, as
those algorithms require large computational power, processing whole satellite images
is very difficult, and sometimes even impossible. This problem may be solved by the
methodology presented above, which enables the processing of digital images of any
dimension. Moreover, this solution may be applied to combine images generated as a
result of image translation operations, including segmentation. At the same time, using an
overlap between images of approximately 10% allows for a significant shortening of the
duration of the spatial resolution improvement process, which results from the reduced
number of necessary operations (an example is also presented in Figure 11). Additionally,
this approach also enables the application of trained neural network models regardless of
their input size parameters.

The conducted experiments also demonstrate that the ESRGAN network is not com-
pletely successful in improving the spatial resolution of satellite imagery, and the estimated
images contain multiple errors, which is particularly noticeable during visual analysis, e.g.,
of roofs of houses. This is also confirmed by the values of metrics presented in Appendix B.

Considering the obtained results, one may conclude that it is possible to improve
the spatial resolution of whole satellite scenes. However, this requires the modification of
existing deep learning models or the development of completely new solutions.

Author Contributions: Conceptualization, K.K.; methodology, K.K. and D.W.; software, K.K.; valida-
tion, K.K.; formal analysis, K.K. and D.W.; investigation, K.K. and D.W.; resources, K.K.; data curation,
K.K.; writing—original draft preparation, K.K.; writing—review and editing, D.W.; visualization,
K.K.; supervision, D.W.; project administration, D.W.; funding acquisition, D.W. All authors have
read and agreed to the published version of the manuscript.
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Appendix A

Table A1. Windows formulas that were used for the calculations.

WINDOW Formula Min Max Mean Surface for
Image 384 pix

Figure (the Modification, When in Non-Overlapping
Areas, i.e., on the External Edges, the Value of the
Window Function Equals 1) Image Overlap of 50%

Was Assumed.

Welch w[n] = 1−
(

n− N
2

N
2

)2
1.01 1.50 1.34 254.99

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 24 
 

 

Funding: This research was funded by the Military University of Technology, Faculty of Civil En-

gineering and Geodesy, grant number: UGB/22-786/2022/WAT. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Windows formulas that were used for the calculations. 

WINDOW Formula Min Max Mean 

Surface for 

Image 384 

pix 

Figure (the Modification, When in Non-Overlapping 

Areas, i.e., on the External Edges, the Value of the Win-

dow Function Equals 1) Image Overlap of 50% Was As-

sumed. 

Welch �[�] = 1 − �
� −

�
2

�
2

�

�

 1.01 1.50 1.34 254.99 

 

Sine �[�] = sin �
��

�
� 1.00 1.41 1.27 243.46 

 

Hann 
�[�] = �� ∗ �1 − cos �

2��

�
�� 

�� = 0.5 
0.9(9) 1.00 1.00 192 

 

Sine w[n] = sin
(

πn
N
)

1.00 1.41 1.27 243.46

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 24 
 

 

Funding: This research was funded by the Military University of Technology, Faculty of Civil En-

gineering and Geodesy, grant number: UGB/22-786/2022/WAT. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Windows formulas that were used for the calculations. 

WINDOW Formula Min Max Mean 

Surface for 

Image 384 

pix 

Figure (the Modification, When in Non-Overlapping 

Areas, i.e., on the External Edges, the Value of the Win-

dow Function Equals 1) Image Overlap of 50% Was As-

sumed. 

Welch �[�] = 1 − �
� −

�
2

�
2

�

�

 1.01 1.50 1.34 254.99 

 

Sine �[�] = sin �
��

�
� 1.00 1.41 1.27 243.46 

 

Hann 
�[�] = �� ∗ �1 − cos �

2��

�
�� 

�� = 0.5 
0.9(9) 1.00 1.00 192 

 

Hann
w[n] =

a0 ∗
[
1− cos

( 2πn
N
)]

a0 = 0.5
0.9 (9) 1.00 1.00 192

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 24 
 

 

Funding: This research was funded by the Military University of Technology, Faculty of Civil En-

gineering and Geodesy, grant number: UGB/22-786/2022/WAT. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Windows formulas that were used for the calculations. 

WINDOW Formula Min Max Mean 

Surface for 

Image 384 

pix 

Figure (the Modification, When in Non-Overlapping 

Areas, i.e., on the External Edges, the Value of the Win-

dow Function Equals 1) Image Overlap of 50% Was As-

sumed. 

Welch �[�] = 1 − �
� −

�
2

�
2

�

�

 1.01 1.50 1.34 254.99 

 

Sine �[�] = sin �
��

�
� 1.00 1.41 1.27 243.46 

 

Hann 
�[�] = �� ∗ �1 − cos �

2��

�
�� 

�� = 0.5 
0.9(9) 1.00 1.00 192 

 

Bartlett-Hann

w[n] =
a0 − a1

∣∣∣ n
N −

1
2

∣∣∣−
a2 cos

( 2πn
N
)

a0 = 0.62; a1 =
0.48; a2 = 0.38

0.9 (9) 1.00 1.00 192

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 

Bartlett-Hann 

�[�]

= �� − �� �
�

�
−

1

2
�

− �� cos �
2��

�
�   

�� = 0.62; �� = 0.48; ��

= 0.38 

0.9(9) 1.00 1.00 192 

 

Triangular 
�[�] = 1 − �

� −
�
2

�
2

� , 0 ≤ �

≤ � 

0.9(9) 1.00 1.00 192 

 

Hann-Poisson 
�[�]

=
1

2
�1 − cos �

2��

�
�� �

��|����|
�  

0.9(9) 1.00 1.00 192 

 

Gaussian 

�[�] = exp �−
1

2
�

� −
�
2

��
2

�

�

� 

0 ≤ � ≤ �, � ≤ 0.5, 

Selected:� = 0.4 

0.92 1.05 0.99 190.11 

 

Lanchos �[�] = ���� �
2�

�
− 1� 1.0 1.27 1.18 226.36 

 



Remote Sens. 2022, 14, 6285 18 of 22

Table A1. Cont.

WINDOW Formula Min Max Mean Surface for
Image 384 pix

Figure (the Modification, When in Non-Overlapping
Areas, i.e., on the External Edges, the Value of the
Window Function Equals 1) Image Overlap of 50%
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Table A1. Cont.

WINDOW Formula Min Max Mean Surface for
Image 384 pix

Figure (the Modification, When in Non-Overlapping
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Window Function Equals 1) Image Overlap of 50%
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